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Abstract— ACMarker is an acoustic camera-based fiducial
marker system designed for underwater environments. Opti-
cal camera-based fiducial marker systems have been widely
used in computer vision and robotics applications such as
augmented reality (AR), camera calibration, and robot naviga-
tion. However, in underwater environments, the performance
of optical cameras is limited owing to water turbidity and
illumination conditions. Acoustic cameras, which are forward-
looking sonars, have been gradually applied in underwater
situations. They can acquire high-resolution images even in
turbid water with poor illumination. We propose methods
to recognize a simply designed marker and to estimate the
relative pose between the acoustic camera and the marker.
The proposed system can be applied to various underwater
tasks such as object tracking and localization of unmanned
underwater vehicles. Simulation and real experiments were
conducted to test the recognition of such markers and pose
estimation based on the markers.

I. INTRODUCTION

Sensing in the underwater domain is a difficult task that
has attracted the interest of researchers. Although techniques
for optical camera-based sensing have been highly developed
and applied to underwater environments, sonars are the only
viable modality for extreme underwater environments with
poor visibility. An acoustic camera, which is a forward-
looking sonar, can acquire high-resolution images without
concern for turbidity or illumination. This type of cam-
era has been broadly employed in sensing and navigation
applications using underwater robots, such as underwater
mapping, mosaicking, and localization [1]–[3]. To construct a
controllable environment for autonomous robots in a land en-
vironment, artificial landmarks such as ARTag, AprilTag, and
ArUco are widely used in robotics and computer vision ap-
plications [4]–[6]. Fiducial marker systems can detect square
markers, offer IDs, and estimate the six-degree-of-freedom
(6DoF) relative pose between the camera and marker. Such
systems have made great contributions to ground truthing,
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Fig. 1. Conceptual representation of proposed marker system. Metal
markers can be placed on concrete structures or on the ground with a
concrete or plaster base. This can be applied to underwater autonomous
vehicle navigation and object tracking.

navigation in structured environments, and augmented re-
ality (AR). It is necessary to build an acoustic camera-
based fiducial marker system since the optical camera-based
fiducial marker system is restricted by the limited visibility
in underwater environments. Acoustic images are generated
based on the backscattered intensity. Thus, it is possible
to utilize the characteristic of an active sonar in which
the backscattered intensity is influenced by the material of
the target. By combining diffuse and specular reflection
materials, it is possible to create a marker with patterns that
can be recognized in an acoustic image. Currently, a circle
marker can be robustly recognized in an acoustic image
[7]. The information from the circle marker is the center
point and identified ID; however, 6DoF pose estimation
cannot be implemented. For 6DoF pose estimation, a square
marker is considered since the four corners can be used to
calculate the pose information. To the best of our knowledge,
there are currently no square fiducial marker systems for
acoustic cameras. Besides, the theory of the acoustic camera-
based pose estimation problem is still in its early stages. In
our previous research, we proved that 6DoF poses can be
estimated with three or more points. However, it is necessary
to improve the algorithm since pose estimation from a small
number of points (e.g., three or four) is error-prone [8].

In this research, an acoustic camera-based fiducial marker
system named ACMarker (marker for acoustic camera) is
proposed, as shown in Fig. 1. The markers can be placed
directly on the walls of an underwater structure or on the
seabed with a concrete or plaster base. This facilitates the
navigation of autonomous underwater vehicles (AUVs), as
well as underwater structure inspection. The contributions
of the system can be summarized as follows:
• We propose detection and ID identification methods

based on simply designed square markers.



• We propose a method to accurately and precisely es-
timate the 6DoF relative pose between the acoustic
camera and the marker.

• Detection and pose estimation can be processed based
on a single image and should work in real time.

The rest of the paper is organized as follows. In Section II,
related works are introduced and compared to the proposed
method. Section III introduces the acoustic camera models.
Section IV explains the design of the marker and provides
an overview of the proposed system. Section V explains the
marker detection and ID identification method. Section VI
describes the pose estimation method. Experiments and eval-
uations are presented in Section VII, followed by discussions
in Section VIII. Finally, conclusions and future works are
presented in Section IX.

II. RELATED RESEARCH

Lee et al. first tested acoustic camera-based artificial
landmarks by combining diffuse and specular material, which
inspired this research [7]. They designed circle 2D artificial
landmarks with a probability-based recognition system. Al-
though the landmarks can be recognized stably in an acoustic
image, they require an image sequence for recognition. In
other words, the camera must maintain a stationary position
for a specific period for recognition. Furthermore, while
circle markers are more robust than square markers, they
cannot be used for 6DoF pose estimation because only
the center point can be acquired. Westman et al. proposed
a simultaneous localization and mapping (SLAM) method
based on unconstrained landmarks [9]. This also requires
an image sequence with a pose-graph SLAM framework
to estimate the camera trajectory. Pyo et al. used pillars
as 3D landmarks. They focused on the recognition of such
landmarks by combining shadow information [10]. The 3D
landmarks were specialized for the seabed, and were long-
lasting and unaffected by biofouling. The marker designed in
this research is a square 2D marker. It is made of metal and
has a concrete or plaster base. It can be placed on a wall of an
underwater structure or on the ground. More importantly, the
main aim is to design a marker that can estimate the relative
pose between the marker and camera, which is necessary for
tasks such as visual tracking, underwater positioning, and
SLAM.

Plane-based resection for the acoustic camera has not been
fully studied thus far. Few research studies have focused
on pose estimation based on a planar target. Negahdaripour
proposed a method to realize plane-based resection and
lens distortion removal simultaneously, i.e., calibration [11].
However, numerous points are required, and the pose esti-
mation result may be influenced by the initial guess. Brahim
et al. used a covariance matrix adaptation evolution strategy
algorithm (CMA-ES) to verify the acoustic camera model by
conducting plane-based resection [12]. They used 18 points
over the acoustic image. However, the algorithm was also
influenced by the initial value. In our previous study, we
proposed a method to obtain the initial value using a weak-
perspective camera model and conduct nonlinear optimiza-
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Fig. 2. Acoustic camera projection model.

tion for refinement; this was named the planar acoustic n
point (AnP) [8]. However, if the target is small with only a
few points (e.g., 0.25 m × 0.25 m with four points), only
5DoF can be estimated accurately. Although the reprojection
error is small, the estimated pose may have a decimeter-level
error. More constraints are necessary during optimization
to further improve this result. Additional information such
as an elevation-angle scope limitation and illuminated area
[13] can be included. In this paper, we propose a particle-
filter-based optimization method with additional constraints
to improve the result.

III. ACOUSTIC CAMERA MODEL

A 3D point in the camera coordinate system can be
represented as (r, θ, φ) and can be transferred into Euclidean
coordinates (Xc, Yc, Zc) based on the following equation:[
Xc Yc Zc

]>
=
[
r cosφ cos θ r cosφ sin θ r sinφ

]>
.

(1)
The 3D point is projected in an area in the acoustic image

denoted as (xc, yc) in the Euclidean image coordinates. As
shown in Fig. 2, the projected point can be represented by[

xc yc
]>

=
[
r cos θ r sin θ

]>
. (2)

The acoustic camera projection model can be written as
follows by combining Eqs. (1) and (2):

[
xc yc 0

]>
=

α 0 0
0 α 0
0 0 0

 [Xc Yc Zc
]>
, (3)

where α = 1
cosφ .

For acoustic cameras such as DIDSON and ARIS, the
scope of the elevation angle φ is between φmin = −7◦

and φmax = 7◦. In other words, the value of α is between
1 and 1.0075. Thus, α can be approximated to 1 so that
the projection can be considered an orthographic projection
[2][14]. If α is considered a constant larger than 1, then the
acoustic camera model can be seen as a weak-perspective
camera model.

IV. OVERVIEW

A. System Overview

An overview of the proposed system is shown in Fig. 3.
The input is the sonar signal matrix, which is a bearing-range
image; this is denoted as a raw image in this paper. The
output is the detected marker with the ID and the estimated
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Fig. 3. System overview. Input is sonar signal matrix, and output is detected
marker with relative 6DoF pose. The entire system can be separated into
quad detection, ID identification, and pose estimation.

Stainless 

steel

Paint

Concrete

0.25 m

0.25 m

(a)

Marker

(b)

Fig. 4. Fiducial markers: (a) marker in water tank and (b) marker in
acoustic image. Stainless steel with concrete offers sufficient contrast for
detection.

6DoF pose between the camera and marker coordinates. The
system can be divided into three parts. Similar to optical
camera-based marker systems [4]–[6], we initially detect
quadrilaterals (i.e., quads) in the image. Then, we remove
the projection distortion in the pattern and conduct template
matching to verify the ID information. Finally, we estimate
the pose based on the corners of the quads and the additional
constraints.

B. Fiducial Markers

Fiducial markers for acoustic cameras can be created by
combining diffuse and specular reflection materials. Con-
crete, which is one of the most common materials for man-
made underwater structures, possesses outstanding backscat-
tering ability. After several tests, we found that stainless steel
is one of the most ideal specular materials. Such materials
can generate stable dark regions in acoustic images. Com-
binations of such materials can provide sufficient contrast
for marker detection in the acoustic image. In this research,
we designed the fiducial markers shown in Fig. 4. Characters
were painted on the stainless steel as IDs; this can be changed
by using other diffuse materials or by simply cutting patterns
in the stainless steel. The stainless steel can be directly
placed on man-made concrete structures such as bridges and
caissons. If a marker is placed in other environments such
as the seafloor, it is better to have a concrete or plaster base.

V. MARKER DETECTION AND ID IDENTIFICATION

A. Quad Detection

The raw information read from the sensor is an r − θ
matrix. First, a median filter is used to filter the noise in the
raw image matrix. Then, the raw image matrix is transferred
into a Euclidean coordinate image based on Eq. (1). If a
straight line in 3D space is projected onto the acoustic image,
it can be approximated as a straight line in the 2D image

(a) (b) (c) (d) (e)

Fig. 5. Quad detection: (a) original marker, (b) after MSER binarization,
(c) after morphological opening, (d) after contour detection, and (e) after
DP algorithm.

(a) (b) (c) (d) (e)

Fig. 6. Sonar homography: (a) detected quad, (b) affine transform, (c)
binarization based on Otsu method, (d) discarding pixels on edge, and (e)
template generated from another frame.

[15]. This can be also proven by approximating the acoustic
camera model to an orthographic projection model or weak-
perspective projection model, as explained in Section III.
Then, maximally stable extremal regions (MSER) is used for
binary segmentation [16]. MSER can stably detect regions
of high contrast in the acoustic image. Since the size of
the marker and the scale of the acoustic image (i.e., range
distance per sample) are known, it is possible to adjust the
parameters of MSER detection based on the size of the
marker. This effectively results in a small number of region
candidates. Thresholding is not an ideal method of detecting
feasible regions because the intensities of the pixels are not
evenly distributed owing to heavy noise and multiresolution.

Next, a morphological opening process is conducted to
smooth the edges of the regions and remove small objects
before contour detection. Similar to most optical camera-
based fiducial marker systems, the Douglas-Peucker (DP)
algorithm is used to refine the polygon after the contours
are detected [17]. Polygons with four vertices are detected
as quads. Since the projected marker can only be a parallel-
ogram, constraints can be added to the angles and the side
lengths of the quads to further limit the number of marker
candidates. Figure 5 shows an example of the aforementioned
quad-detection process.

B. ID Identification

This subsection introduces the method of recognizing the
ID information from the markers after marker candidates are
detected. First, the projection distortion is removed based on
sonar homography. Then, the ID can be extracted by template
matching.

1) Distortion Removal with Sonar Homography: Sonar
homography has been studied by several research groups;
it is the main component of sonar mosaicking. Hurtos et al.
applied isometry with orthographic projection approximation
and a zero-roll-angle assumption to sonar homography [2].
However, such a pose assumption cannot be applied to
this research because the roll angle is not always zero.
Negahdaripour et al. proposed a non-approximated sonar
homography method with no assumptions [18]. The homog-



raphy matrix H can be written as follows:

p
′

=

γq11 γq12 ψq13
γq21 γq22 ψq23

0 0 1

p = Hp, (4)

where γ = cosφ

cosφ′
and ψ = r sinφ

cosφ′
. qij denote the components

in matrix Q = R − tn>. R and t are the rigid body
transformations, and n is the surface normal vector for
the plane. The homography matrix H varies from point
to point in the acoustic image, and elevation angle φ is
unknown from the acoustic images. It is necessary to carry
out nonlinear optimizations to solve H for each point. In
this research, sonar homography is used to recognize the
IDs of the markers for which precision of the transformation
is not strictly required. Some assumptions can be made to
simplify the model. Assuming α in the acoustic camera
model is a constant over one acoustic image, γ is also a
constant. Similarly, we can regard ψ as a constant over the
marker in the image because the fiducial markers shown
in the acoustic image can be considered as a small area.
For instance, considering ARIS EXPLORER 3000 with a
0.25 m × 0.25 m marker, the maximum change in ψ is
0.25m × sin 7◦

cos 7◦ = 0.03075m, which is the most extreme
situation. Then, the homography matrix H is approximated
as a standard affine transformation matrix. We transfer the
quad into a square for the following ID identification.

2) Template Matching: The marker candidates are then
transferred into square images. Here, we apply the Otsu
method to binarize the images [19]. The noise on the edge of
the images is filtered by setting the intensities to zero. Then,
template matching is conducted to recognize the patterns.
Since the template and pattern are binary images of the
same size, the Hamming distance DH is used to compute
the similarity score S between pattern Ip and template It.

S = 1− DH(It, Ip)
W ×H

, (5)

where W and H are the width and height of the marker
in the image, respectively. The pattern with a score larger
than the threshold is considered the ID. In this research, the
threshold is set to 0.80 with a marker size of 80 pixels ×
80 pixels. Figure 6 shows an example of sonar homography.
The template is generated from an arbitrary frame, as shown
in Fig. 6(e).

VI. POSE ESTIMATION

A. Corner Refinement

Once the quads are detected, the vertices are used as corner
features for pose estimation. However, severe noise, image
distortion, and nonlinear projection may influence the corner
detection accuracy. Although we assume that in Euclidean
coordinate images, lines in 3D space are projected as lines
in 2D images, for high-precision tasks, the approximation
may influence the result. The multiresolution characteristic
of the Euclidean coordinate image may also deteriorate the
result of corner detection. It is possible that the vertices
are away from the real corners. We found that refining the

subpixels in the raw image may improve the result. This
process involves iteratively searching the corners in a defined
window size, beginning with the vertices of the quad. This
process is essential since the corner position from the quad
is not enough reliable.

B. Planar AnP

Defining the marker coordinate as the world coordinate,
a 3D point in world coordinates is denoted by pw, and in
camera coordinates by pc. Pose R and t in this study are
defined as follows:

pc = Rpw + t. (6)

The pose estimation problem can be formed as an estima-
tion of R and t, based on the following equation:

R̂, t̂ = argmin
R,t

||f(RX + t)− Y||2F , (7)

where f(.) is the acoustic camera model, and F denotes the
Frobenius norm. For X ∈ R3×n and Y ∈ R2×n, each column
in X holds the coordinates of a known 3D point in world
coordinates, and each column in Y holds the coordinates
of an observed point in the image. To acquire the initial
value for the nonlinear optimization in Eq. (6), we define
t = [t1, t2, t3]>, t12 = [t1, t2]>, and M, which is from the
first two rows of the rotation matrix R. If α is considered a
constant [8], the problem can be formed as

M̂, ˆt12 = argmin
M,t12

||α(MX + t12)− Y||2F . (8)

Assuming α = 1 converts the problem into an ortho-
graphic n point (OnP) problem for the coplanar-point case,
this may lead to a sub-Stiefel Procrustes problem [20], which
is difficult to solve analytically. In contrast, the assumption
of α > 1 may lead this problem into a plane-based resection
on the weak-perspective camera model, from which a clean
closed-form solution can be acquired. We apply the method
proposed by Bartoli et al. to solve the plane-based resection
on the weak-perspective camera model; this is shown as
Algorithm 1 [21]. Here, 1 refers to a vector of all ones,
and � is Hadamard product. λ1 refers to the eigenvalue and
rank1 refers to rank-1 decomposition.

The 5DoF pose can be estimated by linearizing the acous-
tic camera model. Two solutions can be acquired from the
initial 5DoF estimation. Assuming that there is a priori
knowledge of the signs of the rotation angles, in this research
we leave one solution for further processing. In addition, the
markers symmetric to the imaging plane can generate the
same acoustic image. It is acceptable to consider one solution
since they are symmetric.

The last DoF t3 cannot be acquired from the weak-
perspective camera model. The following optimization is
conducted to obtain the initial value of t3. Since θ is
independent of t3, it is possible to change the cost function
in Eq. (6) into an equivalent form as follows:

t̂3 = argmin
t3

n∑
i=1

(
√
iX2

c +i Y 2
c +i Z2

c −
√
ix2c +i y2c )2. (9)



Algorithm 1: Initial 5DoF Estimation
Input: X ∈ R3×n, Y ∈ R2×n

Output: α, R1, t1, R2, t2
1 x ∈ R3, y ∈ R2,x←− 1

nX1, y←− 1
nY1

2 X
′
←− X− x1>,Y

′
←− Y− y1>

3 (U,Σ,V) ←− SVD(X
′
)

4 Z←−det(U)Y
′
[v1 v2]

5 S←−diag(Σ11,Σ22)
6 B ←− ZS−1

7 u ∈ R2, α2 ←− λ1(BB>), u ←− rank1(I− 1
α2 BB>)

8 Q←− [ 1αB u]
9 Denote the first and the second row in Q by q1 and

q2, Q1 ←− [q>1 q>2 (q1 × q2)>]>

10 Q2 ←− Q1 �

 1 1 −1
1 1 −1
−1 −1 1


11 R1 ←− Q1U>, R2 ←− Q2U>

12 t1 ←− 1
αy−Q1U>x, t2 ←− 1

αy−Q2U>x

The Levenberg–Marquardt (LM) algorithm is used to
estimate t3. Then, the estimated values can be used as
the initial guess or a final optimization. In our previous
research, we used the LM algorithm with no constraints. If
the corner points are accurately measured, then LM may
lead to an accurate and precise result. However, it is difficult
to detect the corner position accurately and precisely owing
to multiresolution and heavy noise. The pose estimation
problem is ill-posed and there may be a large error in t3.
Additional information can be added as constraints to refine
the result, including φmax and φmin. This paper proposes a
particle-filter-based method for local optimization.

C. Particle-Filter-Based Optimization

Directly optimizing the corner reprojection error based
on the LM algorithm cannot guarantee that the marker is
within in the field of view, which may lead to a large
error in the pose. Fixed values of φmax and φmin are an
important characteristic of the acoustic camera. These can
be used to check whether the markers are in the field of
view of the acoustic camera. Furthermore, if the marker is
placed on a flat surface, the φ angle constraint can generate
an illuminated area (IA) [13] in the acoustic image, as
shown in Fig. 7. IA is the bright area in the acoustic image
when sensing a flat surface. This area is generated from the
limitation of the φ angle scope. φmax and φmin may lead
to two boundaries: upper boundary bu and lower boundary
bl, as shown in Fig. 7(a). However, owing to the complex
phenomenon of ultrasound and the low signal-to-noise ratio,
precise detection of this area is difficult because the signal on
the side of the image is weak. In this study, we use the middle
point of the boundaries for pose estimation. The middle point
of the upper and lower boundaries can be described by ranges

Ru and Rl, respectively, since θ = 0.

Ru =
tz

− cosφmax sinϕy + sinφmax cosϕy cosϕx
, (10)

where tz is from tc = −R>t = [tx, ty, tz]
>, which is the

camera pose in the marker coordinate. Similarly, Rl can
be computed by changing φmax to φmin. The detection of
middle points is based on the method proposed in [13]. After
the images are binarized, small objects on the images are
removed, and then a 1D search is conducted along θ = 0 to
find the middle points.

The initial pose ŵ = [t̂1, t̂2, t̂3, ϕ̂x, ϕ̂y, ϕ̂z]
> can be

estimated from the planar AnP. For particle-filter-based op-
timization, particles are first generated randomly around the
initial value. Denoting the pose of the i-th particle by wi,
the initial position for wi can be written as

wi = ŵ + ε, εk ∼ U(−0.1, 0.1), (11)

where εk is the k-th element in vector ε, and U refers to a
uniform distribution. For the sampling step, a new particle
set is generated from the past particle set according to

w(n)
i = w(n−1)

i + µ,

µ ∼ N (0,diag(σ2
t1 , σ

2
t2 , σ

2
t3 , σ

2
ϕx
, σ2
ϕy
, σ2
ϕz

)),
(12)

where N refers to a normal distribution. Note that σ2
t3 should

be larger than the other variances because the estimated t3
has a large uncertainty. In this study, we set σt3 = 0.2, and
the other variances to 0.1. For importance weighting, the cost
function for pose estimation is written as follows:

d2 = ||f(RX+t)−Y||2F+λ(Rl−R̂l)
2+λ(Ru−R̂u)2, (13)

where R̂l and R̂u are the measured values, and Rl and
Ru are the estimated values. λ is a weight to balance the
reprojection and IA errors. Denoting the error of the initial
value by d2initial, the probabilistic weights ωi are computed
as follows:

ωi = exp (− d2

d2initial
). (14)

If φm is beyond [φmin, φmax], then we directly set the
probabilistic weight ω to zero. Here, (rm, θm, φm) denotes
the corner in the camera coordinates. A sampling importance
resampling (SIR) particle filter is used in this study. During
resampling, we calculate the number of particles by multiply-
ing the standard deviations and the hyperparameter density.
If the number of particles is less than the threshold, the op-
timization may be considered to be converged. Empirically,
after 1∼2 iterations, the process converges. The weighted
average pose of the particles is used as the optimized result.

VII. EXPERIMENT

A. Simulation Experiment

1) Simulation Environment: The synthetic images were
generated with the open-source Blender software. The acous-
tic camera can be simulated based on a ray-tracing model
[22][23]. We set the attenuation of the ray strength based on
the inverse square law. To model the reflection, two kinds
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Fig. 7. Illuminated area (IA): (a) upper and lower boundaries in acoustic.
Owing to fixed aperture angle, illuminated area can be seen in image. (b)
Environment where (a) was captured.

of materials were set: diffuse reflection-based material and
specular reflection-based material. We prepared markers with
five types of patterns by combining the two materials. The
Hamming distances between the marker patterns are larger
than a certain value. The size of the markers is 0.3 m
× 0.3 m. The backscattered rays form a grayscale image.
With depth information, it is possible to generate a synthetic
acoustic image [22]. The resolution of the image is 0.003 m.
The program is listed in our GitHub1. It is worth mentioning
that the detected corner positions are not sufficiently accurate
owing to the multiresolution and nonlinear projection charac-
teristics. The performance of the marker may be influenced
by the distance to the marker and the orientation of the
marker. Inspired by AprilTag [5], we also conducted two
types of experiment. First, we fixed the orientation of the
marker and investigated the relationship between the pose
estimation error and the distance. Second, we fixed the
distance of the marker and checked the relationship between
pose estimation error and rotation angle. It should be noted
that the orientation factor is different from that for optical
markers. Two aspects influence the result: the angle between
the normal vector of the marker and the sonar heading, and
the angle between the normal vector of the marker and
the normal vector of the imaging plane. To simplify, we
place the marker at a fixed position, and rotate the marker
along the x-axis of the acoustic camera (roll) or the y-
axis of the acoustic camera (pitch). For pose estimation, the
minimum and maximum number of particles were set to 3000
and 5000, respectively. For each image, five particle filter
iterations were taken for local optimization. The similarity
score was maintained at approximately 96%. The position
error for bl and bu for the synthetic image is approximately
0.003 m.

2) Distance Factor: For the experiment on distance factor,
we tested the distance from 1 to 4.5 m. It is assumed
that all markers are completely in the field of view. Pitch
angle equals to zero is not an ideal configuration since the
backscattered intensity is too weak, and the upper boundary
locates at the infinite. The basic configuration was set as
roll = 0, pitch = 30◦. Then, for each distance, we randomly
generated 50 images with markers at different positions. For
distances smaller than 1 m, there is no complete marker

1https://github.com/sollynoay/ACMarker
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Fig. 9. Error in the case distance = 2.5 m: (a) error in t1, t2, t3, where
a, b, and c refer to corner only, corner+bl, and corner+bl+bu, respectively;
(b) relationship between t3 and corner position error. Color refers to the
corner position error.

under current configuration.
For quad detection and ID identification, the detection

accuracy is 100% and all the IDs are true positive. The root
mean square error (RMSE) was used to evaluate the pose
estimation result. Figure 9 shows the result of the distance
factor experiment. It is known that with corner information
only, the position error increases when the distance of
the marker increases. This can be effectively improved by
combing IA information. With both bu and bl, it is possible
to acquire ground-truthing level results for the position and
orientation. If we only use bl information, the position error
can be significantly improved, whereas the orientation error
maintains the same level when using the corner only. To
further analyze the position error, taking distance = 2.5 m
as an example, Figure 9(a) shows the error for t1, t2 and
t3 estimated by (a) corner only, (b) corner+bl, and (c)
corner+bl+bu. It is known that for pose estimation by corner
only, although t1 and t2 are accurate, there is a large error
in t3. Figure 9(a) shows the relationship between the corner
position error and t3 error. For Spearman’s correlation, r =
0.8608 and p = 0, it can be said that the t3 estimation result
is related to the corner position error.

3) Orientation Factor: During the orientation factor test,
the marker was set at a fixed position. Since we used a
particle filter, the result may differ slightly for each run.
We repeated the program five times to acquire the average
performance. Figure 10(a) indicates the factor of pitch angle.
The region between the two pink lines is the detectable
region. For pitch angle smaller than 10◦ or larger than 60◦,
the marker cannot be detected well by the current system
design. This is because of the quad detection failure. In
contrast, for the factor of roll angle, we maintained the pitch
angle at 30◦ and changed the roll angle. From Fig. 10(b), it
is known that the detectable region is from 0 to 60◦.
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Fig. 10. Simulation experiment on orientation factor: (a) rotation estimation
result for changing pitch angle, (b) rotation estimation for changing roll
angle. Pink lines refer to the boundaries of the detectable scope.

B. Real Experiment

In a real experiment, we tested the performance of recog-
nition of the marker and relative pose estimation in the
water tank shown in Fig. 7. The acoustic camera ARIS
EXPLORER 3000 was mounted on the AR2 rotator. The
position information of the camera was measured with a
ruler, and the orientation information was from the rotator.
The ARIS EXPLORER 3000 operated at 3.0 MHz so that the
resolution of the image was 0.003 m. rmin and rmax were set
to 0.98 and 4.36 m, respectively. The size of the raw image
was 128 pixels × 1483 pixels, and the size of the Euclidean
coordinate image was 802 pixels × 1512 pixels. A stainless
steel board of size 0.25 m × 0.25 m was used in this research.
Two types of markers were tested: one with “w” painted on
the metal board, and the other with a wooden square stuck
onto the metal board. In total, three acoustic videos were
recorded and denoted by Cases 1, 2, and 3. The frame rate of
the acoustic videos was 3.0 Hz. We used the same parameter
settings of the particle filter for the simulation experiment.
• Case 1: W marker, roll = 2.3◦, pitch = 30◦, 42 frames

at the same position.
• Case 2: W marker, roll rotates from 8.6◦ to −9.8◦, pitch

= 30◦, 131 frames.
• Case 3: Square marker, roll = 0, pitch = 33◦, 51 frames

at the same position.
Initially, for quad detection, the detection rate reached

100% in Cases 1 and 2 under the current parameter settings.
However, some quads that could not be detected in Case 3,
which is because of secondary reflection due to the thickness
of the wooden board. Still, the detection rate reached 90%.
The result of quad detection is basically influenced by
the MSER detection and DP algorithm. In this research,
we discuss the parameters of the DP algorithm further.
The boundaries for markers are highly distorted for sonar
images, as shown in Fig. 5(d), ε is a parameter that refers
to the largest distance between the input contour and the
approximated contour in the DP algorithm. It can be seen as
a parameter on how much the contour should be modified.
Figure 11(a) shows the relationship between ε and the quad
detection accuracy. It is known that when ε is larger than 10,
all quads can be detected successfully. Since the resolution
of the image is 0.003 m, the scale of the contour modified
is approximately 0.03 m. Since we only tested two IDs, all
recognized IDs are true positive. An important parameter
that influences the recognition rate is the threshold of the
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Fig. 11. Detection test based on Case 2: (a) test on effect of ε in DP
algorithm, and (b) histogram of the similarity scores.
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Fig. 12. Tracking test: roll-angle estimation in Case 2. The red line is the
estimated result and the blue line is the ground truth.

similarity score. In Fig. 11(b), we show the histogram of
the similarity score of the 131 frames in Case 2. For the
experiment, we set the threshold to 0.8. Then, for pose
estimation, since t was not measured directly for the ground
truth, we also evaluated tc. The pose estimation results are
shown in Table I and II, where RE refers to the reprojection
error of the corners. Since bu is larger than the effective
range, only bl is used as constraint to refine the result. We
reach the same conclusion with the simulation experiment.
Further, we tested the corner position error for Case 1, and
found out that the corner error is approximately 0.02 m,
which is larger than that of the simulation experiment. In
Case 1, we also compared the initial guess and the optimized
result using corners. The average pitch error significantly
decreased from 6.03◦ to 1.54◦, whereas using the LM
algorithm may lead to an error of up to 6.27◦. The roll angle
estimation result during roll rotation in Case 2 is shown in
Fig. 12. Although there is some noise, the proposed method
can successfully track the motion of the marker.

TABLE I
RESULTS 1 IN REAL EXPERIMENT

Case Detection rate tc [m] RPY [degree] RE [m]

1 Corners 42/42 0.102 ± 0.061 2.46 ± 1.45 0.0086 ± 0.0017
Corners + bl 42/42 0.077 ± 0.099 2.29 ± 0.80 0.0139 ± 0.0030

2 Corners 131/131 0.049 ± 0.034 1.78 ± 0.63 0.0094 ± 0.0024
Corners + bl 131/131 0.044 ± 0.031 1.78 ± 0.69 0.0131 ± 0.0032

3 Corners 46/51 0.164 ± 0.140 2.81 ± 1.94 0.0109 ± 0.0023
Corners + bl 46/51 0.077 ± 0.068 1.78 ± 1.15 0.0112 ± 0.0025

TABLE II
RESULTS 2 IN REAL EXPERIMENT

Case t [m] t12 [m] t12 [m]

1 Corners 0.145±0.006 0.012 ± 0.005 0.251 ± 0.010
Corners + bl 0.026 ± 0.007 0.010 ± 0.007 0.039 ± 0.015

2 Corners 0.092 ± 0.024 0.020 ± 0.004 0.157 ± 0.042
Corners + bl 0.029 ± 0.006 0.020 ± 0.004 0.041 ± 0.012

3 Corners 0.022 ± 0.011 0.015 ± 0.010 0.027 ± 0.022
Corners + bl 0.014 ± 0.004 0.014 ± 0.007 0.009 ± 0.007

VIII. DISCUSSIONS

A. Marker size and design

In the simulation experiment, we also tested markers with
sizes of 0.05 m, 0.1 m, 0.15 m, and 0.2 m. It is known
that the minimum size of the marker is 0.2 m under the
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Fig. 13. Cutting pattern on metal board: (a) metal board with concrete base,
(b) marker in acoustic image, and (c) coding pattern for ID recognition.

current system setting. MSER detection is one of the main
reasons why small markers cannot be detected; this requires
improvement in the future. In the water tank, we also cut
patterns in the metal board. Cutting pattern in the metal
with a concrete base has a better contrast. And some coding
techniques [5] can be used for ID recognition as shown in
Fig. 13(c) in the future.

B. Computation time

Using a PC with an Intel(R) Core(TM) i7-8750H CPU @
2.20 GHz, it takes approximately 125 ms for one image in the
real experiment. The detection and ID identification process
has a duration of approximately 90 ms; this is because
MSER is time-consuming. Currently, the system reaches a
performance of 8 Hz under the current resolution. It should
be mentioned that the path to the target in the acoustic image
is blank, and it is possible to trim the image to increase the
speed. For multiple markers, the ID identification and pose
estimation process can be computed in parallel.

IX. CONCLUSIONS
In this paper, we proposed a fiducial marker system named

ACMarker. The system includes detection of the marker,
ID identification, and pose estimation based on the marker.
The Experiment results proved that 5DoF can be estimated
accurately and precisely with corner information. If IA
information is included, 6DoF can be estimated successfully.
The marker can be applied to tasks such as AR, visual
localization, and landmark-based SLAM, which facilitate
underwater research. In future work, the detection bottleneck
will be examined to increase the robustness and computation
speed. The segmentation based on MSER is slow and unsta-
ble. Moreover, some coding techniques may be considered
for ID recognition. Learning-based methods will be explored
to increase the performance of the system. One of the
drawbacks of the current pose estimation method is that
t3 cannot be accurately estimated without IA information,
whereas IA is based on the assumption that the marker
locates on a flat surface. Future work may also include
the detection of IA from non-flat surface, or the use of
additional constraints to refine the pose estimation result.
It was found that the backscattered intensity of the diffuse
material on the marker changed with changing pose between
the marker and the acoustic camera. Considering the intensity
information (i.e., photometric information) may improve the
current pose estimation method. Currently, placing markers
on existed structures may require human effort. It may also
be interesting to realize automatic placement of the markers
based on underwater vehicles in the future.
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