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Abstract— In this paper, we propose a novel camera ori-
entation estimation method based on the computation of the
vanishing point of water drops in leaking indoor environment.
Camera orientation estimation is an important component of
robots as it allows them to perform complex tasks such as three-
dimensional (3D) reconstruction of different environments.
Camera estimation usually involves sensors, such as cameras
or encoders and sophisticated processing algorithms. In recent
years, computer vision techniques have been widely used to
estimate the camera orientation in robotics-related research
as visual sensing can improve the autonomy of the systems.
Although most of these methods perform well in outdoor
environments, they are problematic in the environments of
indoor disasters, where common visual features may be missing
due to collapse and erosion. To solve these problems, we
developed a novel technique that employs particular char-
acteristics of leaking indoor environment. Our method uses
the vanishing point generated form the trajectories of water
drops, to estimate the rotation of the camera. The proposed
technique can potentially be applied for inspecting nuclear
power plants. Computer-simulated and real data experiments
have been performed to evaluate the accuracy of the proposed
method. The results of these experiments demonstrate that our
method can detect the vanishing point of water drops and
estimate the rotation angle accurately.

I. INTRODUCTION

Robots are currently used in a wide variety of industries,
from daily living assistance to space exploration. Robotic
provide safety benefits since they can perform tasks in envi-
ronments that would be too dangerous or small or narrow for
humans to access. For instance, robots can work in the pres-
ence of radiation or in extreme temperatures and pressure.
Robots have been used in nuclear plant decommissioning,
reactor stabilization, inspection, and clean up activities [1].
They can be equipped with sensors and operated remotely
to perform inspection tasks. Figure 1 shows a multi-sensing
inspection robot that is equipped with a radiation detector,
camera, and thermometer that can be used for exploration
of nuclear power plants. In [2] a similar remote-controlled
mobile robot that carried an inspection system that was able
to rotate around the pan and tilt axes was used to investigate
the primary containment vessel (PCV) of the Fukushima
Nuclear Power Plant.
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Fig. 1. The inspection system composed of a camera and multiple sensors
is hung with an electric cable to perform inspection tasks in the PCV where
water drops are dripping consistently from the ceiling.

Accurate camera orientation estimation is necessary for
computer vision techniques, such as image stitching and 3D
reconstruction. Additionally, camera orientation estimation
can help to track not only the movement of the robot,
but also the movement of mounted sensors. In [3], a 3D
reconstruction scheme of radiation source distribution was
used for nuclear power plants inspection. Camera orientation
information was required for the robot to be able to create
the 3D radiation imaging scheme.

The estimation of camera orientation in indoor environ-
ments has been well researched. Camera orientation estima-
tion, which is an important part of simultaneous localization
and mapping (SLAM) system, was realized by matching
image feature points of multi-view images in [4]. However,
this camera orientation estimation method is sensitive to
illumination and texture information and therefore cannot
work in the environments where the camera would have
difficulty detecting and matching the feature points, such
as the Fukushima Daiichi Nuclear Power Plant disaster.
Figure 2 [5] shows a picture taken in the PCV of unit 2.
As shown in Fig. 2, the environment of the PCV of unit 2
lacks illumination and texture.



Fig. 2. A picture taken in the PCV of unit 2 of Fukushima Daiichi Nuclear
Power Plant [5].

In addition to the feature points, many other image features
are also used to estimate the camera orientation in indoor
environments. For example, the line features in man-made
indoor environments were employed to solve the Perspective-
n-Line (PnL) problem for the estimation of the camera
orientation estimation in [6]. The vanishing points of natural
geometric lines were detected to estimate the camera orien-
tation in [7]. However, these camera orientation estimation
methods cannot be applied in the environments of disaster
sites where the natural feature lines have been interrupted
by collapse or corrosion. In addition to the methods based
on computer vision, an inertial measurement unit (IMU) and
cable encoder were used for rotation estimation [8]. However,
IMU measurements have drift errors. Additionally, encoder
data may not always be available. For example, the encoders
can malfunction in an environment where high radiation is
present [9].

This study proposes a novel method for estimating the
camera orientation by employing a visual feature, i.e, the
vanishing point, detected by processing water drops. This
method can be used in the leaking indoor environments and
can successfully be used in situations where a camera would
otherwise have difficulty extracting the feature points or the
feature lines of the environment. This research focuses on
camera orientation estimation in indoor environments with
water drops dripping consistently from a ceiling, like the
Fukushima Daiichi Nuclear Power Plant disaster where water
that was normally used for injection cooling was consistently
dripping from the PCV ceiling. Other studies have taken
into account the phenomenon of dripping water. A micro
aerial vehicle (MAV) was operated remotely to inspect the
containment vessel for the nuclear site decommissioning and
the experiments were performed to test the performance of
the MAV under the environment with the dripping water
in [10].

The remainder of this paper is organized as follows.
Section II describes in detail the processes of detecting
the water drop trajectories, calculating the vanishing point,
and estimating the camera rotation. The effectiveness of our
proposed method is evaluated by experiments in Section III.

Section IV presents our conclusions and plans for future
work.

II. ROTATION ESTIMATION FRAMEWORK

In the indoor environment of the PCV, water drops dripped
vertically from the ground from fixed positions due to
the rugged structure of the PCV ceiling. Therefore, the
trajectories of the water drops can be considered a set of
parallel lines in a 3D space. A set of parallel lines in 3D
space will converge into one vanishing point on the camera
image by projective transformation. The coordinate of the
vanishing point in the pixel coordinate system changes when
the camera orientation changes. This is used to estimate
the camera rotation. In the proposed setting, the remote-
operated, robot-mounted camera can rotate around the tilt
and pan axis. Additionally, we assume that the operator
would stop the camera for a while to collect enough
video data before changing the camera orientation again.
Figure 3 gives an overview of our rotation estimation frame-
work. Inputs are two videos recorded before and after the
camera orientation changes. Output is the rotation angle we
want to estimate. The framework can be divided into three
steps: water drops detection, vanishing point estimation, and
rotation estimation. We describe the details of each step in
the following subsections.

A. Water Drops Detection

A background subtractor algorithm [11] was applied to
two image sequences that were recorded by the same camera.
This method allows the moving water drops to be detected
against the stationary background. Then, each frame that
was outputted by the background subtractor was processed
by the image preprocessing module, which was composed
of image binarization [12], morphology opening operation,
and morphology centroid extraction. Image binarization was
performed for the subsequent image morphology process.
The morphology opening operation was performed to remove
salt and pepper noise and enhance the images of the water
drop masses. Morphology centroid extraction was performed
to estimate the centers of the water drops, which is repre-
sented as the two dimensional (2D) point p(u, v) in the pixel
coordinate system whose origin was the top left vertex of
video frames. Finally, the temporal integration module was
performed as:

Ii = {pj
i |j = 1, 2, 3, ...,m}, (1)

P =

n⋃
i=0

Ii, (2)

where, pj
i is the j-th point in the i-th frame, and Ii is the

set of all the 2D points in i-th frame. P represents the set
composed of 2D points from all the frames. Figure 4 shows
the results of that operation and the detected water drops.
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Fig. 3. Overview of the rotation estimation framework based on the vanishing point of water drops.
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Fig. 4. Water drop detection: (a), (b), (c) are images of detected water
drops (i.e, white masses in the images) after each frame is processed by
background substractor and image preprocessing modules. They are binary
images including the detected water drop masses. (d) is the illustration of
the set of 2D points of the detected water drops.
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Fig. 5. Vanishing point computation: The blue and red dotted lines represent
two trajectory lines of water drops. Their intersection point is the vanishing
point.

B. Vanishing Point Estimation

Vanishing point estimation calculated the pixel coordinates
of two vanishing points p1 and p2 based on the set of 2D
points P that were computed in the previous subsection.
As mentioned in Section II, the trajectories of water drops

in 3D space can be represented as a bundle of parallel
lines that converge into the vanishing point on the image
through projective transformation. The proposed algorithm
estimated the lines from the set of 2D points of water drops
on the images and then calculated the intersection point
(i.e, the vanishing point) of the lines, as shown in Fig. 5.
Algorithm 1 describes the process used for detecting the
lines of water drops and estimating the vanishing point. Here,
p̃ = (u, v, 1)T represents the homogeneous pixel coordinate
of the vanishing point. The trajectory lines of the water
drops are estimated with the Random Sample Consensus
(RANSAC) [13] and Least Squares algorithms. |P| is the
size of the set of the 2D points and Pinlier represents those
points that are used to fit a line by the RANSAC algorithm.
λ is a threshold parameter set preliminary for triggering the
end of line detection. The smaller λ is set, the more lines
that can be detected. If λ is set too small though, it will lead
to the greater probability of detecting wrong lines due to the
influence of noise. In the experiments described in this paper,
λ was set as the ratio between the size of the set of 2D points
and the expected amount of lines. qi = (ki,−1, bi)T is the
parameter vector of the line and A is the parameter matrix
composed of parameter vectors, which is represented in

Algorithm 1 Vanishing point estimation
Input: the set of 2D points P
Output: homogeneous coordinate of the vanishing point p̃∗

i = 0
while |P| > λ do
Pinlier ← RANSAC(P)
i← i+ 1
qi ← LeastSquares(Pinlier)
P← P−Pinlier

|P| ← |P| − |Pinlier|
end while
A← [q1;q2; . . .]

T
i×3

p̃∗ ← argmin
p̃
||Ap̃||



Fig. 6. Decision tree of the rotation estimation step.

Eq. (3). To estimate the only intersection point from multiple
lines, we performed the minimization of ||Ap̃||, which is
solved by singular value decomposition (SVD) method. Here,
A is formulated as:

A =

 k1 k2 k3
−1 −1 −1
b1 b2 b3

· · ·

T

, (3)

where ki and bi (i = 1, 2, 3, ...) are the parameters of the
line equation kix− y + bi = 0.

C. Rotation Estimation

The details of the rotation estimation are shown in Fig. 6.
The camera is rotated by remote operations and the rotations
are distinguished as pan or tilt. As shown in Fig. 7, the
vanishing point is the intersection point of the image plane
and the line, which passes through the optical center of the
camera and parallel to the dripping direction of the water
drops. Additionally, the position of the vanishing point in
the image is correlated to the orientation of the camera [14].
Here, the homogeneous pixel coordinate of the vanishing
point is represented as p̃ and the unit direction vector of the
vanishing point in the camera coordinate is represented as
d̂ ∈ R3. The relation between them can be written as:

d̂ = K−1p̃/||K−1p̃||, (4)

O X

Y

Z

d2

p2

O

X

Y

Z
d1

p1

Orientation 

change

Parallel lines

Water 

drops

u

v

o

v

u

o p1

Fig. 7. p1, p2 are the vanishing points and d1, d2 are direction vectors
of the vanishing points in the camera coordinate system. When the camera
orientation changes, the direction vector of the vanishing point also changes.

where K is the camera intrinsic parameter matrix. The
relation between two unit direction vectors of the vanishing
points (i.e. d̂1 and d̂2) can be represented as:

d̂2 = Rd̂1, (5)

where R is the rotation matrix of the camera. The com-
putation of the tilt (i.e, rotation around x axis) and pan (i.e,
rotation around y axis) angles were performed independently,
as we assumed that the camera mounted on the robot could
be rotated remotely around the tilt and pan axis. The tilt
angle is represented as ψ and the pan angle is represented
as θ. The rotation matrix of the tilt Rx(ψ) and pan angle
Ry(θ) is represented as:

Rx(ψ) =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 , (6)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (7)

Finally, the rotation angle tilt or pan can be solved by using
the optimization method Levenberg-Marquardt (LM) [15]
algorithm to solve (5):

R∗ = argmin
R
||d̂2 −Rd̂1||. (8)

III. EXPERIMENTS

Simulated experiments were performed by rendering vir-
tual images with the 3D simulation software Blender [16]
to prove the feasibility of the proposed rotation estimation
method based on the vanishing point of water drops. We
also simulated a indoor environment with dripping water and
used an actual camera to collect video data and verify the
proposed rotation estimation framework. We evaluated the
effectiveness of our method with quantitative error analysis.

A. Simulated

The simulation software Blender can render images
recorded by cameras and output the true value of the tilt and
pan rotation angles of the cameras, as shown in Fig. 8. In the
Figure, the ellipses represent the water drops and a camera
was used to render the images of water drops. Additionally,
there were three positions where water drops were dripping
vertically to the ground and their drip trajectories were
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Fig. 9. An example of an image rendered by the camera in Blender. This
image was rendered when the tilt angle was 40◦and pan angle was 0◦. The
blue dotted lines are reference lines, which were not rendered by Blender
and added manually.

parallel in the 3D space. The computer-simulated experiment
was performed to verify whether the camera rotation could
be estimated based on the calculation of the vanishing point
of the water drops. Therefore, we focused on the second and
third steps of our proposed framework for this experiment
and simplified the model of the water drops as static objects.
Figure 9 is an example of an image rendered by the camera.
The figure shows that the three trajectories of water drops
tend to converge into one point (i.e, the vanishing point).
The pixel coordinates of the water drop centers in the images
were manually marked in the image. Four center points were
used to fit two different lines and then the intersection point
of the two lines was estimated as the vanishing point. Finally,
the rotation angle was calculated using the vanishing points
of the two orientations. We performed the experiments for
three situations (i.e, only rotation around the pan angle of the
camera, only rotation around the tilt angle of the camera,
and rotation around the tilt or pan angle of the camera
alternately). We rotated the camera by 5◦ each time. We
changed the camera orientation for all three model situations.
Figure 10 shows error analysis of these experiments. The
mean errors were all less than 0.5◦, which proves the
effectiveness of the proposed rotation estimation method. The
errors were generated from the inaccurate estimation of water
drop centers, lines, and the vanishing point. The errors were
analyzed in the worse case. The errors could be improved
by automated algorithms, such as estimating the water drop
centers with image processing methods, estimating the lines

(a)

(b)

(c)

Fig. 10. Rotation estimation errors: (a), (b), (c) correspond to pan, tilt and
both rotation respectively.

with the Least Squares algorithm, integrating the temporal
information to obtain more water drops, or estimating the
intersection point with SVD optimization applied to multiple
lines. These algorithms were used in the real-world experi-
ment described in the following subsection.

B. Real-world Environment

Figure 11 shows the set-up of the real-world experi-
ment. The set-up included a camera, a rotator, water drop
generators and a cardboard box that had little texture.
The camera used was GoPro Hero7 Black [17] in lin-
ear mode recording 30 frame per second (fps) and in
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Fig. 11. Real-world experiments.

Fig. 12. Rotation estimation errors. The camera was rotated around the
tilt axis 10◦ each time.

1920 × 1080 pixels format. A rotator was used to rotate
the camera around the tilt axis. Water drops fell from the
yellow spigots shown in Fig. 11. Cardboard box was used to
simulate an indoor environment and to affix the water drop
generators. The intrinsic parameter was calibrated using the
method shown in [18]. The experiment process complies with
the framework we described in Section II. We rotated the
camera five times and we changed the tilt angle by 10◦. In
this experiment, the camera was able to successfully detect
the water drops and estimate the correct rotation angle. The
result of error analysis of the rotation estimation is shown
in Fig. 12, which proves the feasibility of the proposed
framework in a real environment. The error of the third
orientation change was larger than others, which was the
result of the loud noise in the processing of detecting the
water drops. Additionally, the accuracy of the result is also
influenced by the measurement of the rotator and the relative
location between the rotator and the camera, which could be
improved in future experiments.

IV. CONCLUSIONS

In this paper, a novel method that employed the vanishing
point of water drops was proposed and used to estimate
the camera rotation in indoor environments with dripping

water. The camera orientation framework was composed of
water drop detection, vanishing point estimation, and rotation
estimation. Computer-simulated and real-world experiments
data were conducted to confirm the effectiveness of our
method. The proposed solution can be used for remote
inspection by robots via mounted cameras and to compute
rotation estimation when a camera would have difficulty
detecting feature points or lines in an environment.

In future work, we will attempt to overcome the limitations
of the proposed method related to the singularity that happens
when the rotation axis is parallel to the direction in which the
water drops are dripping. This makes it impossible for the
robot to estimate the rotation angle. Additionally, in future
work we hope to be able to allow the camera to rotate
arbitrary instead of just around one axis each time.
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