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Abstract
Continuous deep learning architectures have recently re–emerged as Neural Or-
dinary Differential Equations (Neural ODEs). This infinite–depth approach theo-
retically bridges the gap between deep learning and dynamical systems, offering
a novel perspective. However, deciphering the inner working of these models
is still an open challenge, as most applications apply them as generic black–box
modules. In this work we “open the box”, further developing the continuous–depth
formulation with the aim of clarifying the influence of several design choices on
the underlying dynamics.

1 Introduction

Neural ODEs (Chen et al., 2018) represent the latest instance of continuous deep learning models, first
developed in the context of continuous recurrent networks (Cohen and Grossberg, 1983). Since their
introduction, research on Neural ODEs variants (Tzen and Raginsky, 2019; Jia and Benson, 2019;
Zhang et al., 2019b; Yıldız et al., 2019; Poli et al., 2019) has progressed at a rapid pace. However,
the search for concise explanations and experimental evaluations of novel architectures has left many
fundamental questions unanswered.

In this work, we establish a general system–theoretic Neural ODE formulation (1) and dissect it into
its core components; we analyze each of them separately, shining light on peculiar phenomena unique
to the continuous deep learning paradigm. In particular, augmentation strategies are generalized
beyond ANODEs (Dupont et al., 2019), and the novel concepts of data–control and adaptive–depth
enriching (1) are showcased as effective approaches to learn maps such as reflections or concentric
annuli without augmentation.

While explicit dependence on the depth–variable has been considered in the original formulation
(Chen et al., 2018), a parameter depth–variance in continuous models has been overlooked. We
provide a treatment in infinite–dimensional space required by the true deep limit of ResNets, the
solution of which leads to a Neural ODE variant based on a spectral discretization.

Neural Ordinary Differential Equation


ż = fθ(s)(s,x, z(s))

z(0) = hx(x)

ŷ(s) = hy(z(s))

s ∈ S (1)

Input x Rnx

Output ŷ Rny

(Hidden) State z Rnz

Parameters θ(s) Rnθ

Neural Vector Field fθ(s) Rnz

Input Network hx Rnx → Rnz

Output Network hy Rnz → Rny

∗Equal contribution. Author order was decided by flipping a coin.
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Depth–variance Vanilla Neural ODEs (Chen et al., 2018) cannot be considered the deep limit of
ResNets. We discuss the subtleties involved, uncovering a formal optimization problem in functional
space as the price to pay for true depth–variance. Obtaining its solution leads to two novel variants
of Neural ODEs: a Galërkin–inspired spectral discretization (GalNODE) and a piecewise–constant
model. GalNODEs are showcased on a task involving a loss distributed on the depth–domain,
requiring the introduction of a generalized version of the adjoint in (Chen et al., 2018).

Augmentation strategies The augmentation idea of ANODEs (Dupont et al., 2019) is taken
further and generalized to novel dynamical system–inspired and parameter efficient alternatives,
relying on different choices of hx in (1). These approaches, which include input–layer and higher–
order augmentation, are verified to be more effective than existing methods in terms of performance
and parameter efficiency.

Beyond augmentation: data–control and adaptive–depth We unveil that although important,
augmentation is not always necessary in challenging tasks such as learning reflections or concentric
annuli (Dupont et al., 2019). To start, we demonstrate that depth–varying vector fields alone are
sufficient in dimensions greater than one. We then provide theoretical and empirical results motivating
two novel Neural ODE paradigms: adaptive–depth, where the integration bound is itself determined
by an auxiliary neural network, and data–controlled, where fθ(s) is conditioned by the input data x,
allowing the ODE to learn a family of vector fields instead of a single one. Finally, we warn against
input networks hx of the multilayer, nonlinear type, as these can make Neural ODE flows superfluous.

2 Continuous–Depth Models
A general formulation In the context of Neural ODEs we suppose to be given a stream of input–
output data {(xk,yk)}k∈K (whereK is a linearly–ordered finite subset of N). The inference of Neural
ODEs is carried out by solving the inital value problem (IVP) (1), i.e.

ŷ(S) = hy

(
hx(x) +

∫
S
fθ(τ)(τ,x, z(τ))dτ

)
Our degree of freedom, other than hx and hy , in the Neural ODE model is the choice of the parameter
θ inside a given pre-specified classW of functions S → Rnθ .
Well–posedness If fθ(s) is Lipschitz, for each xk the initial value problem in (1) admits a unique
solution z defined in the whole S . If this is the case, there is a mapping φ fromW×Rnx to the space
of absolutely continuous functions S 7→ Rnz such that zk := φ(xk, θ) satisfies the ODE in (1). This
in turn implies that, for all k ∈ K, the map (θ,xk, s) 7→ γ(s,xk, θ) := hy

(
φ(θ,xk)(s)

)
satisfies

ŷ = γ(θ,xk, s). For compactness, for any s ∈ S, we denote φ(θ,xk)(s) by φs(θ,xk).

Training: optimal control (Chen et al., 2018) treated the training of constant–parameters Neural
ODE (i.e. W is the space of constant functions) considering only terminal loss functions depending
on the terminal state z(S). However, in the framework of Neural ODEs, the latent state evolves
through a continuum of layers steering the model output ŷ(s) towards the label. It thus makes sense
to introduce a loss function also distributed on the whole depth domain S, e.g.

` := L(z(S)) +

∫
S
l(τ, z(τ))dτ (2)

The training can be then cast into the optimal control (Pontryagin et al., 1962) problem

min
θ∈W

1

|K|
∑
k∈K

`k

subject to ż(s) = fθ(s) (s,xk, z(s)) s ∈ S
z(0) = hx(xk), ŷ(s) = hy(z(s))

, ∀k ∈ K (3)

solved by gradient descent. Here, if θ is constant, the gradients can be computed with O(1) memory
efficiency by generalizing the adjoint sensitivity method in (Chen et al., 2018).
Proposition 1 (Generalized Adjoint Method). Consider the loss function (2). Then,

d`

dθ
=

∫
S
a>(τ)

∂fθ
∂θ

dτ where a(s) satisfies

{
ȧ>(s) = −a> ∂fθ∂z − ∂l

∂z

a>(S) = ∂L
∂z(S)

Appendix B contains additional insights on the choice of activation, training regularizers and approxi-
mation capabilities of Neural ODEs, along with a detailed derivation of the above result.
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3 Depth-Variance: Infinite Dimensions for Infinite Layers

Bring residual networks to the deep limit Vanilla Neural ODEs, as they appear in the original
paper (Chen et al., 2018), cannot be fully considered the deep limit of ResNets. In fact, while
each residual block is characterized by its own parameters vector θs, the authors consider model
ż = fθ(s, z(s)) where the depth variable s enters in the dynamics per se2 rather than in the map
s 7→ θ(s). The first attempt to pursue the true deep limit of ResNets is the hypernetwork approach of
(Zhang et al., 2019b) where another neural network parametrizes the dynamics of θ(s).

However, this approach is not backed by any theoretical argument and it exhibits a considerable
parameter inefficiency, as it generally scales polynomially in nθ. We adopt a different approach,
setting out to tackle the problem theoretically in the general formulation. Here, we uncover an
optimization problem in functional space, solved by a direct application of the adjoint sensitivity
method in infinite-dimensions. We then introduce two parameter efficient depth–variant Neural ODE
architectures based on the solution of such problem: Galërkin Neural ODEs and Stacked Neural
ODEs.

Gradient descent in functional space When the model parameters are depth–varying, θ : S →
Rnθ , the nonlinear optimization problem (3) should be in principle solved by iterating a gradient
descent algorithm in a functional space (Smyrlis and Zisis, 2004), e.g. θk+1(s) = θk(s)−ηδ`k/δθ(s)
once the Gateaux derivative δ`k/δθ(s) is computed. Let L2(S → Rnθ ) be the space of square–
integrable functions S → Rnθ . Hereafter, we show that if θ(s) ∈ W := L2(S → Rnθ ), then the loss
sensitivity to θ(s) can be computed through the adjoint method.
Theorem 1 (Infinite–Dimensional Gradients). Consider the loss function (2) and let θ(s) ∈ L2(S →
Rnθ ). Then, sensitivity of ` with respect to θ(s) (i.e. directional derivative in functional space) is

δ`

δθ(s)
= a>(s)

∂fθ(s)

∂θ(s)
where a(s) satisfies

{
ȧ>(s) = −a>(s)

∂fθ(s)
∂z − ∂l

∂z

a>(S) = ∂L
∂z(S)

Note that, although Theorem 1 provides a constructive method to compute the loss gradient in the
infinite–dimensional setting, its implementation requires choosing a finite dimensional approximation
of the solution. We offer two alternatives: a spectral discretization approach relying on reformulating
the problem on some functional bases and a depth discretization approach.

Spectral discretization: Galërkin Neural ODEs The idea is to expand θ(s) on a complete
orthogonal basis of a predetermined subspace of L2(S → Rnθ ) and truncate the series to the m-th
term:

θ(s) =

m∑
j=1

αj � ψj(s)

In this way, the problem is turned into finite dimension and the training will aim to optimize the
parameters α = (α1, . . . , αm) ∈ Rmnθ whose gradients can be computed as follows
Corollary 1 (Spectral Gradients). Under the assumptions of Theorem 1, if θ(s) =

∑m
j=1 αj �ψj(s),

d`

dα
=

∫
S
a>(τ)

∂fθ(s)

∂θ(s)
ψ(τ)dτ, ψ = (ψ1, . . . , ψm)

Depth discretization: Stacked Neural ODEs An alternative approach to parametrize θ(s) is to
assume it piecewise constant in S, i.e. θ(s) = θi ∀s ∈ [si, si+1] and S =

⋃p−1
i=0 [si, si+1]. It is easy

to see how evaluating this model is equivalent to stacking p Neural ODEs with constant parameters,

z(S) = hx(x) +

p−1∑
i=0

∫ si+1

s1

fθi(τ,x, z(τ))dτ

Here, the training is carried out optimizing the resulting pnθ parameters using the following:
Corollary 2 (Stacked Gradients). Under the assumptions of Theorem 1, if θ(s) = θi ∀s ∈ [si, si+1],

d`

dθi
= −

∫ si

si+1

a>(τ)
∂fθi
∂θi

dτ where a(s) satisfies

{
ȧ>(s) = −a>(s)

∂fθi
∂z − ∂l

∂z s ∈ [si, si+1]
a>(S) = ∂L

∂z(S)

2In practice, s is often concatenated to z and fed to fθ .
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The two approaches offer different perspectives on the problem of parametrizing the evolution of
θ(s); while the spectral method imposes a stronger prior to the model class, based on the chosen
bases (e.g. Fourier series, Chebyshev polynomials, etc.) the depth–discretization method allows for
more freedom. Further details on proofs, derivation and implementation of the two models are given
in the Appendix.
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Periodic Tracking with Integral Loss

Figure 1: Galërkin Neural ODEs trained with in-
tegral losses accurately recover periodic signals.
Blue curves correspond to different initial condi-
tions and converge asymptotically to the reference
desired trajectory.

Tracking signals via depth–variance Con-
sider the problem of tracking a periodic sig-
nal β(s). We show how this can be achieved
without introducing additional inductive biases
such as (Greydanus et al., 2019) through a syn-
ergistic combination of a two–layer Galërkin
Neural ODEs and the generalized adjoint with
integral loss l(s) := ‖β(s) − z(s)‖22. The
models, trained in s ∈ [0, 1] generalize accu-
rately in extrapolation, recovering the dynamics.
Fig.2 showcases the depth–dynamics of θ(s) for
Galërkin and Stacked variants trained to solve a
simple binary classification problem. Additional
insights and details are reported in Appendix.

Depth–variance brings Neural ODEs closer to the ideal continuum of neural network layers
with untied weights, enhancing their expressivity.

4 Augmenting Neural ODEs

Augmented Neural ODEs (ANODEs) (Dupont et al., 2019) propose solving the initial value problem
(IVP) in a higher dimensional space to limit the complexity of learned flows, i.e. having nz > nx. The
proposed approach of the seminal paper relies on initializing to zero the na := nz − nx augmented
dimensions: z(0) = [x, 0]. We will henceforth refer to this augmentation strategy as 0–augmentation.
In this section we discuss alternative augmentation strategies for Neural ODEs that match or improve
on 0–augmentation in terms of performance or parameter efficiency.

Input–layer augmentation Following the standard deep learning approach of increasing layer
width to achieve improved model capacity, 0–augmentation can be generalized by introducing an

0
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s
z1

z 2

Stacked Neural ODEs

0

1

s
z1

z 2

Galërkin Neural ODEs
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s

θ(
s)

Parameters Evolution

0 0.2 0.4 0.6 0.8 1
−5

0

5

s

θ(
s)

Parameters Evolution

Figure 2: Galërkin and Stacked parameter-varying Neural ODE variants. Depth flows (Above) and
evolution of the parameters (Below).
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input network hx : Rnx → Rnz to compute z(0):
z(0) = hx(x) (4)

leading to the general formulation of (1). This approach (4) gives the model more freedom in
determining the initial condition for the IVP instead of constraining it to a concatenation of x and 0,
at a small parameter cost if hx is, e.g., a linear layer. We refer to this type of augmentation as input
layer (IL) augmentation and to the model as IL–Neural ODE (IL–NODE).

Note that 0-augmentation is compatible with the general IL formulation, as it corresponds to
x 7→ (x, 0) := hx(x)

In applications where maintaining the structure of the first nx dimensions is important, e.g. approxi-
mation of dynamical systems, a parameter efficient alternative of (4) can be obtained by modifying the
input network hx to only affect the additional na dimensions, i.e. hx := [x, ξ(x)], ξ : Rnx → Rna .

Higher–order Neural ODEs Further parameter efficiency can be achieved by lifting the Neural
ODEs to higher orders. For example, let z(s) = [zq(s), zp(s)] a second–order Neural ODE of the
form:

z̈q(s) = fθ(s)(s, z(s)). (5)

equivalent to the first–order system
żq(s) = zp(s)

żp(s) = fθ(s)(s, zq(s), zp(s))
(6)

The above can be extended to higher–order Neural ODEs as
dnz1

dsn
= fθ(s)

(
s, z,

dz1

ds
, · · · , dn−1z1

dsn−1

)
, z = [z1, z2, . . . , zn], zi ∈ Rnz/n (7)

or, equivalently, żi = zi+1, żn = fθ(s)(s, z). Note that the parameter efficiency of this method arises
from the fact that fθ(s) : Rnz → Rnz/n instead of Rnz → Rnz . A limitation of system (6) is that
a naive extension to second–order requires a number of augmented dimensions na = nx. To allow
for flexible augmentations of few dimensions na < nx, the formulation of second–order Neural
ODEs can be modified to select only a few dimensions to have higher order dynamics. We include
formulation and additional details of selective higher–order augmentation in the supplementary
material. Finally, higher–order augmentation can itself be compatible with input–layer augmentation.

Revisiting results for augmented Neural ODEs In higher dimensional state spaces, such as
those of image classification settings, the benefits of augmentation become subtle and manifest as
performance improvements and a lower number of function evaluations (NFEs) (Chen et al., 2018).
We revisit the image classification experiments of (Dupont et al., 2019) and evaluate four classes of
depth–invariant Neural ODEs: namely, vanilla (no augmentation), ANODE (0–augmentation), IL-
NODE (input–layer augmentation), and second–order. The input network hx is composed of a single,
linear layer. Main objective of these experiments is to rank the efficieny of different augmentation
strategies; for this reason, the setup does not involve hybrid or composite Neural ODE architectures
and data augmentation.

The results for five experiments are reported in Table 4. IL–NODEs consistently preserve lower NFEs
than other variants, whereas second–order Neural ODEs offer a parameter efficient alternative. The
performance gap widens on CIFAR10, where the disadvantage of fixed 0 initial conditions forces
0–augmented Neural ODEs into performing a high number of function evaluations.

NODE ANODE IL-NODE 2nd–Ord.

MNIST
∣∣ CIFAR MNIST

∣∣ CIFAR MNIST
∣∣ CIFAR MNIST

∣∣ CIFAR

Test Acc. 96.8
∣∣ 58.9 98.9

∣∣ 70.8 99.1
∣∣ 73.4 99.2

∣∣ 72.8
NFE 98

∣∣ 93 71
∣∣ 169 44

∣∣ 65 43
∣∣ 59

Param.[K] 21.4
∣∣ 37.1 20.4

∣∣ 35.0 20.7
∣∣ 36.1 20.0

∣∣ 34.6
Table 1: Mean test results across 10 runs on MNIST and CIFAR. We report the mean NFE at convergence.
Input layer and higher order augmentation improve task performance and preserve low NFEs at convergence.
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Data–Controlled Neural ODEs

Figure 3: Depth trajectories over vector field of the data–controlled neural ODEs (9) for x = 1, x =
−1. The model learns a family of vector fields conditioned by the input x to approximate ϕ(x).

It should be noted that prepending an input multi–layer neural network to the Neural ODE was the
approach chosen in the experimental evaluations of the original Neural ODE paper (Chen et al., 2018)
and that (Dupont et al., 2019) opted for a comparison between no input layer and 0–augmentation.
However, a significant difference exists between architectures depending on the depth and expressivity
of hx. Indeed, utilizing non–linear and multi–layer input networks can be detrimental, as discussed
in Sec. 5.

Augmentation relieves Neural ODEs of their expressivity limitations. Learning initial condi-
tions improves on 0–augmentation in terms of performance and NFEs.

5 Beyond Augmentation: Data–Control and Depth–Adaptation

Augmentation strategies are not always necessary for Neural ODEs to solve challenging tasks such as
concentric annuli (Dupont et al., 2019). While it is indeed true that two distinct trajectories can never
intersect in the state–space in the one–dimensional case, this does not necessarily hold in general. In
fact, dynamics in the first two spatial dimensions are substantially different e.g no chaotic behaviors
are possible (Khalil and Grizzle, 2002). In the two–dimensions of R2 (and so in Rn), infinitely
wider than R, distinct trajectories of a time–varying process can well intersect in the state–space,
provided that they do not pass through the same point at the same time (Khalil and Grizzle, 2002).
This implies that, in turn, depth–varying models such as Galërkin Neural ODEs can solve these tasks
in all dimensions but R.

Starting from the one–dimensional case, we propose new classes of models allowing Neural ODEs to
perform challenging tasks such as approximating reflections (Dupont et al., 2019) without the need of
any augmentation.

5.1 Data–controlled Neural ODEs

We hereby derive a new class of models, namely data–controlled Neural ODEs.

To introduce the proposed approach, we start with an analytical result regarding the approximation of
reflection maps such as ϕ(x) = −x. The proof provides a design recipe for a simple handcrafted
ODE capable of approximating ϕ with arbitrary accuracy by leveraging input data x. We denote the
conditioning of the vector field with x necessary to achieve the desired result as data–control.

This result highlights that, through data–control, Neural ODEs can arbitrarily approximate ϕ without
augmentation, providing a novel perspective on existing results about expressivity limitations of
continuous models (Dupont et al., 2019). The result is the following:
Proposition 2. For all ε > 0, x ∈ R there exists a parameter θ > 0 such that

|ϕ(x)− z(1)| < ε, (8)
where z(1) is the solution of the Neural ODE{

ż(s) = −θ(z(s) + x)
z(0) = x

, s ∈ [0, 1] . (9)

The proof is reported in the Appendix. Fig. (3) shows a version of model (9) where θ is trained
with standard backpropagation. This model is indeed able to closely approximate ϕ(x) without
augmentation, confirming the theoretical result. From this preliminary example, we then define the
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general data–controlled Neural ODE as
ż(s) = fθ(s)(s,x, z(s))

z(0) = hx(x)
. (10)

Model (10) incorporates input data x into the vector field, effectively allowing the ODE to learn a
family of vector fields instead of a single one. Direct dependence on x further constrains the ODE to
be smooth with respect to the initial condition, acting as a regularizer. Indeed, in the experimental
evaluation at the end of Sec. 5, data–controlled models recover an accurate decision boundary.
Further experimental results with the latter general model on the representation of ϕ are reported in
the Appendix.

It should be noted that (10) does not require explicit dependence of the vector field on x. Computa-
tionally, x can be passed to fθ(s) in different ways, such as through an additional embedding step. In
this setting, data–control offers a natural extension to conditional Neural ODEs.

−1
0

1 −1
0

1

0

5
q1

pθ

q2

pθ

z zS

f θ
(z

S
,z
)

Conditional Continuous Normaling Flows

0 0.2 0.4 0.6 0.8 1

−1
0
1

s

z
(s
)

Figure 4: Data–controlled CNFs can morph prior
distributions into distinct posteriors to produce con-
ditional samples. This task often requires crossing
trajectories and is not possible with vanilla CNFs.

Data–control in normalizing flows Condi-
tional variants of generative models can be
guided to produce samples of different character-
istics depending on specific requirements. Data–
control can be leveraged to obtain a conditional
variant of continuous normalizing flows (CNFs)
(Chen et al., 2018). Here, we consider the stan-
dard setting of learning an unknown data distri-
bution p(x) given samples {xk}k∈K through a
parametrized function pθ. Continuous normal-
ing flows (CNFs) (Chen et al., 2018; Grathwohl
et al., 2018; Finlay et al., 2020) obtain pθ by
change of variables using the flow of an ODE
to warp a (known) prior distribution q(z), i.e.
log pθ(x) = log q(φS(x)) + log det |∇φS(x)|
where the log determinant of the Jacobian is
computed via the fluid mechanics identity

d

ds
log det |∇φs(x)| = ∇ · fθ(t)(s, φs(x))

, (Villani, 2003). CNFs are trained via
maximum–likelihood, i.e by minimizing the
Kullback–Leibler divergence between p and pθ,
or equivalently ` := −1/|K|∑k log pθ(xk). A
CNF can be then used as generative model for

pθ(x) by sampling the known distribution zS ∼ q(zS) and evolve zS backward in the depth domain:

z(0) = zS +

∫ 0

S

fθ(s)(s, z(s))ds

In this context, introducing data–control into fθ allows the CNF to be conditioned with data or
task information. Data–controlled CNFs can thus be used in multi–objective generative tasks e.g
using a single model to sample from N different distribution pθ by warping N predetermined know
distributions qi. We train one–dimensional, data–controlled CNFs to approximate two different data
distributions p1, p2 by sampling from two distinct priors q1, q2 and conditioning the vector field
with the samples zS of the prior distributions, i.e.

ż(s) = fθ(zS , z), zS ∼ q1 or zS ∼ q2
Fig 4 shows how data–controlled CNFs are capable of conditionally sampling from two normal target
data distributions. In this case we selected p1, p2 as univariate normal distributions with mean −1
and 1, respectively and q1 ≡ p2, q2 ≡ p1. The resulting learned vector field strongly depends on the
value of the prior sample zS and it is almost constant in z, meaning that the prior distributions are
just shifted almost rigidly along the flow in a direction determined by the initial condition. This task
is inaccessible to standard CNFs as it requires crossing flows in z. Indeed, the proposed benchmark
represents a density estimation analogue to the crossing trajectories problem.
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5.2 Adaptive–Depth Neural ODEs

Let us come back to the approximation of ϕ(x). Indeed, without incorporating input data into
fθ(s), it is not possible to realize a mapping x 7→ φs(x) mimicking ϕ due to the topology pre-
serving property of the flows. Nevertheless, a Neural ODE can be employed to approximate ϕ(x)
without the need of any crossing trajectory. In fact, if each input is integrated for in a different
depth domain, S(x) = [0, s∗x], it is possible to learn ϕ without crossing flows as shown in Fig. 5.

0 1 2 3
−1

0

1

s

z
(s

)

Adaptive Integration Depth
Inputs trajectories through network depth

Figure 5: Depth trajectories over vector field of the
adaptive—depth Neural ODEs. The reflection map
can be learned by the proposed model. The key is
to assign different integration times to the inputs,
thus not requiring the intersection of trajectories.

In general, we can use a hypernetwork g trained
to learn the integration depth of each sample. In
this setting, we define the general adaptive depth
class as Neural ODEs performing the mapping
x 7→ φgω(x)(x), i.e. leading to

ŷ = hy

(
hx(x) +

∫ gω(x)

0

fθ(s)(τ,x, z(τ))dτ

)
,

where gω : Rnx × Rnω → R is a neural net-
work with trainable parameters ω. Appendix
B contains details on differentiation under the
integral sign, required to backpropagate the loss
gradients into ω.

Experiments of non–augmented models We inspect the performance of different Neural ODE
variants: depth–invariant, depth–variant with s concatenated to z and passed to the vector field,
Galërkin Neural ODEs and data–controlled. The concentric annuli (Dupont et al., 2019) dataset is
utilized, and the models are qualitatively evaluated based on the complexity of the learned flows
and on how accurately they extrapolate to unseen points, i.e. the learned decision boundaries. For
Galërkin Neural ODEs, we choose a Fourier series with m = 5 harmonics as the eigenfunctions ψk,
k = 1, . . . , 5 to compute the parameters θ(s), as described in Sec. 3.

Data–control allows Neural ODEs to learn a family of vector fields, conditioning on input data informa-
tion. Depth–adaptation sidesteps known expressivity limitations of continuous–depth models.

x1

x
2

Original space

”o” first point, ”+” last

z1

z
2

Flows in Latent Space

Figure 6: Solving concentric annuli without aug-
mentation by prepending a nonlinear transforma-
tion performed by a two–layer fully–connected
network.

Mind your input networks An alternative ap-
proach to learning maps that prove to be chal-
lenging to approximate for vanilla Neural ODEs
involves solving the ODE in a latent state space.
Fig. 6 shows that with no augmentation, a net-
work composed by a two fully–connected layers
with non–linear activation followed by a Neu-
ral ODE can solve the concentric annuli prob-
lem. However, the flows learned by the Neu-
ral ODEs are superfluous: indeed, the clusters
were already linearly separable after the first
non–linear transformation. This example warns
against superficial evaluations of Neural ODE

architectures preceded or followed by several layers of non–linear input and output transformations.
In these scenarios, the learned flows risk performing unnecessary transformations and in pathological
cases can collapse into a simple identity map. To sidestep these issues, we propose visually inspecting
trajectories or performing an ablation experiment on the Neural ODE block.
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Figure 7: Depth-flows of the data in the state–space. The resulting decision boundaries of output
linear layer hy are indicated by the dotted orange line.

6 Related Work

We include a brief history of classical approaches to dynamical system–inspired deep learning.

A brief historical note on continuous deep learning Continuous neural networks have a long
history that goes back to continuous time variants of recurrent networks (Cohen and Grossberg, 1983).
Since then, several works explored the connection between dynamical systems, control theory and
machine learning (Zhang et al., 2014; Li et al., 2017; Lu et al., 2017; Weinan, 2017). (Marcus and
Westervelt, 1989) provides stability analyses and introduces delays. Many of these concepts have yet
to resurface in the context of Neural ODEs. Haber and Ruthotto (2017) analyzes ResNet dynamics
and links stability with robustness. Injecting stability into neural networks has inspired the design
of a series of architectures (Chang et al., 2019; Haber et al., 2019; Bai et al., 2019; Massaroli et al.,
2020). Hauser et al. (2019) explored the algebraic structure of neural networks governed by finite
difference equations, further linking discretizations of ODEs and ResNets in (Hauser et al., 2019).

Approximating ODEs with neural networks has been discussed in (Wang and Lin, 1998; Filici, 2008).
(Poli et al., 2020a) explores the interplay between Neural ODEs and their solver. On the optimization
front, several works leverage dynamical system formalism in continuous time (Wibisono et al., 2016;
Maddison et al., 2018; Massaroli et al., 2019).

Neural ODEs This work concerns Neural ODEs (Chen et al., 2018) and a system–theoretic
discussion of their dynamical behavior. The main focus is on Neural ODEs and not the extensions
to other classes of differential equations (Li et al., 2020; Tzen and Raginsky, 2019; Jia and Benson,
2019), though the insights developed here can be broadly applied to continuous–depth models. More
recently, Finlay et al. (2020) introduced regularization strategies to alleviate the heavy computational
training overheads of Neural ODEs. These terms are propagated during the forward pass of the model
and thus require state–augmentation. Leveraging our generalized adjoint formulation provides an
approach to integral regularization terms without augmentation and memory overheads.

7 Conclusion

In this work, we establish a general system–theoretic framework for Neural ODEs and dissect it into its
core components. With the aim of shining light on fundamental questions regarding depth–variance,
we formulate and solve the infinite–dimensional problem linked to the true deep limit formulation of
Neural ODE. We provide numerical approximations to the infinite–dimensional problem, leading
to novel model variants, such as Galërkin and piecewise–constant Neural ODEs. Augmentation
is developed beyond existing approaches (Dupont et al., 2019) to include input–layer and higher–
order augmentation strategies showcased to be more performant and parameter efficient. Finally,
the novel paradigms of data–control and depth–adaptation are introduced to perform challenging
tasks such as learning reflections without augmentation. The code to reproduce all the experiments
present in the paper is built on TorchDyn (Poli et al., 2020b) and PyTorch–Lighning (Falcon
et al., 2019) libraries, can be found in the following repo: https://github.com/DiffEqML/
diffeqml-research/tree/master/dissecting-neural-odes.
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Broader Impact

As continuous deep learning sees increased utilization across fields such as healthcare (Rubanova
et al., 2019; Yıldız et al., 2019), it is of utmost importance that we develop appropriate tools to further
our understanding of neural differential equations. The search for robustness in traditional deep
learning has only recently seen a surge in ideas and proposed solutions; this work aims at providing
exploratory first steps necessary to extend the discussion to this novel paradigm. The leitmotif of this
work is injecting system–theoretic concepts into the framework of continuous models. These ideas
are of foundational importance in tangential fields such control and forecasting of dynamical systems,
and are routinely used to develop robust algorithms with theoretical and practical guarantees.
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