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Abstract— The aging of concrete social infrastructures such
as tunnels, bridges, and highways is a growing concern world-
wide. Those require careful inspection to ensure their users’
safety and traditional manual methods are not viable solutions
due to the growing population of structures in need of testing
and the manpower shortage. Among those inspection methods,
the hammering test has been the focus of several previous
works, including notably weakly supervised approaches. Those
approaches query a human user on random audio sample pair
similarity to transform the feature space into one suited for
defect detection. However, the quality of the weak supervision
obtained in such a way is often variable. Therefore, we propose
a method to improve positive weak supervision quality by con-
solidating the dataset prior to the query process. Experiments
conducted with concrete test blocks showed the effectiveness of
our proposed method.

I. INTRODUCTION

Social infrastructures such as tunnels, bridges, and high-
ways are primarily made of concrete. Such concrete struc-
tures are subject to deterioration due to aging and various
environmental factors such as rains and vibrations. Therefore,
regular inspection is paramount in order to ensure their users’
safety [1]. This was underlined by several tragic events
such as the collapse of the Morandi bridge in Italy [2] or
the collapse of the Sasago tunnel in Japan [3]. While the
population of structures in need of testing is increasing at an
alarming rate, due to notably aging, the manpower required
for inspection is decreasing. Therefore, the automation of
inspection methods for concrete structure inspection is highly
desirable.

Among inspection methods, the hammering test, an acous-
tic inspection method consisting of using a hammer to strike
the surface of a structure and using the impact sound to
assess the presence of defects, has been the focus of several
previous works [4][5][6]. The hammering test is widespread
in inspection sites, due to its effectiveness and ease of use.

Previous works dealing with the audio analysis of ham-
mering sound have mostly employed machine learning ap-
proaches. The works in [7] and [8] employed supervised
learning methods to classify hammering samples between
defect and non-defect. Furthermore, defect samples were
classified according to their depth from the surface. While
achieving remarkable results, such supervised methods have
their performance conditioned by the availability of appropri-
ate training data. This is troublesome for concrete structures
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Fig. 1. Positive weak supervision, also known as must-links, is obtained
by querying a human user on pairs of audio samples.

since each one is unique due to concrete mixing ratios,
structure, and environmental conditions it was subjected to.

To bypass the issue of training data, unsupervised ap-
proaches were proposed in [9], [10], and [11], based on
clustering approaches. Good results were obtained but since
hammering position information was added in the analysis,
those approaches required additional sensors to complement
the audio hammering data. This involves the installation of
the required sensors in the inspection apparatus. Furthermore,
application to hammering data without position information
is limited.

Weakly supervised methods, only requiring a human user
to answer to queries on randomly selected sample pair
similarity, as illustrated in Fig. 1, was proposed in [12].
This had the issue of gathering weak supervision of variable
quality and therefore resulting in a variable defect detection
performance. To tackle this issue, an expansion was proposed
in [13], to include an active query scheme to reduce the
variation in weak supervision quality. However, this active
query scheme also relied on hammering sample position
information, requiring additional sensors to record the hit
position of a hammering sample.

Therefore, in this paper, a method to improve weak
supervision quality in acoustic defect detection in concrete
structures without the use of other sensors than a microphone
is proposed. This is beneficial for the processing of previ-
ously gathered hammering data that only contain audio data
and/or for inspection apparatus that can only record audio
data due to their design. The improvement of weak supervi-
sion quality is conducted on positive weak supervision, i.e.,
positive answers to queries, also known as must-links. This



is achieved by consolidation of the hammering dataset prior
to the query process. By reducing the query pool to only
relevant members, more consistent positive weak supervision
of higher quality can be collected.

II. METHOD
A. Overview and Concept of Proposed Method

The motivation behind our proposed approach is that weak
supervision on pairs of samples already considered similar
by the clustering algorithm in the initial feature space does
not contribute significantly to the search for a better feature
space. Therefore, we limit the query pool by consolidation
of the dataset.

There are two advantages to this process:

o Potential queries on pairs of samples already close
together in the feature space prior to weakly supervised
feature space transformation, which can be expected to
have little contribution in the search of a better feature
space, are removed.

o The overall size of the query pool can be greatly
reduced. Assuming the pairs of samples to be queried
to the human user are selected randomly, the probability
of obtaining repetitions, i.e., pairs of samples with
a common sample, is increased, allowing to generate
more effective chunklets, or proto-clusters, for weakly
supervised feature space transformation.

An overview of our proposed method is shown in Fig. 2.
The hammering audio data collected from a microphone is
converted to Mel-Frequency Cepstrum Coefficients (MFCC)
feature vectors. Consolidation is used to reduce the query
pool and the query process to gather weak supervision is
conducted. Following this, Relevant Component Analysis
(RCA) is used to transform the feature space. Finally, K-
Means clustering is used to separate defect and non-defect
samples.

B. Pre-processing to MFCC Feature Vectors

Hammering samples are initially time-series audio data.
They are first converted to Fourier Spectrum. Then, in order
to account for the variations caused by irregular hammering
force, a normalization to zero mean and unit variance as
described in [13] is conducted. After this, MFCC feature
vectors are computed. MFCC are feature vectors designed
to mimic the human ear’s perception of sounds and have
been shown to be effective in discriminating defects and
non-defect hammering samples [10]. In the remaining of this
paper, the MFCC of a hammering sample will be noted as
X;.

C. Consolidation to Improve Weak Supervision Quality

The proposed method to improve the quality of weak
supervision consists of limiting the domain where the human
user can be queried on. Given a dataset of Ny, hammering
samples, the initial query pool, i.e., the set of possible
queries, corresponds to all the unique possible pairs among
Nsampie samples. Among those, it can be expected that some
do not contribute, or contribute to only a lesser extent, to
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Fig. 2. Overview of the proposed method.

the feature space transformation described in the following
section. Therefore, since in most practical scenarios the
amount of weak supervision that can be collected is limited,
it is desirable to remove such pairs from the possible query
pool.

Given a dataset of hammering samples D, K-Means is
used to consolidate D, i.e., cluster D into a fine partition
P = {Py,...,Px.} such as D = U< P, and N P, = 0.
As opposed to the final clustering aiming at separating defect
and non-defect hammering samples, this clustering at the
consolidation step aims at reducing the dataset D to its
meaningful members. Once partitioning has been conducted,
one member of each partition P; is randomly chosen as
representative. Those representatives are used to establish the
consolidated hammering dataset D’, over which the query
process is conducted.

D. Relevant Component Analysis

RCA is a weakly supervised metric learning method
initially proposed in [14]. RCA is essentially a biased form of
Principal Component Analysis, computed on positive weak
supervision.

First, using the transitive closure property of must-links,
chunklets, i.e., sets of samples deduced to belong to the same
cluster, are built. Given Nepunkier chunklets { M }ie(1.. Nl
with m; being the mean of elements in M; and N, being
the total number of elements in all chunklets, the covariance
matrix C is computed as in (1). Then, the feature space

transformation defined as in (2) is conducted.



Fig. 3.

Experimental setup.
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III. EXPERIMENTS

Experiments were conducted in laboratory conditions us-
ing concrete test blocks with the setup illustrated in Fig. 3.
These concrete test blocks contain man-made defects of
precisely known dimensions that simulate actual defects
found on concrete structures. A KTC UDHT-2 hammer (head
diameter 16 mm, length 380 mm, weight 160 g), commonly
used in actual inspection sites, was used to hit the concrete
blocks on several locations, once per location. A Behringer
ECMS8000 microphone was coupled with a Roland UA-25EX
sound board for audio recording at 44.1 kHz, a common
sampling frequency for multi-media. MFCC feature vectors
were computed with 26 filters and 10 coefficients as in [13].

Two cases were considered: Case 1 and Case 2. Illus-
trations are provided in Fig. 4 and schematics are shown
in Fig. 5. Those were also considered in [13] and K-Means
was conducted with the number of cluster setting K = 2. For
both cases, the consolidation process was conducted with the
manual setting of K. = 150.

o Case 1: Single delamination. Illustrated in Fig 4(a), this
dataset contains a single delamination, running at an
angle of 30 degrees from the surface. It is composed of
462 samples, with 272 non-defects and 190 defects.

e Case 2: Dual delaminations. Illustrated in Fig 4(b),
this dataset contains two distinct delaminations, both
running at an angle of 15 degrees from the surface. It
is composed of 270 samples, with 155 non-defects and
115 defects.

The following methods were compared in our experiments:

e (A) K-Means clustering on MFCC feature vectors of
hammering samples.

(b) Case 2: Dual delaminations.

Fig. 4. Picture of the considered cases in laboratory conditions. Red areas
indicate defect areas.

e (B) K-Means clustering on the feature space defined
by RCA with 20 must-links using random query, as
proposed in [12].

¢ (C) K-Means clustering on the feature space defined by
RCA with 20 must-links using the active query scheme
using position information proposed in [13].

¢ (D) The proposed method consisting of K-Means clus-
tering on the feature space defined by RCA with 20
must-links using random query after consolidation.

In all our experiments, the Rand index was used to evaluate
performance [15]. The Rand index is a measure of clustering
performance based on pairs of samples, ranging between 0
and 1. The closer the value is to 1, the better is the clustering.

IV. RESULTS AND DISCUSSIONS

In Fig. 6 are reported the average performance obtained
for the considered methods over 20 sets of weak supervision.

For Case 1, it can be seen that K-Means on the initial
feature space defined by MFCC feature vectors obtains a
good result performance, with no variations in performance
over 20 runs. This indicates that, as reported in [10], MFCCs
are already quite suited for discrimination of defect ham-
mering samples. Furthermore, the lack of variations even
with the random seeding nature of K-Means hints at the
convexity of the fitness function computed in this feature
space. In contrast, the method of [12] shows large variations
in performance, resulting in an average performance slightly
under the one of K-Means on MFCC. This is due to the ran-
dom nature in the selection of weak supervision, ultimately
resulting in variations in the quality of the final feature space
for discrimination of defects: depending on the quality of the
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Fig. 6.

Performance evaluation of several weakly supervised methods for the hammering test in laboratory conditions: (A) K-Means on MFCC, (B)

method of [12], (C) RCA with the active query scheme of [13] and (D) proposed method. Average of 20 runs with sets of 20 must-links each are reported.

Error bars corresponds to one standard deviation.

obtained weak supervision, defect detection performance can
be very good or lacking. Using the active query scheme based
on position information proposed in [13] obtained the best
results overall on average on Case 1, with also the smallest
standard variation among the considered weakly supervised
methods. This shows that the quality of the selected weak
supervision by the active query scheme is good and is
consistently good, thanks to the introduction of position
information. Finally, our proposed method, only using audio
data, achieved the second-best performance on average, only
losing to the active query scheme using position information
and showing a significant improvement over the method of
[12].

Case 2 is a more difficult dataset, resulting in performances
being overall lower than for Case 1. This is due to the

presence of two distinct defects and the fact that the dataset
is composed of two concrete test blocks: the clusters for
defect and non-defects are less well defined, as indicated by
the variations in the performance of K-Means on MFCC.
In comparison with Case 1, the method of [12] shows a
much smaller value of standard deviation. While this seems
contradictory, especially with the results obtained in Case
1, this is explained by the lower number of samples in
Case 2. This resulted in the random query process being
much less penalizing. Still, this method still shows the
highest value of standard deviation among the considered
methods. The active query with position information and the
proposed method obtained similar average performance, with
our proposed method having a slight edge. The values of
standard deviations are so comparable, with the active query



TABLE I
AVERAGE NUMBER=ESTANDARD DEVIATION OF CHUNKLETS OVER 20
RUNS OF 20 MUST-LINKS EACH.

Case 1 Case 2

Random query [12] 183£1.5 | 16.8£1.8
Active query using position information [13] | 18.5+1.1 | 17.3+1.2
Proposed method 15.0+1.6 | 15.4+1.7

using position information having a little more consistency.
This is also certainly due to the smaller dataset size, naturally
resulting in a smaller query pool over which the query
selection process can exert its influence.

In Table I are reported the average number of chunklets
obtained by each of the weakly supervised methods under
the same conditions as the results in Fig. 6. With the same
number of must-links, a lower number of chunklets indicates
that more groupings using transitive closure were found and
that the chunklets are bigger and closer to effective proto-
clusters.

It can be seen that the active query scheme using position
information has the highest number of chunklets among
the considered methods for both Case 1 and Case 2. This
is because this query scheme actively aims to spread the
query process over the whole tested concrete area using
position information. While this is done to increase the
informativeness of each of the obtained individual must-link,
it does also lower the chance of having common elements in
pairs. Our proposed method achieves a much lower number
of chunklets in both Case 1 and Case 2. This shows that the
consolidation process of our proposed method contributes to
obtaining repetitive elements from the query and therefore
build fewer and bigger chunklets.

V. CONCLUSION

In this paper, a method for improving the quality of weak
supervision for acoustic defect detection of concrete struc-
tures without the use of additional sensors was proposed.
This was achieved by consolidating the initial dataset of
hammering samples and conducting the query process on
the consolidated dataset, allowing to avoid queries with little
informative value as well as increasing the chance of obtain-
ing bigger chunklets for the weakly supervised feature space
transformation. Experiments conducted using concrete test
blocks showed that the proposed method allows better and
more consistent performance with a given amount of weak
supervision, i.e., allows the gathering of weak supervision of
better quality.

As future work, we would like to investigate the effects
of the consolidation parameters, such as the number of
clusters in the partitioning process, on the quality of weak
supervision. Indeed, in this paper, this setting was manually
tweaked for Case 1 and kept for Case 2 but it can be expected
to have a negative influence on the quality of the obtained
weak supervision for some value ranges. Furthermore, this
paper focused mainly on positive weak supervision and we
would like to extend our proposed approach to incorporate
negative weak supervision as well.
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