
Gamma-ray Image Noise Generation
Using Energy-Image Converter Based on Image Histogram

Ren Komatsu1, Hanwool Woo2, Yusuke Tamura3, Atsushi Yamashita1, and Hajime Asama1

Abstract— We propose a novel method to simulate image
noise caused by gamma-ray irradiation. Monte Carlo sim-
ulation is utilized to calculate the interaction between the
gamma-ray and the image sensor, and the energy deposit in
each pixel is estimated. A converter module is proposed for
generating image noise from the energy deposit. The conversion
is designed so that the converted energy deposit has a similar
image histogram to the real gamma-ray image noise. The real
gamma-ray image noise is obtained by using circular fisheye
cameras in gamma-ray irradiation tests. We demonstrate the
effectiveness of the proposed method in experiments. We believe
that this study would be beneficial for the development of
methods for decommissioning the Fukushima Daiichi Nuclear
Power Plant by the research community. Our source code
is available at https://github.com/matsuren/pixel_
noise_sim_geant4.

I. INTRODUCTION

On March 11, 2011, the Great East Japan Earthquake
occurred, and the Fukushima Daiichi Nuclear Power Plant
(FDNPP) was damaged by the tsunami following the earth-
quake. As a result, Units 1, 2, and 3 of the FDNPP expe-
rienced core meltdowns, and Units 1, 3, and 4 experienced
hydrogen explosions. It is estimated that the decommission-
ing of FDNPP would take 30–40 years to complete [1].
Because of the high radiation resulting from core meltdowns
and explosions, many places in FDNPP are dangerous for
humans. Therefore, robot teleoperations have been utilized
for the decomissioning [2], [3]. Moreover, the demand for
robot teleoperations will increase even further in the next
decommissioning stage, which is expected to involve fuel
debris retrieval in the reactor pressure vessels (RPVs) where
extremely high levels of radiation exposure are expected in
the approach to the fuel debris.

In robot teleoperation, an operator controls a robot re-
motely from a control room safely while viewing images
captured by the cameras mounted on the robot. Hence, the
operator plays a critical role in deciding the next movement
of the robot based on the captured images. Therefore, it is
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beneficial if the operator can practice controlling robots in
environments similar to FDNPP. The Japan Atomic Energy
Agency operates the Naraha Center for Remote Control
Technology Development, where there are full-scale mock-
ups of the stairs in FDNPP for robot teleoperation training
[4]. In addition, Suzuki et al. developed a simulated envi-
ronment of the primary containment vessels (PCVs) of Units
1, 2, and 3 in FDNPP [5]. Operators can control robots in
the simulated environment for training utilizing a dynamics
simulator for robots called Choreonoid [6].

However, the operators should also be prepared for the
effects of gamma-ray irradiation on the image sensors when
they control robots in high-radiation environments such as
the PCV or RPV in FDNPP. The main effects of gamma-
ray irradiation are camera malfunctions and image noise.
Without proper knowledge of the gamma-ray effects, the
operators may be surprised by sudden camera malfunctions
during operation. In addition, gamma-ray image noise makes
the captured images difficult to interpret, which may cause
an additional burden on the operators if they are not used to
the appearance of image noise. Furthermore, image noise
can deteriorate the performance of localization and map-
ping algorithms which help the operators to understand the
surrounding environment. To study camera malfunctions,
Nagatani et al. and Komatsu et al. conducted gamma-ray
irradiation tests and found that the cameras failed at the
total dose of 141.3–224.1 Gy [7], [8]. To study the image
noise, Lee et al. conducted gamma-ray irradiation tests and
investigated the effects of image noise on localization and
mapping algorithms [9]. Real gamma-ray irradiation was
utilized in the irradiation tests in these studies; however, the
gamma-ray irradiation tests are costly and require specific
facilities. Therefore, it is difficult to conduct gamma-ray
irradiation tests for training robot teleoperation operators.

In this study, we propose a novel method to simulate image
noise caused by gamma-ray irradiation. Because camera
malfunction can be reproduced easily by estimating the total
dose on the cameras, we focus on the image noise. Monte
Carlo simulations are performed to calculate the interaction
between the gamma-ray and the image sensor and the energy
deposit in each pixel is estimated. Moreover, we propose a
converter module utilizing image histogram comparison for
converting the energy unit of electron volts (eV) in each
pixel to the pixel intensity to generate image noise. Finally,
the effectiveness of the proposed method is demonstrated by
experimental results.

The proposed method would be beneficial not only for
training robot teleoperation operators but also for researchers
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Fig. 1. Overview of proposed method. (a) Monte Carlo simulation to estimate the energy deposit in the image sensor. The red and gray boxes at the center
of the figure represent the image sensor and the camera body, respectively. The green and magenta lines illustrate gamma-ray and beta-ray, respectively.
(b) Real image noise obtained by the gamma-ray irradiation test. The image histogram is extracted and used to convert the energy deposit in the image
sensor into simulated image noise. (c) Simulated image noise generated by the proposed method.

to develop methods for decommissioning FDNPP. For in-
stance, Qiao et al. proposed a reconstruction method for
the Unit 3 PCV [10] based on a geometric approach.
The proposed method is capable of generating many noisy
images which enable researchers to utilize learning-based
approaches to handle the challenges in FDNPP.

II. RELATED WORK

A. Effect of gamma-ray on image sensors

Image sensors are designed to capture photons and convert
them into electronic charges. Gamma-ray is a type of photon
that has much higher energy than visible light. Therefore,
image sensors are sensitive to gamma-ray and can be used
as simple gamma-ray measurement devices [11]. Besides,
a device that has large CMOS pixels has been utilized for
detecting the direction of radioactive sources [12].

There are three main interactions between gamma-ray and
matter, namely, the photoelectric effect, Compton scattering,
and pair production. Each interaction produces electrons that
are detected in the image sensors. The highest probability
interaction depends on the gamma-ray energy emitted from
the radioactive sources: low-, medium-, and high-energy
gamma-ray mainly cause the photoelectric effect, Comp-
ton scattering, and pair production, respectively. The main
interaction in radioactive sources produced in the FDNPP
accident such as Cobalt-60 (60Co) (0.66 MeV of gamma
ray) and Cesium-137 (137Cs) (1.17 MeV and 1.33 MeV) is
Compton scattering.

B. Image noise simulator

The simulator developed by Suzuki et al. has a function
to simulate image noise. However, they did not consider the

interaction between the gamma-ray and image sensors. The
image noise was simulated simply by adding random values
to the images [5]. Moreover, the noise level is defined by
the users. Therefore, it is difficult to simulate the noise in
specific given environments, for example, simulated noise
when 10 TBq of 60Co is placed 1 m away from the image
sensor.

In this study, we utilize Monte Carlo simulation to sim-
ulate the interaction between the gamma-ray and the image
sensor. Therefore, our method is capable of simulating the
image noise in given environments. Moreover, we utilize real
gamma-ray image noise, which enables the proposed method
to generate more realistic images.

III. METHOD

A. Overview

The proposed method generates simulated gamma-ray
image noise by utilizing Monte Carlo simulation and image
histogram comparison. It should be noted that we only con-
sider 8-bit grayscale images in this study. The consideration
of color images is left as a future work. An overview of the
proposed method is illustrated in Fig. 1.

As shown in Fig. 1(a), a Monte Carlo simulation is first
utilized to estimate the energy deposit in the image sensor. In
this process, we estimate the amount of energy accumulated
in each pixel during one frame of the camera.

The real image noise is then obtained in a gamma-ray
irradiation test, as shown in Fig. 1(b). The image histogram
is extracted from the real image noise, and the histogram
is used for parameter optimization to convert the energy
deposit in the image sensor into simulated image noise. In
this study, the conversion is designed so that the converted



energy deposit has a similar image histogram to the real
gamma-ray image noise.

Finally, as shown in Fig. 1(c), the optimized parameters
are used to convert the energy deposit data into simulated
image noise. It is worth noting that once the parameters
are optimized, the proposed method is capable of generating
noisy images from any images without noise in arbitrary
environments with, for example, arbitrary radioactive sources
and camera positions. Thus, an infinite number of simu-
lated noisy images can be generated without any additional
gamma-ray irradiation tests.

B. Monte Carlo simulation

1) Software: We utilize Geant4 [13], [14] for Monte Carlo
simulation to calculate the interaction between the gamma-
ray and the image sensor. Geant4 is a well-known toolkit
that can simulate the passage of particles through matter.
In particular, the low-energy package in Geant4 [15], [16] is
used because the energy of gamma-ray emitted by radioactive
sources is usually smaller than 2 MeV.

To calculate the interaction between the gamma-ray and
the image sensor, three elements should be defined in the
simulation: the energy of the gamma-ray, the material of the
image sensor, and the geometry of the camera. The energy of
the gamma-ray is determined based on the decay modes of
the radioactive sources. For example, the energy is 662 keV
for 137Cs. The material of the image sensor is set to silicon
dioxide because standard CMOS and CCD image sensors
are made of MOSFET. Finally, the geometry of the camera
is assumed to be that of the image sensor placed inside
an aluminum box representing the camera body. The image
sensor consists of a W ×H pixel array with the dimensions
of each pixel being lw× lh× ld, where W , H , lw, lh, and ld
represent the width and height of the image resolution, and
the width, height, and thickness of each pixel, respectively.

2) Reducing the computation time: A radioactive source
emits gamma-ray based on its decay modes with a uniform
distribution of the gamma-ray direction. Thus, an accurate
simulation should reproduce the emission of gamma-ray
from the radioactive source in every direction. However, the
size of the image sensor is normally much smaller than the
distance between the radioactive source and the image sensor.
As a result, most of the gamma-ray does not affect the image
sensor.

Therefore, the proposed method considers the emission
of parallel beams of gamma-ray to the image sensor to
decrease the required number of gamma-ray emissions in
the simulation in order to reduce the computation time.
When A [Bq] of radioactive source is placed d [m] from an
image sensor, the required number of gamma-ray emissions
to simulate the image noise in one frame is formulated as
follows:

Nsim =
ANdecay

Nfps
· WbeamHbeam

4πd2
, (1)

where Ndecay and Nfps are the number of gamma-ray beams
per disintegration (e.g., Ndecay = 2 for 60Co) and the frame
rate of the camera, respectively. We utilize a Wbeam×Hbeam

Fig. 2. Circular fisheye camera image. In the red rectangle, no scenery is
captured; therefore, only gamma-ray noise can be obtained. Meanwhile, the
scenery with gamma-ray noise can be captured in the green rectangle.

rectangular distribution of parallel gamma-ray beams. When
the parallel beams are vertical to the image plane, Wbeam

and Hbeam can be assigned as Wlw + loff and Hlh + loff ,
respectively. Here, loff is the offset distance to simulate
the scattered gamma-ray. Reducing the computation time is
paramount, especially for simulating high-dose environments
with radioactive sources on the order of PBq (= 1015 Bq)
which might take a few weeks without the proposed method.

3) Accumulated energy deposit: Using Monte Carlo sim-
ulation, the accumulated energy deposit in each pixel is
estimated. The procedure is summarized in Algorithm 1.
As shown in Algorithm 1, the accumulated energy deposit
during one frame of the camera is obtained as a W × H
array, Vgamma[·] = {x ∈ R | 0 ≤ x}.

C. Collection of real image noise

The energy deposit obtained in Sec. III-B has the unit of
eV; therefore, the conversion between eV and pixel intensity
is required. In this study, the conversion is implemented so
that the converted energy deposit has a similar image his-
togram to the real gamma-ray image noise. In this subsection,
we describe how to obtain the real gamma-ray image noise.

Algorithm 1: Energy deposit estimation
Data: Radioactive material S
Data: Number of gamma-ray emissions Nsim

Result: Energy deposit in image sensor Vgamma

// Initialize Vgamma with W ×H zero array

Vgamma[. . .]← 0;
for i← 1 to Nsim do

// Energy based on radioactive source

Egamma ← GetGammaEnergy(S, i);
// Monte Carlo simulation

{Edep} ← SimulateGammaRay(Egamma);
foreach {E, h,w} ∈ Edep do

// Accumulate deposit energy in pixel

Vgamma[h,w]← Vgamma[h,w] + E;
end

end
return Vgamma;



The real image noise is obtained in a gamma-ray irra-
diation test on cameras. Unlike visible light, gamma-ray
can penetrate matter easily because of its high energy.
Thus, Tith et al. proposed the detection of gamma-ray using
smartphones, where the camera lens was covered with black
tape so that only the gamma-ray but not the scenery was
captured [11]. In this study, circular fisheye cameras are
utilized to obtain the image noise caused by gamma-ray
irradiation. Circular fisheye cameras are fisheye cameras with
a field of view (FoV) of approximately 180°. Because of the
super-wide FoV, the captured scenery is projected onto the
image plane in a circle, and no scenery is captured outside
of the circle as shown in Fig. 2. In other words, both only
gamma-ray noise (the red rectangle in Fig. 2) and image
with noise (the green rectangle in Fig. 2) can be captured in
a single image. Here, the region where only gamma-ray noise
is captured is utilized for calculating the image histograms.
Meanwhile, the region of the image with noise is utilized for
evaluating the proposed method.

D. Conversion between eV and pixel intensity

Finally, the energy deposit Vgamma is converted into the
image pixel intensity I[·] = {x ∈ Z | 0 ≤ x ≤ 255}. We
convert Vgamma into I so that the converted energy deposit
has a similar image histogram to the real gamma-ray image
noise.

In our preliminary gamma-ray tests, we observed that
the radii of the point-shape noise is not one pixel but,
rather, a few pixels. Meanwhile, the Monte Carlo simulation
showed that point-shape noise usually occurs in a single
pixel. We attribute this discrepancy to the leakage of energy
to neighboring pixels when the gamma ray interacts with a
pixel in the gamma-ray irradiation process. This leakage can
be handled in the Monte Carlo simulation. Therefore, in the
converter module, a Gaussian blur is applied to Vgamma to
simulate the energy leakage. Moreover, 8 × 8 JPEG block
noise due to the high video compression was observed in
the real image. Thus, JPEG compression is applied at the
end of the converter module.

The converter module Converter, which converts
Vgamma into the simulated noise based on the user-defined
conversion parameters P is described in Algorithm 2. In
Algorithm 2, GaussianBlur(Inoise, psigma) is a 3 × 3
Gaussian blur with the standard deviation psigma. Besides,
Compression(Inoise, pquality) is a function that adds com-
pression noise by applying JPEG compression with quality
pquality to the image. Moreover, Normalize(Inoise, pEmax)
is formulated as follows:

Normalize(Inoise, pEmax) = 255 ·min(
Inoise

pEmax
, 1). (2)

The conversion parameter P is optimized using a his-
togram comparison between the real image noise and the
simulated image noise. The cost function for the optimization
is defined as follows:

fcost = EMD(Hreal, Hnoise(P)), (3)

Algorithm 2: Converter function
Data: Energy deposit in image sensor Vgamma

Data: Parameters for conversion P
Result: Simulated image noise Inoise

Function Convert(Vgamma, P):
// Initialize Inoise with Vgamma

Inoise ← Vgamma;
// Expand parameters

{psigma, pEmax, pquality} ← P ;
// Conversion according to parameters

Inoise ← GaussianBlur(Inoise, psigma);
Inoise ← Normalize(Inoise, pEmax);
Inoise ← Compression(Inoise, pquality);
return Inoise;

End Function

where the image histograms, Hreal and Hnoise, are formu-
lated as follows:

Hreal = Histogram(Ireal), (4)
Hnoise(P) = Histogram(Convert(Vgamma,P)), (5)

and EMD(·) is the Earth mover’s distance (EMD) [17] for
evaluating the difference between the image histograms of
the real and simulated image noise. Besides, Histogram(·)
is a function that extracts the histogram from an image.
The conversion parameter P can be optimized based on
Eq. (3) using even a single real noisy image; however,
multiple images containing real noise can be utilized by
minimizing the mean absolute error of fcost. Equation (3)
is optimized using a grid search of the parameters P ∈
{psigma, pEmax, pquality}.

Finally, the simulated noisy images are generated based
on the absolute noise model proposed in [9], which is
formulated as follows:

Inoisy[h,w] =

{
Inoise[h,w], if Inoise[h,w] ≥ Iclean[h,w]

Iclean[h,w], otherwise
(6)

where Inoisy and Iclean are the simulated noisy image and
the image without noise, respectively. It is worth noting that
once the parameters P are obtained, the proposed method
is capable of generating noisy images from any image
without noise in arbitrary environments with, for example,
arbitrary types of radioactive sources and camera positions.
Thus, an infinite number of simulated noisy images can be
generated without any additional gamma-ray irradiation tests
and utilized for the robot simulator [5].

IV. EXPERIMENTS

A. Gamma-ray irradiation test

The gamma-ray irradiation test for the proposed system
was conducted at the Engineering Research & Development
Center of ATOX Co., Ltd. This experiment is the same
experiment as the one described in [8].

Four fisheye cameras were attached to a box made of
aluminum frames, as shown in Fig. 3. The camera model



TABLE I
GAMMA-RAY IRRADIATION

Camera Distance from 60Co Air dose rate
number [m] [Gy/h]

0 0.80 501
1 1.23 157
2 1.51 104
3 1.24 164

Fisheye cameras

Radioactive source

Fig. 3. Experimental settings for gamma-ray irradiation test. Four fisheye
cameras were attached to the box, and a single radioactive source was placed
near the cameras.

was AXIS M3007-PV, which has a FoV of 187° × 168° and
supports Power over Ethernet (PoE). The camera captured
images with 2592×1944 pixels at a framerate of Nfps = 12.
1.0 PBq of 60Co was used as the radioactive source

(A = 1.0 PBq, S =60 Co) and placed near the cameras
as illustrated in Fig. 4. The air dose rate of each camera
position was measured in advance by an ionization chamber
dosimeter. The results are listed in Table I.

During the irradiation test, the images captured by the
cameras were stored via Ethernet in a computer placed
outside the irradiation chamber. In this study, only Camera
3 was utilized to estimate the parameters for the converter
module, and all four cameras were used for the comparison
between the real gamma-ray image noise and the noisy
images generated by the proposed method. An example
image from Camera 3 is shown in Fig. 5. The red rectangular
region (W×H = 256×256) was used to calculate the image
histogram.

Radioactive source

Camera 0
Camera 1

Camera 2Camera 3
600mm

600mm

Fig. 4. Experimental layout seen from above. The radioactive source was
placed near the cameras, and the room was surrounded by concrete walls.

Fig. 5. Example of circular fisheye image. The region in the red rectangle
was utilized for calculating the image histograms. Meanwhile, the region
in the green rectangle was utilized for evaluating the proposed method. It
should be noted that this image was captured before gamma-ray irradiation.

B. Monte Carlo simulation

A Monte Carlo simulation was performed based on the
settings of Camera 3. The image sensor was placed in a
2.0 mm-thick aluminum box which represents the camera
body. In this study, d, lw, lh, ld, and loff were set to 1.24 m,
1.75 µm, 1.75 µm, 7.0 µm, and 52.0 µm, respectively.
Consequently, both Wbeam and Hbeam were set to 0.5 mm,
and Nsim = 2,156,430 was obtained from Eq. (1).

It should be noted that when the proposed method is used
for generating the simulated gamma-ray image noise for dif-
ferent cameras, the geometry of the cameras in the simulation
should be changed according to the target cameras.

C. Parameter optimization for converter

We utilized 12 frames of the real image noise cap-
tured by Camera 3 to optimize the parameters, P ∈
{psigma, pEmax, pquality}. Here, the absolute mean error of
Eq. (3) was minimized using a grid search over the pa-
rameter space psigma ∈ {0.0, 0.05, . . . , 1.0}, pEmax ∈
{1.0, 1.1, . . . , 6.0}, and pquality ∈ {0.0, 0.05, . . . , 1.0}. It
should be noted that the parameters optimized using the
images from Camera 3 were used to generate noisy images
for all the cameras.

D. Evaluation

To evaluate the generated noisy images, we conducted a
quantitative evaluation using the real image noise obtained
in the gamma-ray irradiation test. We used the structural
similarity (SSIM) [18] index as the evaluation metric to
compare the generated noise in the images with the real
image noise. Unlike the mean squared error or peak signal-
to-noise ratio, SSIM evaluates the appearance similarity
based on human visual perception; therefore, we hope that
SSIM can properly evaluate images with spike noise. We
calculated the mean value of the SSIM index for 25 frames
and used the mean value as the evaluation metric.

In addition to the proposed method, noisy images were
generated by a simple salt-and-pepper model for comparison.
In the salt-and-pepper model, the pixel intensity of an image
without noise was changed to 255 with a probability of psp ∈



Proposed methodImage with noiseImage without noise

Camera 0

501 Gy/h

Camera 3

164 Gy/h

Camera 2

104 Gy/h

Salt-and-pepper noise

Fig. 6. Generated noisy images. From left to right: images without gamma-ray noise, images with gamma-ray noise, the noisy images generated by the
proposed method, and salt-and-pepper noisy images. The camera numbers and air dose rates are shown on the left of the figure.

[0, 1], where psp is a parameter that controls the amount of
noise. psp was optimized using the real image noise based
on image histogram comparison.

V. RESULTS

The noisy images were generated with the proposed
method using the optimized parameters of psigma = 0.6,
pEmax = 2.5, and pquality = 0.55. The salt-and-pepper noisy
images were generated using the optimized parameters of psp

= 0.025, 0.014, 0.010, and 0.016 for Camera 0, Camera 1,
Camera 2, and Camera 3, respectively.

Examples of the generated noisy images are presented
along with the simple salt-and-pepper noisy images, the
images without noise, and the real image noise in Fig. 6.
As can be seen in Fig. 6, the proposed method generated
gamma-ray image noise that is similar to the real image
noise. In addition, owing to the Monte Carlo simulation,
the level of image noise changes with the position of the
camera. It should be noted that all the noisy images in Fig. 6
were generated based on the conversion parameters estimated
using the images from Camera 3 while the parameters
for the salt-and-pepper noisy images were optimized using
the corresponding real-noise images. Therefore, once the
parameters are estimated, the proposed method is capable
of generating the gamma-ray noise of cameras placed at any

TABLE II
EVALUATION RESULTS USING SSIM INDEX (N = 25).

Camera Proposed Salt-and-peppernumber
0 0.323 ± 0.005 0.282 ± 0.004
1 0.584 ± 0.008 0.490 ± 0.005
2 0.775 ± 0.010 0.665 ± 0.005
3 0.589 ± 0.014 0.456 ± 0.010

position without any additional gamma-irradiation tests.

The results of the quantitative evaluation are presented in
Table II, where the values in bold indicate the best scores. As
can be observed in Table II, the SSIM index of the proposed
method is higher than that of the salt-and-pepper model for
all camera positions.

We comment on the time consumption of the proposed
method. The Monte Carlo simulation took 49 s to simulate
one frame in Camera 3 while the parameter optimization
using a grid search consumed 216 s. These processes can be
performed in advance before generating the noisy images.
Once the Monte Carlo simulation and the parameter opti-
mization have been performed, it takes 1.64 ms to generate
a noisy image. Therefore, the proposed method can be
combined with other simulators, such as [5].



VI. CONCLUSIONS

We proposed a novel method to simulate the image noise
caused by gamma-ray irradiation. Monte Carlo simulation
was utilized to calculate the interaction between the gamma-
ray and the image sensor, and the energy deposit in each pixel
was estimated. Moreover, we proposed a converter module
that generates the image noise from the energy deposit based
on image histograms.

Although real gamma-ray noise is required to optimize the
conversion parameters, the proposed method can generate
noisy images without an additional gamma-ray irradiation
test once the parameters have been optimized. In addition,
simulated noisy images with different settings can be easily
generated by the proposed method, as shown in our exper-
iments. In future work, we intend to combine the proposed
method with other simulators such as [5] to add a function to
generate images with noise caused by gamma-ray irradiation.
We believe this study would be beneficial to the research
community for the development of methods to decommission
FDNPP.
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