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Abstract— Mobile service robots often operate in human
environments such as corridors, offices, classrooms, homes, etc.
In order to function properly, they need to be aware of their 6
Degree of Freedom (6 DoF) location. In addition, it is important
that they possess semantic information i.e. knowledge of the
types and positions of objects around them. In this method, we
propose a method which obtains all of the above information
directly. This method operates by using a camera as a “semantic
sensor”. The robot obtains the direction of objects such as
doors, windows, tables, etc. around itself in 2D camera images
by detecting bounding boxes. It then uses these object locations
to localize itself within a floor map of the environment, which
is typically available for most indoor environments.

However, bounding box information is highly unstable due
to the various changes in lighting, pose, size, etc. Hence, we
also semantically tag feature points on detected objects and
use them in our Monte-Carlo based localization framework.
This increases the robustness and accuracy of our approach,
as is demonstrated by experiments.

I. INTRODUCTION

Due to the advances in sensor technology and deep
learning, it is now possible to make robots that understand
context and perform intelligent actions in homes, offices, and
other indoor environments. However, there are two basic re-
quirements for such systems which remain unsatisfactory. An
intelligent mobile robot needs to be aware of 1. its location
in the environment 2. its location with respect to objects
in its surroundings, referred to as “semantic” information.
Together, we refer to these as “semantic localization”, which
is aimed for in this research. We make use of an existing
environmental map consisting of a floor plan with various
objects marked on it. Such a floor plan, shown in Figure 1,
with the object layout is commonly available for most indoor
environments. Semantic localization is absolutely crucial in
order to enable the robot to navigate its surroundings and
interact with various objects in its surroundings. A simple
use-case scenario for such a system could be a robot needs
to navigate towards and open a door to fetch an object in
another room.

In this research, we make use of semantic information
directly in a map-based localization framework to provide
semantic localization. To obtain semantic information, we
make use of a 360 degree camera which can see in all
directions. Convolutional Neural Networks (CNN) are used
to extract semantic information from 360 degree images in
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Fig. 1. Example of a semantic map i.e. a floor plan. This is a floor plan
of a typical indoor environment. In our work, we try to localize inside of
such a map based on camera-based object detection.

the form of bounding boxes. The frame-to-frame location
of the camera inside an environmental map is tracked using
bounding box information, aided by an inertial measurement
unit (IMU). Since bounding box information is jittery and
unstable, we combine it with frame-to-frame feature point
information in order to provide local anchoring and smooth-
ing. This results in lower localization error.

The rest of this paper is divided as follows. The next
section explains previous research on semantic localization.
Next, we provide a brief overview of the proposed approach,
and the reasons for adopting it. The section after that goes
explains, in detail, the proposed method. Finally, experiments
are conducted to evaluate its performance and the paper is
concluded.

II. PREVIOUS RESEARCH

The straightforward approach to achieve semantic local-
ization is to use Radio Frequency ID (RFID) tags and other
beacons to tag various objects [1]. However, these methods
require costly prior installation and are difficult/costly to
maintain over time. Moreover, it is tedious to perform this
process for every new environment. Using wireless networks,
as done in [2] requires no such installation and maintenance,
as wireless networks are available inside most buildings.
However, the accuracy is low, and this requires prior access
of the environment for learning wireless signal strength
patterns, as it is a fingerprinting technique.

Another straightforward method is to divide semantic lo-
calization into its two respective steps. Semantic information



could be obtained with the help of a camera using Convo-
lutional Neural Networks (CNN) [3], [4]. These approaches
typically provide a 2D bounding box for each object detected
inside an image. By moving the camera, these objects could
be triangulated to 3D locations around the robot. Finally,
these objects could be overlaid on an existing environment
map along with the robot location, providing semantic lo-
calization. However, this approach involves multiple steps
of 3D triangulation of objects and map construction. Each
of these steps involve errors and any of them failing would
create issues in the final result. Moreover, the object map
also needs to be registered to the pre-existing environmental
map, which is not a trivial problem. It is far more prudent
to use the existing environmental map and match the sensor
observations directly to the map for localization.

Other methods try to extrapolate maps to 3D and match
them with 3D sensors such as RGB-D cameras [5] [6]. This
is typically done in accordance to the Manhattan World
Assumption [7]. However, this involves unnecessary use of
3D point clouds and raises the computational complexity.
Further, objects not fitting the Manhattan World Assumption
can cause issues. Another set of methods tries to use features
that are easily observable by the camera. [8] tried to use 3D
line features and matched them with 2D lines observable
from a 360 degree camera. However, it is difficult to achieve
semantic localization with this approach, and it is further
difficult to construct these 3D line maps.

Instead, it is advantageous to directly locate objects within
sensor measurements and use them as landmarks to localize
on the environmental map. [9] and [10] did so by using
distance and bearing measurements. However, this requires
the use of a depth sensor, which have a low field of view and
high power requirements. We find that using a 360 degree
camera, with a wide field of view, is crucial for accuracy as it
allows for the maximum number of visible objects. It is not
so trivial to obtain distance measurements from a monocular
camera.

Unlike them, [11] and [12] used the bearing angle (i.e.
the 2D object location inside camera images) of uniquely
detected objects to localize around them. [13] also attempted
semantic localization by directly using the object type and
bearing angle as sensor measurements. These approaches
used objects detected inside images as the anchor to calculate
the bearing angle. However, object detection (especially with
bounding boxes) is often unstable. Detections are often
missed and the bounding boxes usually shift from frame-to-
frame due to changes in illumination, viewpoint, distance,
etc. In the proposed approach, we aim to solve this problem
by combining detected objects with feature points to stabilize
object detections.

III. APPROACH

As concluded in the previous sections, it is essential for
robots to self-localize and be aware of objects around them,
and the best way to achieve this is by using the objects
themselves, detected inside camera frames, as anchors. Ob-
ject detection inside image frames is easily achieved by

Fig. 2. Example showing descriptive bounding box information and non-
descriptive feature point information.

Convolutional Neural Networks (CNN) such as YOLO (You
Only Look Once) [4], [3], which detects several objects in
the form of bounding boxes. This is the most lightweight
approach for doing so, and runs in real-time on common
processors.

The centers of bounding boxes can be taken as anchors to
find their bearing angles from the camera. However, bound-
ing boxes depend on various factors such as object viewpoint,
illumination, and object size. As the robot moves through
the environment, these factors change, causing bounding box
centers to drift and jitter. This can lead to a drop in the
accuracy of semantic localization approaches which utilize
these.

On the other hand, feature points such as A-KAZE [14],
are very stable against changes in viewpoint, illumination,
and size. However, these are not descriptive enough to be
used for semantic localization.

Therefore, we propose a combination of the two in order
to provide stable inputs for semantic localization. Along
with descriptive bounding box information, we detect non-
descriptive feature points inside bounding boxes and tag them
with object labels.

An example of this is shown below in Fig. 2.
While bounding boxes provide larger context and semantic

information, they are unstable. Meanwhile, feature points
can be tracked accurately, providing stable local anchors
during frame-to-frame camera motion. We use feature points
to calculate object velocities in image frames and combine
them with bounding box detections in a Kalman filter to
update the object tracking. As will be shown in experiments
towards the end of this paper, this results in lesser errors and
more stable detection.

IV. PROPOSED METHOD

This section explains the approach, in detail. We begin
with a basic overview of what our method entails.

A. Overview

As mentioned, our method makes use of semantic infor-
mation directly to localize a robot inside a semantic map
i.e. a floor plan. We make use of a 360 degree camera
to extract semantic information about the environment to



Fig. 3. System Overview

serve as landmarks for localization. These landmarks in-
clude common objects that appear on floor plans, such as
doors, windows, tables, chairs, etc. Depending on specific
environments, objects can be added or removed (for e.g., for
classrooms, ”whiteboards” can be included). These objects
are detected with the help of CNNs such as YOLO [4], [3]
and bounding boxes are extracted.

Since bounding boxes are unstable and jittery, feature
points are used for stabilizing them. We ”tag” feature points
according to the bounding box they were detected in. After
tracking, the bounding box trajectory is calculated and fed
into a Kalman filter for stabilization.

The stabilized bounding box centers are used in an Monte-
Carlo Localization (MCL) [15] formulation to give the final
result. Since MCL also requires odometry information, we
make use of an Inertial Measurement Unit (IMU) as these
are typically available in most robots. Fig. 3 provides an
overview of the system flow.

B. Detection of Semantic Information

First, we acquire semantic information in images via
bounding box extraction. Specifically, given an image, we
require the object class of each object, and its bearing
angle inside the image. This is the 2D bearing angle as
we aim at estimating the position (x, y) and orientation θ.
Instead of pixel-wise semantic segmentation, which takes a
heavy computational toll, our method relies on bounding
box information alone, making it lightweight. In order to
achieve this, we make use of TinyYOLOv2[3] . It is easy to
pretrain TinyYOLOv2 for all the objects in the environment,
as they are already known from the map. A 360◦ camera
is used to capture as much of the environment as possible.
Equirectangular images are output from the camera and
object detection is done directly on these.

Based on each bounding box center, the bearing angle
can be calculated as shown in Fig. 4. Each equirectangular
image goes from 0 to 360 degrees. The center of the image
is set as 0 degrees. In the equirectangular image coordinate
system, we assume the center of the image to be the origin.
The bearing angle for each bounding box, α is calculated by
dividing the horizontal coordinate of its center by the width
of the image and multiplying by 360. Here, k is the bounding
box index. Once the bearing angles for each bounding box
have been detected, they need to be smoothed in order to
make them stable for accurate localization.

α

Fig. 4. Bearing angle calculation

C. Stabilization of Semantic Information

In order to smoothen and stabilize the trajectory of each
bounding box, we detect feature points over the image and
track features in consecutive frames that belong to each
bounding box. We make use of AKAZE[14] features as
they can withstand the strong distortions present in 360
degree equirectangular images. These distortions are due to
the projection of a sphere on a 2D surface and are variable
depending on the height of each image pixel.

Once AKAZE features have been detected in consecutive
images, we filter them in a RANSAC[16] approach. Typi-
cally, for planar images, RANSAC calculates the deviation
from the epipolar equation as a euclidian distance from the
epipolar plane. However, since we use 360 degree images
which cannot be projected straightforwardly on a plane,
they are projected on the surface of a unit sphere. Using
the typical RANSAC formulation leads to low accuracy on
spherical images.

Hence, in order to calculate epipolar error for RANSAC,
the spherical geodesic error is used instead, in the same
manner as done in [17]. The geodesic error of each feature
point is the distance calculated on the surface of the unit
sphere. Instead of epipolar lines, we obtain epipolar curves.

After RANSAC filtering, each inlier feature pair which
lies within a bounding box is tagged with its label. If a
bounding box is present in both images of the consecutive
frame pair, the average velocity on the equirectangular image
surface is calculated over all the features present within it
to calculate the bounding box velocity ċk. To be regarded
as corresponding bounding boxes, we check the following
three conditions: 1. Coordinates of the two boxes are close
enough. 2. Sizes of the two boxes are almost the same. 3.
Labels of the two boxes are exactly the same.

We use a constant velocity Kalman filter in order to update
the trajectory of each bounding box based on its previous
state and the bounding box velocity. Since the frame rate
is high, we assume each bounding box to have a linear
trajectory. This is valid due to the fact that most objects are
present towards the center of the equirectangular image and
move mostly horizontally. On a side note, this also makes it
easier for TinyYOLOv2 to detect each bounding box.

This, for each bounding box, we update the velocity by
the average velocity of all feature points present within it. A



match of all TinyYOLOv2 detections is performed to check
whether new objects have entered the view of the camera.
If so, a new trajectory is started. Likewise, disappearing
trajectories are also calculated. Objects typically disappear
when the object becomes too small.

Once the Kalman filter has smoothed the bounding box
trajectories, we use them in an MCL-based localization
within the floor map. This is described in the next section.

D. MCL-based Localization

In this work, we make use of Monte-carlo Localization
(MCL) [18]. Typically, MCL uses laser range-finders and
compares bearing-distance measurements to a known 2D
geometric map of the environment. In this work, we replace
the distance measurements with the smoothed bounding box
measurements defined as Z= {(ck, αk)}Kk=1, where K is the
number of objects in each sensor reading. For MCL, we also
require odometry information. For this, we make use of an
inertial measurement unit (IMU).

The Monte Carlo Localization (MCL) [19] is a recursive
Bayes filter for estimating the pose of the user. Bayes
filters estimate the state of a dynamical system with Markov
property assumption for the environment. The probability
distribution of the current state only depend on the previous
state. Readings from different sensors such as rangefinder,
cameras etc. can be used to compare against a pre-built map.
Each particle in MCL is a pose hypothesis with a weight.
The weights sum to one. The particles get updated as the
user moves around. if the system does not have any prior
information about the real pose, MCL generally starts with
uniform distribution of particle.

MCL has prediction, update, and resampling steps to
make particles converge towards the user’s location. At the
prediction step, particles are propagated according to the last
odometry information. The prediction step is followed by an
update step. In the update step, each particle is evaluated on
how much it correlates with the current observations and
its weight is updated proportionally. The last step is the
resampling step, where particles are resampled according to
the their new weights. Our method requires an annotated
2D map M which stores Cartesian Coordinates (x, y) of
annotated objects from different predetermined object classes
c, state(x, y, θ) of the user s, odometry information u and
sensor update Z in our method. The 2D annotated map M is
defined as M= {xn, yn, cn}Nn=1 where N is the number of
objects in the map.

The smoothed bounding box measurements Z contain
detected object class name c and bearing angle α to the center
of the object.The measurement update is Z= {(ck, αk)}Kk=1,
where K is the number of objects in each sensor reading.

Particles from P (st−1|zt−1,ut−1) are propagated with
a motion model at the prediction step. At the update step
each particle weight gets updated according to how much
the current measurements match to the map by a sensor
model P (zt|st,M). The update step is followed by a re-
sampling step based on particle weights into a posterior
P (st|zt,ut).The posterior is calculated as;

P (st|Zt,ut,M) =

P (Zt|st,M)P (st|ut, st−1)P (st−1|Zt−1,ut−1,M)
(1)

There are two common ways to compute a joint likelihood
distribution.The first one is to assume measurements from the
same reading zp and zq to be conditionally independent to
each other given the location and apply product of likelihood
as

P (zp|zq, s) = P (zp|s) ∀p 6= q,

P ({z1, z2, . . . , zk}|s,M) =

K∏
k=1

P ({z}k|s,M) (2)

The second approach elevates each measurement to the
power of a “smoothing” coefficient λ and computes the joint
distributions as weighted geometric means of the individual
likelihoods as

P (z1, z2, . . . , zk|s) =

 K∏
i=j

P (zj |s)λj

1/
∑K

j=1 λj

(3)

Please refer to [20] for derivation and details. The first
approach might yield to peaky, and overconfident results.
Especially wrong measurements might have a big impact on
the result. The second approach smooths the joint likelihood,
and might be able to deal with wrong measurements. In [21],
different object classes were treated as different sensors, and
they were assigned different smoothing powers to smooth
measurement errors bu using Eq 3. Even though assigning
fixed smoothing powers were efficient and robust in many
cases, it was also proven to be very environment dependent
and hard to generalize. Besides, the motivation for applying
Kalman Filter is to stabilize the measurements and work with
realiable data. Therefore, instead of relying on certain object
classes more than others, we rely on all tracked objects. In
this work we also assumed independence across objects,and
used log-likelihood by taking the natural logarithm of the
likelihood function. The annotated objects in map M and
observations in Z do not have unique IDs. The measurements
were matched according to maximum likelihood as

P (zk|s,M) = max(P (zk|s,Mn)∀Mn ∈ M|Mn
c = zkc )

(4)

V. EXPERIMENTAL EVALUATION

In order to check the performance of the proposed method
and evaluate the contribution of smoothing the bounding
box information using feature points, we conducted a real
experiment in a classroom environment, as shown in Fig.
5. In order to construct a floorplan, we used ARUCO [22]
markers and implemented an ARUCO SLAM inside a Robot
Operating System (ROS) environment. This step can be done
by hand, as well, by knowing the dimensions of the room.



Fig. 5. Experimental Environment

Fig. 6. Experimental Setup

Our experimental setup, shown in Fig. 6, consisted of a
Ricoh Theta V 360 degree spherical camera and a Sparkfun
IMU. In order to record groundtruth, we made use of a laser
range finder combined with the IMU, implementing its own
MCL localization. All three were connected to a laptop to
run the required ROS nodes, and to a battery. The setup was
carried by a person who walked around the room. The entire
sequence amounted to around 3 minutes.

Frame-by-frame semantic localization was conducted us-
ing the proposed method. In order to evaluate the effect
of smoothing the bounding box information, evaluation was
also conducted without the feature point-based Kalman filter,
in accordance to our previous work in [13]. Fig. 7 shows
the estimated trajectory in both approaches overlaid on the
groundtruth, along with the semantic floor plan map of the
room.

The evaluation errors are tabulated in Table I. It can be
noticed that the mean position and orientation errors reduced,

Fig. 7. Floor plan map of the experimental environment showing the
trajectory

TABLE I
MEANS ERRORS WITH AND WITHOUT THE USE OF FEATURE POINT

INFORMATION

Error Without feature points With feature points
Mean(m) 0.47 0.40
Std(m) 0.19 0.16
Mean(rad) 0.20 0.09
Std(rad) 0.19 0.06

and so did their standard deviations.

VI. DISCUSSIONS AND CONCLUSION

In this research, semantic localization was defined as the
localization of an agent within a 2D map consisting of object
information, such as an indoor floor plan. It was justified
to be of importance for robots and other intelligent agents
which need to navigate in and interact with objects in an
indoor environment.

This was achieved with the help of a 360 degree camera
and was based on two kinds of information: 1. Object
detection and 2. Feature point information. Descriptive object
detection formed the core of the method and provided land-
marks necessary for localization. Meanwhile, non-descriptive
feature point information served as a local anchor for jittery
and unstable object bounding boxes in order to increase
the accuracy of the final output. In addition, the use of an
IMU provided odometry information crucial for the MCL-
based localization approach that was followed. This was
experimentally verified in a real environment. The only
preparation the system required was to be provided a floor
plan of the target environment, which is easy to obtain in
most cases.

While the accuracy of the system is enough for a robot
to navigate and approach objects, it remains lacking for
interaction with an object. In order to provide this, it is
necessary to accurately track local robot motion close to
an object and understand its 3D structure, which will be
considered in future work.



Including extra iterative steps created extra computation
burden. During feature point selection AKAZE features
showed better performance for tracking than ORB features.
On the other hand, ORB features were faster. Thus, the
selection was a trade of accuracy and speed.

The errors of tinyYOLO2 and the tracking algorithm
were similar. Despite the improvements made to its first
version to detect smaller objects, tinyYOLO2 still struggles
with detection of objects are small in user’s perspective.
Therefore, bigger objects had better performance than the
smaller ones. Among the object classes, the longest tracking
trajectory belonged to the board class. It was followed by
the trajectory of the door. The worst trajectory performance
belonged to chairs. During localization only objects which
were tracked above a certain threshold of frame numbers
were used. When an object disappears, the trajectory was
saved for a certain number of frames, and continued when the
object is detected again. If the object does not appear then it
is deleted. This process was challenging for smaller objects,
since their detection is not very reliable and they exist in a
big number in the environment. Without any identification,
tracking was possible for only some of the members from
each class. Motion blur was a problem for the tracking
system. It caused losing the tracking when the user was
taking corners. This situation resulted in increased errors.

Even though all objects which were tracked above a frame
number threshold were accepted to be completely reliable,
there were big differences across their trajectory lengths.
Even though, setting fixed smoothing factors according to
the object class is not very generalizable, they can be
set according to the trajectory length adaptively. However,
scaling trajectory length to the fixed smoothing factors could
cause the same complications as fixed ones.
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