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Abstract— We systematically develop a learning-based treat-
ment of stochastic optimal control (SOC), relying on direct
optimization of parametric control policies. We propose a
derivation of adjoint sensitivity results for stochastic differential
equations through direct application of variational calculus.
Then, given an objective function for a predetermined task
specifying the desiderata for the controller, we optimize their
parameters via iterative gradient descent methods. In doing
so, we extend the range of applicability of classical SOC
techniques, often requiring strict assumptions on the functional
form of system and control. We verify the performance of
the proposed approach on a continuous–time, finite horizon
portfolio optimization with proportional transaction costs.

I. INTRODUCTION

In this work we consider the following class of controlled
stochastic dynamical systems:

ẋt = f(t, xt, ut) + g(t, xt, ut)ξ(t) (1)
with state xt ∈ X ⊂ Rnx and control policy ut ∈ U ⊂ Rnu .
ξ(t) ∈ Rnξ is a stationary δ-correlated Gaussian noise, i.e.
∀t > 0 E[ξ(t)] = 0 and ∀s, t such that 0 < s < t it holds
E[ξ(s)ξ(t)] = δ(s−t). The RHS of (1) comprises a drift term
f : R×X×U→ Rnx and a diffusion term g : R×X×U→
Rnx×nξ . This paper develops a novel, systematic approach
to learning optimal control policies for systems in the form
(1), with respect to smooth scalar objective functions.

The link between stochastic optimal control (SOC) and
learning has been explored in the discrete–time case [1]
with policy iteration and value function approximation meth-
ods [2], [3] seeing widespread utilization in reinforcement
learning [4]. Adaptive stochastic control has obtained ex-
plicit solutions through strict assumptions on the class of
systems and objectives [5], preventing its applicability to the
general case. Forward–backward SDEs (FBSDEs) have been
proposed to solve classic SOC problems [6], even employing
neural approximators for value function dynamics [7], [8]. A
further connection between SOC and machine learning has
also been discussed within the continuous–depth paradigm of
neural networks [9], [10], [11], [12]. [13] e.g. showed that
fully connected residual networks converge, in the infinite
depth and width limit, to diffusion processes.

Here, we explore a different direction, motivated by the
affinity between neural network training and optimal control
which involve the reliance on carefully crafted objective
functions encoding task–dependent desiderata.
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The raison d’être of synthesizing optimal stochastic con-
trollers through gradient–based techniques is to enrich the
class of objectives for which an optimal controller can be
found, as well scale the tractability to high-dimensional
regimes. This is in line with the empirical results of modern
machine learning research where large deep neural networks
are often optimized on high–dimensional non–convex prob-
lems with outstanding performance [14], [15]. Gradient–
based methods are also being explored in classic control
settings to obtain a rigorous characterization of optimal
control problems in the linear–quadratic regime [16], [17].

Notation: Let (Ω,F , P ) be a probability space. If a
property (event) A ∈ F holds with P (A) = 1, we say that
such property holds almost surely. A family of X–valued
random variables defined on a compact time domain T ⊂ R
{xt}t∈T is called stochastic process and is measurable if
xt(A) is measurable with respect to the σ-algebra B(T)×F
being B(T) the Borel-algebra of T. As a convention, we use∫ t
s

= −
∫ s
t

if s < t and we denote with δ the Krocnecker
delta function.

II. STOCHASTIC DIFFERENTIAL EQUATIONS

Although (1) “looks like a differential equation, it is really
a meaningless string of symbols” [18]. This relation should
be hence treated only as a pre–equation and cannot be
studied in this form. Such ill–posedness arises from the
fact that, being ξ(t) a δ–autocorrelated process, the noise
fluctuates an infinite number of times with infinite variance1

in any time interval. Therefore, a rigorous treatment of the
model requires a different calculus to interpret integration of
the RHS of (1). The resulting well-defined version of (1) is
known as a Stochastic Differential Equation (SDE) [19].

A. Itô–Stratonovich Dilemma

According to Van Kampen [18], ξ(t) might be thought as
a random sequence of δ functions causing, at each time t, a
sudden jump of xt. The controversies on the interpretation
of (1) arises over the fact that it does not specify which value
of x should be used to compute g when the δ functions are
applied. There exist two main interpretations of the issue,
namely Itô’s [20] and Stratonovich’s [21]. Itô prescribes that
g should be computed with the value of x before the jump
while Stratonovich uses the mean value of x before and after
the jump. This choice leads to two different (yet, both admis-
sible and equivalent) types of integration. Formally, consider

1From a control theoretical perspective, if ξ(t) ∈ R is, for instance, a
white noise signal, its energy

∫∞
−∞ |F (ξ)(ω)|dω would not be finite (F (·)

denotes the Fourier transform)



a compact time horizon T = [0, T ], T > 0 and let {Bt}t∈T
be the standard nξ-dimensional Wiener process defined on a
filtered probability space (Ω,F , P ; {Ft}t∈T) which is such
that B0 = 0, Bt is almost surely continuous in t, nowhere
differentiable, has independent Gaussian increments, namely
∀s, t ∈ T s < t ⇒ Bt − Bs ∼ N (0, t − s) and, for
all t ∈ T, we have ξ(t)dt = dBt. Moreover, let φt :=
g(t, xt, ut). Itô and Stratonovich integral calculi are then
defined as

∫ T
0
φtdBt = lim|D|→0

∑K
k=1 φtk−1

(Btk −Btk−1
)

and
∫ T

0
φt◦dBt = lim|D|→0

1
2

∑K
k=1

(
φtk − φtk−1

)
(Btk −

Btk−1
), respectively, where D is a given partition of T,

D := {tk : 0 = t0 < t1 < · · · < tK = T}, |D| =
maxk(tk − tk−1) and the limit is intended in the mean–
square sense, (see [22]) if exists. Note that the symbol “◦” in
◦dBt is used only to indicate that the integral is interpreted
in the Stratonovich sense and does not stand for function
composition. In the Stratonovich convention, we may use the
standard rules of calculus2 while this is not the case for Itô’s.
This is because Stratonovich calculus corresponds to the limit
case of a smooth process with a small finite auto–correlation
approaching Bt [23]. Therefore, there are two different
interpretations of (1): dxt = f(t, xt, ut)dt+ g(t, xt, ut)dBt
and dxt = f(t, xt, ut)dt + g(t, xt, ut) ◦ dBt. Despite their
name, SDEs are formally defined as integral equations due
to the non-differentiability of the Brownian paths Bt.

From a control systems perspective, on one hand
Stratonovich interpretation seems more appealing for noisy
physical systems as it captures the limiting case of mul-
tiplicative noise processes with a very small finite auto–
correlation, often a reasonable assumption in real applica-
tions. However, if we need to treat diffusion terms as intrisic
components of the system’s dynamics or impose martingale
assumptions on the solutions of the SDE, the Itô convention
should be adopted. In particular, this is always the case of
financial applications, where stochastic optimal control is
widely applied (see e.g. [24]).

Within the scope of this paper, we will mainly adopt
the Stratonovich convention for consistency of notation.
Nonetheless, all results presented in this manuscript can be
equivalently derived for the Itô case. Indeed an Itô SDE can
be transformed into a Stratonovich one (and viceversa) by the
equivalence relation between the two calculi: for all t ∈ T∫ t

0
φs ◦ dBs =

∫ t
0
φsdBs + 1

2

∫ t
0

∑nξ
i=1

∂φ(i)
s

∂x φ
(i)
s ds.

B. Stratonovich SDE
We will formally introduce Stratonovich SDEs following

the treatment of Kunita [25], [22]. For 0 ≤ s ≤ t ≤ T
we denote by Fs,t the smallest σ-algebra containing all null
sets of F with respect to which, for all v, w ∈ T such that
s ≤ v ≤ w ≤ t, Bw − Bv is measurable. {Fs,t}s≤t;s,t∈T
is called a two–sided filtration generated by the Wiener
process and we set write Ft = F0,t for compactness. Then,
{Ft}t∈T is itself a filtration with respect to which Bt is Ft–
adapted. Further, we let f, g to be bounded in X, infinitely

2see e.g. Itô’s Lemma in Stratonovich form [22, Theorem 2.4.1], where
the chain rule of classic Riemann–Stieltjes calculus is shown to be preserved
under the sign of Stratonovich integrals.

differentiable in x, continuously differentiable in t, uniformly
continuous in u and we assumme the controller {ut}t∈T to
be a Ft–adapted process. Given an initial condition x0 ∈ X
assumed to be a F0 measurable random variable, we suppose
that there exists a X-valued continuous Ft-adapted semi–
martingale {xt}t∈T such that

xT = x0 +

∫ T

0

f(t, xt, ut)dt+

∫ T

0

g(t, xt, ut) ◦ dBt, (2)

almost surely. Path–wise existence and uniqueness of so-
lutions, i.e. if, for all t ∈ T, two solutions xt, x

′
t such

that that x0 = x′0 satisfy ∀t ∈ T xt = x′t almost surely,
is guaranteed under our class assumptions on f, g and the
process {ut}t∈T3.

If, as assumed here, f , g are functions of class C1,∞ in
(xt, t) uniformly continuous in u with bounded derivatives
w.r.t x and t, and {ut}t∈T belongs to some admissible control
set A of T → U functions, then, given a realization of
the Wiener process, there exists a C∞ mapping Φ called
stochastic flow from X × A to the space of absolutely
continuous functions [s, t]→ X such that
xt = Φs(xs, {us}s≤t;s,t∈T)(t) s ≤ t; s, t ∈ T;xs ∈ X (3)

almost surely. For the sake of compactness we denote the
RHS of (3) with Φs,t(xs). It is worth to be noticed that
the collection {Φs,t}s≤t;s,t∈T satisfies the flow property (see
[22, Sec. 3.1]) ∀s, t, v ∈ T : s < v < t⇒ Φv,t(Φs,v(xs)) =
Φs,t(xs) and that it is also a diffeomorphism [22, Theorem
3.7.1], i.e. there exists an inverse flow Ψs,t := Φ−1

s,t which
satisfies the backward SDE

Ψs,t(xs) = xs−
∫ t

s

f(v,Ψs,v(xs), uv)dv

−
∫ t

s

g(v,Ψs,v(xs), uv) ◦ dB̂v.

being {B̂t}t∈T the realization of the backward Wiener pro-
cess defined as B̂t := Bt−BT for all t ∈ T. The diffeomor-
phism property of Φs,t thus yields: Ψs,t(Φs,t(xs)) = xs.

Therefore, it is possible to reverse the solutions of
Stratonovich SDEs in a similar fashion to ordinary dif-
ferential equations (ODEs) by storing/generating identical
realizations of the noise process. From a practical point
of view, under mild assumptions on the chosen numerical
SDE scheme, approximated solutions Φ̂s,t(xs) satisfy ∀xs ∈
X Ψ̂s,t(Φ̂s,t(xs)) → xs in probability as the discretization
time-step ε→ 0 [26, Theorem 3.3].

III. DIRECT STOCHASTIC OPTIMAL CONTROL

We consider the optimal control problem for systems of
class (1) interpreted in the Stratonovich sense. In particular,
we aim at determining a control process {ut}t∈T within an
admissible set of functions A to minimize or maximize in
expectation some scalar criterion Ju of the form

Ju(x0) =

∫
T
γ(t,Φ0,t(x0), ut)dt+ Γ(Φ0,T (x0), uT ), (4)

3Note that less strict sufficient conditions only required uniform Lipsichitz
continuity of f(t, xt, ut) + 1

2

∑nξ
i=0 g

(i)(t, xt, ut)[∂g(i)(t, xt, ut)/∂x]
and g(t, xt, ut) w.r.t. x and uniform continuity w.r.t. t and u.



measuring the performance of the system. Within the scope
of the paper, we characterize A as set of all control processes
{ur}t∈T which are Ft–adapted, have values in U and such
that E[

∫
T ‖ut‖22]dt ≤ ∞. To emphasize the (implicit) depen-

dence of Ju(x0) on the realization of the Wiener process,
we often explicitly write Ju(x0, {Bt}t∈T).

A. Stochastic Gradient Descent

In this work we propose to directly seek the optimal
controller via mini-batch stochastic gradient descent (SGD)
(or ascent) optimization [27], [28]. The algorithm works
as follows: given a scalar criterion Jα(x0, {Bt}t∈T) de-
pendent on the variable α and the Brownian path, it at-
tempts at computing α∗ = arg minα E[Jα(x0, {Bt}t∈T)] or
α∗ = arg maxα E[Jα(x0, {Bt}t∈T)] starting from an initial
guess α0 by updating a candidate solution αk recursively
as αk+1 = αk ± ηk

N

∑N
i=1

d
dαJαk(x0, {Bt}it∈T), where N

is a predetermined number of independent and identically
distributed samples {Bt}it∈T of the Wiener process, ηk is
a positive scalar learning rate and the sign of the update
depends on the minimization or maximization nature of
the problem. If ηk is suitably chosen and Jα is convex,
αk converges in expectation to the minimizer of Jα as
k → ∞. Although global convergence is no longer guar-
anteed in the non–convex case, SGD–based techniques have
been employed across application areas due to their scaling
and unique convergence characteristics. These methods have
further been refined over time to show remarkable results
even in non–convex settings [29], [30].

B. Finite Dim. Optimization via Neural Approximators

Consider the case in which the criterion Ju has to be min-
imized. Locally optimal control processes u = {ut}t∈T ∈
A could be obtained, in principle, by iterating the SGD
algorithm for the criterion Ju in the set A of admissible
control processes. Since A is at least in L2(T→ U) we could
preserve local convergence of SGD in the function-space
[31]. An idealized function–space SGD algorithm would
compute iterates of the form

uk+1 = uk − ηk
N

N∑
i=1

δ

δu
Ju(xs0, {Bt}it∈T)

where uk is the solution at the kth SGD iteration, δ/δ(·)
is the variational or functional derivative and Ju satisfies
δE[Ju(xs, {Bt}t∈T)]/δu = E[δJu(xs, {Bt}t∈T)/δu].

At each training step of the controller, this approach would
thus perform N independent path simulations, compute the
criterion Ju and apply the gradient descent update. While
local convergence to optimal solutions is still ensured un-
der mild regularity and smoothness assumptions, obtaining
derivatives in function space turns out to be computationally
intractable. Any infinite-dimensional algorithm needs to be
discretized in order to be practically implementable. We
therefore seek to reduce the problem to finite dimension by
approximating ukt with a neural network4.

4Here by neural network we mean any learnable parametric function uθ
with some approximation power for specific classes of functions.

Let uθ,t : θ, t 7→ uθ,t be a neural network with parameters
θ ∈ Rnθ which we use as functional approximators for
candidate optimal controllers, i.e. uθ,t ≈ u∗t ∀t ∈ T.
Further, we denote fθ(t, xt) := f(t, xt, uθ,t) and gθ(t, xt) :=
g(t, xt, uθ,t) and the optimization criterion

Jθ(x0) =

∫
T
γθ(t,Φs,t(x0))dt+ Γθ(T,Φs,T (x0)) (5)

with γθ(·, ·) = γ(·, ·, uθ,t) and Γθ(·, ·) = Γ(·, ·, uθ,T ). Then,
the optimization problem turns into finding via gradient
descent the optimal parameters θ, by iterating

θk+1 = θk − ηk
N

N∑
i=1

d

dθ
Jθk(x0, {Bt}it∈T). (6)

If strong costraints over the set of admissible controllers
A are imposed, the approximation problem can be rewritten
onto a complete orthogonal basis of A and uθ is parameter-
ized by a truncation of the eigenfunction expansion, rather
than a neural network.

Remark 1 (Heuristics): As common practice in machine
learning, the proposed approach relies heavily on the fol-
lowing empirical assumptions

i. The numerical estimate of the mean gradients will
be accurate enough to track the direction of the true
dJθ/dθ. Here, estimation errors of the gradient will be
introduced by the numerical discretization of the SDE
and the finiteness of independent path simulations.

ii. The local optima controller reached by gradient de-
scent/ascent will be good enough to satisfy the perfor-
mance requirements of the control problem.

In order to perform the above gradient descent we therefore
need to compute the gradient (i.e. the sensitivity) of Ju with
respect to the parameters θ in a computationally efficient
manner. In the following we detail different approaches to
differentiate through SDE solutions.

IV. COST GRADIENTS AND ADJOINT DYNAMICS

The most straightforward approach for computing path–
wise gradients (i.e. independently for each realization of
{Bt}t∈T) is by directional differentiation5 i.e.

dJθ
dθ

=

∫
T

[
∂γθ
∂xt

dxt
dθ

+
∂γθ
∂θ

]
dt+

∂Γθ
∂xT

dxT
dθ

+
∂Γθ
∂θ

where the quantities dxt/dθ and dxT /dθ can be obtained
with the following result.

Proposition 1 (Path–wise Forward Sensitivity): Let St =
dxt/dθ. Then, St is a {Ft}-adapted process satisfying

dSt =

[
∂fθ
∂xt

St +
∂fθ
∂θ

]
dt+

nξ∑
i=1

[
∂g

(i)
θ

∂xt
St +

∂g
(i)
θ

∂θ

]
◦ dB

(i)
t

Proof: The proof is an extension of the forward sensi-
tivity analysis for ODEs (see [32, Sec. 3.4]) to the stochastic
case. Given the SDE of interest

xt = x0 +

∫
T
fθ(t, xt)dt+

∫
T
gθ(t, xt) ◦ dBt

5Differentiability under the integral sign follows by our smoothness
assumptions.



differentiating under the integral sign w.r.t. θ gives
dxt
dθ

=

∫
T

[
∂fθ
∂xt

dxt
dθ

+
∂fθ
∂θ

]
dt

+

nξ∑
i=1

∫
T

[
∂g

(i)
θ

∂xt

dxt
dθ

+
∂g

(i)
θ

∂θ

]
◦ dB

(i)
t

and result follows setting St = dxt/dθ. That differentiating
under the integral sign is allowed follows by our assumptions
on fθ and gθ and by an application of [22, Lemma 3.7.1] to
the augmented SDE (xt, θ).

The main issue with the forward sensitivity approach is its
curse of dimensionality with respect to the number of param-
eters in θ and state dimensions nx as it requires us to solve
an nx×nθ matrix–valued SDE for the whole time horizon T.
At each integration step the full Jacobians ∂fθ/∂θ, ∂gθ/∂θ
are required, causing memory and computational overheads
in software implementations. Such issue can be overcome by
introducing adjoint backward gradients.

Theorem 1 (Path–wise Backward Adjoint Gradients):
Consider the cost function (5) and let λ ∈ C1(T→ X) be a
Lagrange multiplier. Then, dJθ/dθ is given by

dJθ
dθ

=
∂Γθ
∂θ

+

∫
T

[
λ>t

∂fθ
∂θ

+
∂γθ
∂θ

]
dt+

nξ∑
i=1

∫
T
λ>t

∂g
(i)
θ

∂θ
◦dB(i)

t

where the Lagrange multiplier λt satisfies the following
backward Stratonovich SDE:

dλ>t = −
[
λ>t

∂fθ
∂xt

+
∂γθ
∂xt

]
dt−

nξ∑
i=1

λ>t
∂g

(i)
θ

∂xt
◦ dB̂

(i)

t

λ>T =
∂Γθ
∂xT

Lemma 1 (Line integration by parts): Let T be a compact
subset of R and r : T → Rn, v : T → Rn such that ∀t ∈
T, t 7→ rt := r(t) ∈ C1 and t 7→ vt := v(t) ∈ C1. We have∫
T〈rt,dvt〉 = 〈rT , vT 〉 − 〈r0, v0〉 −

∫
T〈drt, vt〉.

Proof: The proof follows immediately from integration
by parts using drt = ṙtdt, dvt = v̇tdt.

Proof: (Theorem 1) Let L be the Lagrangian of the
optimization problem and the process λt ∈ C1(T → X) an
Ft-adapted Lagrange multiplier. We consider L of the form

L = Jθ(x0)−
∫
T
〈λt,dxt − fθ(t, xt)dt− gθ(t, xt) ◦ dBt〉

= Γθ(xT ) +

∫
T
γθ(t, xt)dt

−
∫
T
〈λt,dxt − fθ(t, xt)dt− gθ(t, xt) ◦ dBt〉

Since dxt−fθ(t, xt)dt−gθ(t, xt)◦dBt = 0 by construction,
the integral term is always null, dL/dθ = dJθ(x0)/dθ and
the Lagrange multiplier process can be freely assigned. Thus,

dJθ
dθ

=
dL
dθ

=
∂Γθ
∂θ

+
∂Γθ
∂xT

dxT
dθ

+
d

dθ

∫
T
γθ(t, xt)dt

− d

dθ

∫
T
〈λt,dxt − fθ(t, xt)dt− gθ(t, xt) ◦ dBt〉

Note that, by Lemma 1, we have
∫
T 〈λt,dxt〉 = 〈λt, xt〉 |T0 −∫

T 〈dλt, xt〉. For compactness, we will omit the argument of

all functions unless special cases. We have
dJθ
dθ

=
∂Γθ
∂θ

+
∂Γθ
∂xT

dxT
dθ
− λ>T

dxT
dθ

+ λ>0
�
��dx0

dθ

+

∫
T

[(
∂γθ
∂θ

+
∂γθ
∂xt

dxt
dθ

)
dt+ dλ>t

dxt
dθ

]
+

∫
T
λ>t

[
∂fθ
∂θ

+
∂fθ
∂xt

dxt
dθ

]
dt

+

nξ∑
i=1

∫
T
λ>t

[
∂g

(i)
θ

∂θ
+
∂g

(i)
θ

∂xt

dxt
dθ

]
◦ dB

(i)
t

(7)

which, by reorganizing the terms, leads to
dJθ
dθ

=
∂Γθ
∂θ

+

∫
T

[
∂γθ
∂θ

+ λ>t
∂fθ
∂θ

]
dt

+

nξ∑
i=1

∫
T
λ>t

∂g
(i)
θ

∂θ
◦ dB

(i)
t +

[
∂Γθ
∂xT

− λ>T
]

dxT
dθ

+

∫
T

[
dλ>t +

(
λ>t

∂fθ
∂xt

+
∂γθ
∂xt

)
dt+

nξ∑
i=1

λ>t
∂giθ
∂θ
◦ dBit

]
dxt
dθ

Finally, if the process λt satisfies the backward SDE dλ>t =

−
[
λ>t

∂fθ
∂xt

+ ∂γθ
∂xt

]
dt−∑nξ

i=1 λ
>
t
∂g

(i)
θ

∂xt
◦dB̂

(i)

t , λ>T = ∂Γθ
∂xT

.
The criterion function gradient is then simply obtained by
dJθ
dθ

=
∂Γθ
∂θ

+

∫
T

[
λ>t

∂fθ
∂θ

+
∂γθ
∂θ

]
dt+

nξ∑
i=1

∫
T
λ>t

∂g
(i)
θ

∂θ
◦dB(i)

t

Note that if the integral term of the objective function
is defined point–wise at a finite number of time instants
tk, i.e.

∫ T
s

∑K
k=1 γθ(tk,Φ

θ,b
s,tk

(xs))δ(t− tk)dt, then the RHS
of the adjoint state SDE becomes piece–wise continuous in
(tk, tk+1], yielding the hybrid stochastic dynamics

dλt = −∂fθ
∂xt

λtdt−
nξ∑
i=1

∂g
(i)
θ

∂xt
λt ◦ dB

(i)
t t ∈ (tk, tk+1]

λ−t = λt +
∂γθ
∂xt

t = tk

where λ−t indicates the value of λt after a discrete jump, or,
formally, λ−t = lims↗t− λs.

V. EXPERIMENTAL EVALUATION

We evaluate the proposed approach on a classical problem
in financial mathematics, continuous–time portfolio opti-
mization [24]. We consider the challenging finite–horizon,
transaction cost case [33].
A. Optimal Portfolio Allocation

Consider a two–asset market with proportional transaction
costs, all securities are perfectly divisible. Suppose that in
such a market all assets are traded continuously and that one
of the them is riskless, i.e. it evolves according to the ODE

dVt = rtVtdt, Vs = v ∈ R
where the interest rate rt is any Ft-adapted non–negative
scalar–valued process. The other asset is a stock St ∈ R
whose dynamics satisfy the Itô SDEs

dSt = µtSt + σtStdBt, Ss = s ∈ R
with expected rate of return µ : T → R and instantaneous
volatility σ : T→ R+ Ft-adapted processes.



Now, let us consider an agent who invests in such market
and is interested in rebalancing a two–asset portfolio through
buy and sell actions. We obtain

dVt = rtVtdt− dπit + (1− α)dπdt

dSt = µtSt + σtStdBt + dπit − dπdt
(8)

where πit, π
d
t are nondecreasing, Ft-adapted processes in-

dicating the cumulative amount of sales and purchases of
the risky asset, and α > 0 is the proportional transaction
cost. Here we let dπit = uitdt, dπdt = udtdt and ut =
(uit, u

d
t ). An optimal strategy ut for such a portfolio requires

specification of a utility function, encoding risk aversion and
final objective of the investor. Explicit results for the finite
horizon, transaction cost case exist only on specific classes
of utilities, such as isoelastic [33]. As a further complication,
the horizon length itself is known to greatly affect the
optimal strategy. As an illustrative example, we consider
here a portfolio optimality criteria where high levels of stock
value are penalized, perhaps due to hedging considerations
related to other already existing portfolios in possession of
the hypothetical trader:

Ju =

∫ T

0

(rtVt + µtSt − νS2
t σt)dt+ rTVT + µTST

to be maximized in expectation for some constant ν > 0.
The same methodology can be directly extended to cover
generic objectives, including e.g different risk measures,
complex stock and interest rate dynamics, and more elab-
orate transaction cost accounting rules. We then obtain a
parameterization uiθ,t, u

d
θ,t of the policies uit, u

d
t as follows.

In particular we define feed–forward neural networks Nθ :
R2 → R2; (St, Vt) 7→ (uiθ,t, u

d
θ,t) taking as input the

instantaneous values of the assets, uθ,t = Nθ(Vt, St) = `L ◦
ϕ◦`L−1 ◦· · ·◦ϕ◦`0(Vt, St), where `k are linear affine finite
operators, `kx = Akx + bk, Ak ∈ Rnk+1×nk , bk ∈ Rnk+1

and ϕ : R→ R is any nonlinear activation function thought
to be acting element–wise. The vector of parameters θ is thus
the flattened collection of all weights Ak and biases bk.
B. Numerical Results

In particular, we choose three–layer feed–forward neural
networks with thirty–two neurons per layer, capped with
a softplus activation ϕ(x) = log(1 + exp(x)) to ensure
πiθ, π

d
θ be nondecreasing processes.

The optimization procedure for strategy parameters θ has
been carried out through 100 iterations of the Adam [34]
gradient–based optimizer with step size 0.03. The asset
dynamics and cost parameters are set as α = 0.05, r = 0.04,
µ = 0.23, σ = 0.18. We produce 50 path realizations
during each training iteration and average the gradients. The
asset dynamics are interpreted in the Itô sense and have
been solved forward with the Itô–Milstein method [35],
which has been converted to Stratonovich–Milstein for the
backward adjoint SDE. Figure 1 shows different realization
of portfolio trajectories in the (St, Vt) state–space for four
different values of ν, [0, 0.25, 0.5, 1]. The trajectories agree
with plausible strategies for each investment style; risk–
seeking investors (ν = 0) sell Vt to maximize the amount of
stock owned at final time T , and hence potential portfolio
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Fig. 1. Realization of (St, Vt) trajectories under learned strategies for
four investors with different degrees of risk aversion, encoded in ν, with a
portfolio initialized at (1, 0) at time 0. Different path realizations generated
by the strategies are shown, along with their mean. [Left] Portfolio evolution
against rtVt+µtSt [Right] Portfolio evolution against S2

t σ. Each strategy
suits the corresponding risk aversion level.

growth. On the other hand, moderately risk–averse investors
(ν = 0.25) learn hybrid strategies where an initial phase of
stock purchasing is followed by a movement towards a more
conservative portfolio with a balanced amount of St and Vt.
The policies uiθ, u

d
θ are visualized in Figure 2, confirming the

highly non–linear nature of the learned controller. It should
be noted that for a strategy to be allowed, the portfolio has
to remain above the solvency line Vt + (1 − α)St ≥ 0
[33], indicated in the plot. We empirically observe automatic
satisfaction of this specific constraint for all but the investors
with lowest risk aversion. For the case ν = 0, we introduce a
simple logarithmic barrier function as a soft constraint [36].

VI. RELATED WORK

Computing path–wise sensitivities through stochastic dif-
ferential equations has been extensively explored in the
literature. In particular, forward sensitivities with respect
to initial conditions of solutions analogous to Proposition
1 were first introduced in [25] and extended for Itô case
to parameters sensitivities in [37]. These approaches rely
on integrating forward matrix–valued SDEs whose drift
and diffusion require full Jacobians of fθ and gθ at each
integration step. Thus, such methods poorly scales in com-
putational cost with large number of parameters and high–
dimensional–state regimes. This issue is averted by using
backward adjoint sensitivity [38] where a vector–valued SDE
is integrated backward and only requires vector–Jacobian
products to be evaluated. In this direction, [26] proposed to
solve the system’s backward SDE alongside the adjoint SDE
to recover the value of the state xt and thus improve the
algorithm memory footprint. Further, the approach is derived
as a special case of [22, Theorem 2.4.1] and only considers
criteria Jθ depending on the final state xT of the system.

Our stochastic adjoint process extends the results of [26]
to integral criteria potentially exhibiting explicit parameter
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Fig. 2. Learned buy–sell strategies uiθ, u
d
θ over the state–space (St, Vt). The strategies are highly non–linear, and empirically agree with investment

strategies at different risk aversion degrees. In example, the risk–seeking investor ν = 0 balances uiθ, u
d
θ to purchase the maximum amount of stock

possible while remaining above the solvency line Vt + (1− α)St ≥ 0.

dependence. Further, we proposed a novel proving strategy
based on classic variational analysis.

REFERENCES

[1] D. P. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-
time case, 2004.

[2] H. Yu and D. P. Bertsekas, “Q-learning and policy iteration algorithms
for stochastic shortest path problems,” Annals of Operations Research,
vol. 208, no. 1, pp. 95–132, 2013.

[3] Y. Wu and T. Shen, “Policy iteration algorithm for optimal control of
stochastic logical dynamical systems,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 5, pp. 2031–2036, 2017.

[4] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[5] E. Tse and M. Athans, “Adaptive stochastic control for a class of linear
systems,” IEEE Transactions on Automatic Control, vol. 17, no. 1, pp.
38–52, 1972.

[6] S. Peng and Z. Wu, “Fully coupled forward-backward stochastic
differential equations and applications to optimal control,” SIAM
Journal on Control and Optimization, vol. 37, no. 3, pp. 825–843,
1999.

[7] M. A. Pereira and Z. Wang, “Learning deep stochastic optimal control
policies using forward-backward sdes,” in Robotics: science and
systems, 2019.

[8] Z. Wang, K. Lee, M. A. Pereira, I. Exarchos, and E. A. Theodorou,
“Deep forward-backward sdes for min-max control,” in 2019 IEEE
58th Conference on Decision and Control (CDC). IEEE, 2019, pp.
6807–6814.

[9] E. Weinan, “A proposal on machine learning via dynamical systems,”
Communications in Mathematics and Statistics, vol. 5, no. 1, pp. 1–11,
2017.

[10] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366,
2018.

[11] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissect-
ing neural odes,” arXiv preprint arXiv:2002.08071, 2020.

[12] S. Massaroli, M. Poli, M. Bin, J. Park, A. Yamashita, and H. Asama,
“Stable neural flows,” arXiv preprint arXiv:2003.08063, 2020.

[13] S. Peluchetti and S. Favaro, “Infinitely deep neural networks as diffu-
sion processes,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2020, pp. 1126–1136.

[14] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[16] L. Furieri, Y. Zheng, and M. Kamgarpour, “Learning the globally
optimal distributed lq regulator,” in Learning for Dynamics and
Control. PMLR, 2020, pp. 287–297.

[17] J. Bu, A. Mesbahi, M. Fazel, and M. Mesbahi, “Lqr through the
lens of first order methods: Discrete-time case,” arXiv preprint
arXiv:1907.08921, 2019.
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