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Abstract— Inspecting concrete structures such as tunnels is
very important to keep them safe and durable. Due to the
shortage of human inspectors, automated system for inspection
is highly required. Hammering test is one of the popular
inspection methods, and previous studies proposed automated
systems for hammering test. Most works based on machine
learning models to train a classifier to recognize hammering
sounds suffer when the training data is not adequate for
the considered data during deployment. This problem is also
known as domain gap problem. In this paper, a methodology
for concrete defect detection even when the available training
data was collected from a tunnel that differs from the actually
inspected tunnel is proposed. The proposed method selects part
of the data from the inspection target tunnel, for which labels
are not available, to use along traditional labeled training data
in the training of a classifier within the semi-supervised support
vector machine framework. This selection is conducted using
the integration of visual information from an ordinary camera
and acoustic information obtained using the hammering test.
Experimental results showed that the proposed method yielded
satisfying results in the laboratory conditions.

I. INTRODUCTION

Inspecting concrete structures such as tunnels regularly is
very important to guarantee user safety. The importance of
inspection was highlighted following tragic accidents such as
the collapse of the Sasago tunnel in Japan [1]. The number
of tunnels that should be inspected is increasing in the world.
Figure 1 shows the hammering test, a very popular inspection
method. Human inspectors hit the concrete surface with a
hammer, listen to the sound, and identify whether a defect
is present or not. Areas with visible cracks on the surface
have a high priority for inspection, because those pose the
threat of large concrete slabs breaking off and falling off
the structure. Cracks on the surface are indicative of the
presence of a defect propagating beneath the surface. Though
hammering test is more efficient and simpler than other
methods, there are some problems. Firstly, the number of
skilled human inspectors is decreasing these days. Secondly,
it costs a lot to train and maintain young human inspectors.
Therefore, developing an automated method for hammering
test is highly desirable.

Many studies about the robots for the automation have
been done [2][3]. As for the algorithm, there are several
studies that aimed at developing the automated system of
the hammering test. In [4][5], authors investigated sound
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Fig. 1. Hammering test by a human inspector

generation theoretically. In the paper it is indicated that
the sound amplitude is useful for detecting defects, but it
is difficult to apply to real, complicated environment. The
sounds from hammering test in real situation vary widely due
to the features of a tunnel like the compounds, degradation
states, size and so on. Therefore, several approaches based
on machine learning have been proposed. In [6][7], authors
adopted an unsupervised learning based approach and pro-
posed clustering methods. However, such methods can only
classify sound data into several classes; they cannot identify
if the hammering sound is defect or non-defect.

On the other hand, in [8], authors adopted a supervised
learning based approach. Generally, the purpose of super-
vised learning is to predict labels of test data. For this pur-
pose, a model is made from training data and their labels. The
proposed method is based on the ensemble-learning method
to improve the performance of the detection. However, the
model suggested by the author would not work well if a
domain gap between training data and test data exists; that is,
when the test data from the inspected tunnel is different from
the training data, which was collected from another tunnel,
due to the difference of compounds, degradation status and so
on. Therefore, in [9] authors proposed a method to improve
environmental adaptivity of defect detection with a boosting
algorithm. To improve environmental adaptivity, the method
adopts onsite calibration where some of the test data is
labeled by a human inspector, and those are used along with
the training data to make a model. It is shown to be robust
to the environmental noise but it needs human inspectors for
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Fig. 2. A piece of concrete with a surface and internal crack. The yellow
painted area is defect area, while the green painted area is non-defect area.
The parts named: α,β and γ , indicate the corresponding location of the
data in a feature space.

labeling yet. From that perspective, issues remains regarding
the automation of the hammering test.

Developing a new method to be able to detect defects
even though there is a domain gap between training data
with labels and test data without labels is needed. In [10],
authors adopted semi-supervised learning based approach to
tackle this problem. They made a model using both training
data with labels and test data without labels. However, in
[11], it was pointed out that the result of prediction by semi-
supervised approach may be worse than that by ordinary
supervised based approach in some cases. This is because
some unlabeled data can mislead the model. This problem
is not considered well for the hammering test yet.

Therefore, in this study, we aim to propose a new au-
tomated method for defect detection using the hammering
test that is effective through the domain gap. For this goal,
we propose two concepts. Firstly, adopting semi-supervised
approach and only selecting useful test data to be mixed
with training data to make an improved model for detection.
Secondly, we focus on the characteristics of concrete tunnels
and define the ”usefulness” of test data.

II. CONCEPT

The problem setting is that there is a training data with
labels from tunnel A, and there also is a test data without
any labels from tunnel B. The data is hammering sound
data and visual information of the surface. The labels on
hammering sound samples are binary: Defect and Non-
Defect. The purpose is to predict the labels of test data.

Semi-supervised support vector machine (S3VM) [12] is
one of the semi-supervised learning methods. S3VM uses all
the training data and all the test data without labels to make
a decision boundary; thus, S3VM can deal with the domain
gap problem between the training data and the test data in
theory.

Our proposed method basically adopts S3VM, but only
some selected test data is used to make a decision boundary.

In order to select some data, we focus on a specific char-
acteristic of concrete: cracks on the surface; we use only
data collected close to surface cracks. As shown in Fig. 2,
a location of a hammering point on the concrete surface is
correlated to its relative location with other samples in the
feature space. This is because the depth of the internal crack
from the surface is a primary factor of the sound for the
hammering test. When the depth of defect from the surface
is shallow, the hammering sound on the location is treble and
the concrete vibrates for a long time; while, when the depth
is deep, the hammering sound is dull like the hammering
sound of non-defect and the concrete vibrates for a short time
[13]. Defect points close to a surface crack are far from the
decision boundary in a feature space, while points that are
far from the crack are close to the boundary. On the other
hand, all non-defect points are on the opposite site of the
boundary in the feature space. Even though which side is
defect or non-defect is unknown after only collecting data
in a target tunnel, in the proximity of a surface crack is
present the most disparate set of hammering samples, i.e.,
the sample set with the largest distance across the boundary
in the feature space can be acquired. We believe using such
data collected close to a surface crack can contribute to make
a better model for S3VM.

Therefore, the key concepts of our proposed method can
be summarized as follows:
• Selecting only the helpful part of the test data to deal

with a domain gap problem for hammering test
• Focusing on a surface crack, a characteristic of a con-

crete, and adopting multi-modal information; integrating
acoustic and visual information

III. PROPOSED METHOD

A. Overview

An overview of our proposed method is shown in Fig. 3.
First of all, the training data consist of acoustic data and
their corresponding binary labels. They are made from tunnel
A in advance. Acoustic and visual information of tunnel
B, that is a target tunnel for inspection, is collected with
a microphone and camera. Acoustic data is initially time-
series data and is processed into Fourier spectrum using Fast
Fourier Transform (FFT) and normalized. Visual information
is initially RGB data. The crack locations and the locations
of the hammering points are detected from the visual in-
formation. Then, acoustic data is divided into two groups
according to the visual information. One is the group to be
defined as useful points and used along with training data
to train a model while the other group is just used as ”test”
data that is predicted by the model. In order to train a model,
S3VM approach is basically adopted. Finally, the predicted
labels of the test data are obtained with the trained model.

B. Preprocessing

Training data is obtained by inspection of a tunnel by a hu-
man inspector. The training data is expressed by {(xi,yi)}l

i=1.
xi describes an acoustic information of the i− th hammering
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Fig. 3. Overview of our proposed method
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Fig. 4. Test data selection in terms of distance between the locations of
the surface crack and the locations of the hammering points

point. yi describes a binary label expressing defect or non-
defect. When the hammering test is carried out for another
tunnel, test data is obtained. The test data is expressed by
{xi}l+u

i=l+1.

C. Data Selection of Test Data with Visual Information

In order to detect the locations of a surface crack, visual
information from a camera and a computer vision technique
[7] are used. The RGB image of the concrete surface is
converted to a gray scale image and the crack is expressed
as the set of the lower brightness pixels. The locations
of hammering points are detected with a image processing
technique: the center of the hammer head is detected using
its color. {pi}l+u

i=l+1 describes a hammering location in the 2D
coordinates of the image. The locations of the surface crack
is also expressed by {qi}n

i=1. qi are the two dimensional
coordinates of the pixel detected as a surface crack.

Positional information is used in order to select some data
from whole test data for the model training. As Fig. 4 shows,
the hammering samples located in close proximity of the

surface crack are useful to deal with the domain gap. A
distance between a location of each hammering sample and
the crack is calculated as below:

di = |pi−qclosest |22, (1)

where qclosest denotes the closest pixel among all pixels
detected as crack to the hammering point pi.

With a parameter M, manually set for each test data set,
the set Ψ of selected points are defined as below:

Ψ = {xi|di < M, i = l +1, ..., l +u}. (2)

D. Training Model and Prediction

A classification model is trained from training data set
{(xi,yi)}l

i=1 and the selected data set Ψ to predict the labels
of the test data.

The formulation of S3VM is described as below:

min
f ,y′

1
l

l

∑
i=1

φ(yi, f (xi))+
λ ′

|Ψ| ∑
x j∈Ψ

φ
′(y′j, f (x j))+λ || f ||2H ,

(3)
where λ and λ ′ are parameters, φ and φ ′ are loss functions,
f is an objective function in a reproducing kernel Hilbert
space.

Optimizing Eq. (3) is difficult because both objective
function f and predicted labels y′ are estimated at the same
time. The loss function φ ′ is also non-convex function due
to the absence of the labels of test data; thus the optimizing
technique using Quasi-Newton method [14] is adopted.

After the optimization, the prediction function f is ob-
tained and labels of the test data are predicted. The final
output is ŷi(i = l +1, ..., l +u). Each ŷi denotes if the i− th
hitting point is defect or non-defect.

IV. EXPERIMENT

A. Experimental Setting

The experimental setting is illustrated in Fig. 5. We used
three concrete test pieces that imitate real tunnel, designed



Fig. 5. Experimental setting
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Fig. 8. Performance evaluation of S3VM and Proposed method for
the hammering test with three test pieces: ”X → Y” denotes ”X” was
the test piece used for training data and ”Y” was the test piece used
for test data. The averages of 100 iterations were reported. Error bars
correspond to one standard deviation.
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Fig. 9. Performance evaluation of Comparison Method and Proposed
Method in ideal conditions in the additional experiment. The averages
of 100 iterations were reported. Error bars correspond to one standard
deviation.

as P, Q and R. As shown in Fig. 6, a test piece has a defect
that runs slantingly to the surface. Therefore, when the defect
area is hit with a hammer, the defect sound can be collected.
The characteristics of the three pieces are shown in Table I.
Each test piece has a different kind of defect.

The flow of the experiment is as below: firstly, gathering
acoustic and visual information from each from the three
test pieces. Several samples of each test piece were hit with
a hammer usually used in inspection sites. The hammer
was a KTC UDHT-2 (length 380 mm, weight 160g and
head diameter 16 mm). The sound was recorded at 44.1
kHz using two BEHRINGER ECM8000 microphones and
a Roland EDIROL UA-25EX audio interface. The visual
information was taken with a logicool Carl Zeiss Tessar HD
1080p webcam. The defect and non-defect ground truth was

TABLE I
THE CHARACTERISTICS OF THREE CONCRETE TEST PIECE

Name P Q R

Defect Distance [mm] 40.0 149.3 200.0

Approach Angle [deg] 45 15 30

Number of hitting Points
(Non-Defect, Defect) 54, 9 105, 65 91, 78

obtained here for each hitting point using the schematics of
each test piece. Secondly, pairs of pieces were chosen in the
experiments: one used as source of training data and the other
used as source of test data. Therefore, 6 experiments were
conducted in total. Lastly, our proposed method and another
method for comparison were used to predict the label of test
data.

Figure 7 shows the illustration of the test piece and data
selection for our proposed method. We hit the surface of the
test piece at regular intervals. The parameter M was manually
configured for each test piece to encompass the first rows on
both sides of the surface crack.

To verify the effectiveness of our proposed method, S3VM
[12][14] method was used. S3VM and our proposed method
have optimization process; thus, we iterated for 100 times to
deal with the dispersion in each experiment. F-measure was
used to evaluate the performance.

B. Result And Discussion

As shown in Fig. 8, proposed method performed better
than S3VM in four cases: ”P → Q”, ”R → Q”, ”P → R”
and ”Q → R”. Especially in the case of ”P→ R”, the perfor-
mance of proposed method was the best and the F-measure
was almost 0.73. On the other hand, S3VM performed
better than proposed method in the cases of ”Q → P” and
”R → P”.



There are three major factors for these results. Firstly, the
ratio of the number of samples of the training data to test data
can be very important on the model training process. Both
S3VM and proposed method used test data to train a model
so that the model can deal with the domain gap between
training data and test data. But if the amount of test data
is much smaller than that of training data, the performance
would be worse due to the small effect in the model training
process. As shown in Table I, the dataset from test piece P
was much smaller than from Q and R, and thus much smaller
amount of data was selected from test piece P. Therefore, the
result of proposed method could be worse than that of S3VM.
Secondly, the ratio of the amount of defect labels to non-
defect labels, called class balance, affected to the results. As
shown in Fig. 6 and 7, each test piece was hit with a hammer
in regular rows parallel to the line of the surface crack. So
proposed method selected an equal amount of defect and
non-defect samples across the crack for the model training,
and the class balance was 1:1. On the other hand, S3VM used
all points, and the class balance did not change. The S3VM
method [14] makes an assumption that the class balances of
both train data and test data are same. However, the class
balance assumption was not fulfilled in our experimental
setting due to the impossibility of knowing any label of test
data, so the class imbalance problem may have occurred.
Lastly, the key concept of our study can influence the result
positively. Especially the results of proposed method were
much better than the S3VM method in the cases of ”P → Q”,
”R → Q” and ”P → R”, and these results were enabled by
selecting part of the test data to be used for training the
model.

C. Additional Experiment

To verify the effectiveness of proposed method’s concept
regarding the proximity of samples selected for the domain
gap problem with the surface crack, an additional experiment
in ideal conditions was conducted. Proposed method was the
basis of both methods, but among the previously mentioned
factors, two were made equal; that is, the ratio of the number
of samples of the training data to test data and the class
balance of the training data and selected data were set to the
same value in each example. The difference between the two
methods is that; while Proposed Method in ideal conditions
selects samples near to a surface crack, Comparison Method
selects samples randomly from all test data. The two methods
were also iterated for 100 times due to the dispersion in each
experiment.

As shown in Fig. 9, Proposed Method in ideal conditions
performed better than Comparison Method in the all cases.
The results show that the samples close to a surface crack
work well for dealing with a domain gap if the ratio of the
number of samples of training data to test data and the class
balance of training data to selected data in the model training
process were fulfilled. Comparing the proposed method in
Fig. 8 and Proposed Method in ideal conditions in Fig. 9,
the two factors: ratio of training data to test data and class
balance, had a pretty high influence on the F-measure. While

information about the ratio of training data to test data can
be obtained, obtaining information about the class balance
in the scenario of this study is difficult. Focusing on these
two factors could lead to significant improvements of the
proposed method.

V. CONCLUSION

A method using semi-supervised support vector machine
and selecting useful data from test data to deal with the
domain gap problem by using multi-modal information and
focusing on the concrete characteristics was proposed. The
visual information is helpful to select the closest hammering
points from a surface crack, and using such data is effective
to train a model with training data. Experiments with three
different concrete test pieces showed the effectiveness and
potential of our proposed method.

As future work, there are three points to be considered.
Firstly, the class balance problem and the ratio of the amount
of training data and test data are highly important and are
to be tackled to improve the performance. Generally, the
class balance of test data cannot be known in the situation
of automation; however, focusing on dividing the data into
several groups based on their similarity will be useful to deal
with the class balance problem. Secondly, adopting other
kinds of information may also be helpful. Lastly, the idea
that each side of the crack has a different label could be also
very useful to improve our proposed method, so it can be
used as a constraint in the optimization process to improve
the prediction accuracy.
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