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Abstract—In this study, we proposed a method to evaluate
the viewpoint of a robot arm in a reaching movement using
reinforcement learning. The optimal viewpoint for operators in
teleoperation was studied by conducting a subject experiment.
However, in some special situations, such as inside the pedestal
of a nuclear plant crushed in a disaster, the lack of environ-
mental information makes it challenging to prepare the subject
experiment in advance. In addition, individual differences
cannot be eliminated by conducting the subject experiment. In
this study, we used reinforcement learning to select viewpoints
and found that the world model inspired by the prediction
function of the brain exhibited similar performance to that of
humans in the reaching motion of a robot arm. This study
demonstrated that the world model can evaluate viewpoints
using reinforcement learning in the reaching task.

I. INTRODUCTION

After the Fukushima Daiichi Nuclear Power Plant acci-
dent of the Tokyo Electric Power Company, Incorporated
(TEPCO), which occurred in March 2011, fuel debris was
left inside the pedestal of the plants. Because humans could
not enter directly owing to high-level radiation, it became
challenging to investigate, operate internal equipment, and
remove the fuel debris. Currently, efforts are underway to
decommission the plant. One of the challenges is the removal
of radioactive fuel debris inside the reactor containment
vessel [1]. In the experimental stage, grasping and suctioning
are considered methods for removing debris [1]. Because
suctioning is generally performed by a suction pump through
a hose, the work of applying the hose to the target can be gen-
eralized as reaching. To protect operators from radioactive
contamination, teleoperation, in which the human operator
manipulates the construction equipment from a safe remote
location, was used. However, the efficiency of teleoperation
is approximately 50% lower than that of onsite work during
excavations [2].

To improve efficiency, several studies have been conducted
on visualizing the surrounding environment for operators
in remote sites. Komatsu et al. [3] proposed an arbitrary
viewpoint image generation system for the teleoperation

*A part of this study is financially supported by the Nuclear Energy
Science & Technology and Human Resource Development Project (through
concentrating wisdom) from the Japan Atomic Energy Agency / Collabora-
tive Laboratories for Advanced Decommissioning Science.

I Department of  Precision Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
{liuhaoxiang, komatsu, woo, yamashita, asama}
@robot.t.u-tokyo.ac. jp

2Department of Robotics, Division of Mechanical Engineering, Tohoku
University, 6-6-01, Aza-Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi 980-
8579, Japan. ytamura@tohoku.ac. jp

1

of indoor robots using multiple fish-eye cameras and two-
dimensional distance sensors. Sugasawa et al. [4] proposed
a bird’s-eye view generation method for dump trucks and
hydraulic excavators using a fish-eye camera and a 3D
distance sensor. Because the discussions focused on arbitrary
viewpoints, progress in achieving the optimal viewpoint for
specific tasks remains minimal. The choice of a viewpoint is
essential when grasping by a robot arm. Gualtieri et al. [5]
showed that choosing the correct viewpoint can significantly
improve the average accuracy of the grasp.

In the field of unmanned construction, environmental cam-
eras are often fixed. To reduce the blind spots caused by fixed
viewpoints, Kamezaki et al. [6] proposed an autonomous
camera control system using six displays. However, installing
multiple environmental cameras at a disaster site is challeng-
ing because of the cost and effort involved. In addition, multi-
display systems increase the cognitive load on the operator
and require skill and experience for the operator to determine
the optimal viewpoint [7]. Therefore, it is crucial to select a
single optimal viewpoint. In a previous study on visualizing
the surrounding environment in construction work, Chikushi
et al. [8] proposed a method for automatically controlling
external cameras based on the required specifications of
construction machine operators in the construction of a dam.
The methods in the aforementioned studies were evaluated
by conducting subject experiments.

There has been much research on single optimal view-
points for different tasks. Sato et al. [9] proposed the allow-
able range of single viewpoints and single optimal viewpoints
for the digging and releasing tasks of a hydraulic excavator
by conducting subject experiments.

However, subject experiments are limited because they
cannot be conducted in advance when lacking information
on special situations, such as inside the pedestal of a nu-
clear plant crushed in a disaster. On the contrary, utilizing
computer simulation enables the investigation of the optimal
viewpoint as soon as the information is acquired. However,
because humans act based on past experiences, it becomes
difficult to obtain an optimal viewpoint that is not affected
by individual differences because the bias of each person’s
habits and preferences is included when the optimal view-
point is investigated through questionnaires.

In this study, instead of using subject experiments, we
extracted the factors that affect the optimal viewpoint using
reinforcement learning, which is expected to replace subject
experiments, thus dealing with the challenge of lacking
environmental information in advance.



observation

world model

Fig. 1: Schematic of World Models.

II. PROPOSED METHOD

In this study, we employed the world model proposed by
Ha et al. [10] using the PyTorch framework [11]. Using the
reinforcement learning reward as an indicator, we extracted
the elements that affect the optimal viewpoint. Compared
to conventional methods, such as the subject experiment,
the proposed method is not affected by the bias of each
participant. Extracting an optimal viewpoint that is not
affected by individual differences is expected.

To process large amounts of information, human brains
learn information as abstract spatial and abstract temporal
representations [12]. Humans are capable of observing and
abstractly describing a scene. For example, when making
decisions while driving, the brain does not analyze every
pixel of the image information in the field of view. However,
it transforms the visual information into low-dimensional
representations, such as one’s position on the road or cur-
vature to determine the next action.

Figure 1 shows a schematic of the world model. In the
world model, variational autoencoder (VAE) [13] [14] is
used to transform the high-dimensional input observation
into an abstract low-dimensional latent space. In this study,
we take a three-channel 64 pixel 64 pixel image as input
and convert it into a 32-dimensional latent vector. Then,
to predict the future based on the current information, the
MDN-RNN [15] [16] is used. Using mixture distribution
networks (MDNG5), the next latent vector is predicted from a
mixture Gaussian distribution. Finally, the controller can re-
turn an action with the latent vector transformed by the VAE,
representing the current state, and the latent vector output by
the recurrent neural network (RNN) as input. Because there
is no teaching data for the appropriate action in each scene,
we need to train the controller using reinforcement learning.

1) VAE: By minimizing the reconstruction error and
Kullback-Leibler (KL) divergence, VAE can transform a
high-dimensional input image into a latent space approximat-
ing a multivariate standard normal distribution. As shown in
Fig. 2, the VAE consists of an encoder and a decoder. The
encoder uses a convolutional neural network to output the

mean 4 and the logarithm of the variance logo? of each of
the 32-dimensional latent vectors. Subsequently, the latent
vector z can be represented by sampling ¢ from the standard
normal distribution as:
log 02
2= n+ eexp(=2), (1)

where z is used as the input to the decoder, and the decoder
returns the reconstructed image as output. Compared to the
conventional Autoencoder (AE), the latent vectors in Eq. (1)
are in the neighborhood of p. Owing to the minimization
term of the KL divergence, the decoder must ensure that
neighboring points in the latent space reconstruct similar
images to reduce the reconstruction error. The improvements
above increase the chances that the decoder will reconstruct
the correct image when a latent vector not previously in the
training data is input to the decoder.

2) MDN-RNN: The structure of the MDN-RNN is shown
in Fig. 3. It consists of a long short-term memory (LSTM)
and a dense layer MDN that converts the latent vector of the
LSTM into a mixture Gaussian distribution [17]. The input
of the LSTM is 32 continuous 35-dimensional vectors, each
composed of a 32-dimensional latent vector output by the
VAE and a 3-dimensional action vector. The input is then
transformed into a 256-dimensional output, and the dense
layer transforms it into a 327-dimensional vector.

3) Controller: The structure of the network used in the
controller is illustrated in Fig. 4. A 288-dimensional vector,
which is a combination of the 32-dimensional latent vector
of VAE and 256-dimensional latent vector of LSTM, is
used as input, and the network outputs a three-dimensional
action vector without any hidden layer. Because no teaching
data indicates the robot arm’s optimal motion, we use rein-
forcement learning to train the robot arm. The agent that
learns the action of the robot arm causes trial and error
in the environment based on the magnitude of the reward
it receives. We define X;,hot as the tip of the robot arm
and X¢arget as the target’s position. The reward function is
represented by

Ty = _”Xtarget - Xrobot”a (2)

where the negative Euclidean distance between the tip of the
robot arm and the target in each frame is given as a reward.
Through all episodes (simulations), the tip of the robot arm,
Xrobot, Starts from the same position. Because an episode
(one simulation) is set to n frames, the sum of the rewards
in each frame, 7o), 1S defined as follows:

n
Ttotal = Z Ti, (3)
=1

where n is set to 50 in this work.
We designed the reward function above for the following
two reasons:

1) The closer the robot arm gets to the target object, the
greater the reward.

2) The faster the robot arm reaches the target, the greater
the reward.
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Fig. 2: Schematic of VAE. The VAE consists of an encoder and a decoder. The encoder uses a convolutional neural network
to output the mean p and the logarithm of the variance logo? of each of the 32-dimensional latent vectors. Subsequently,
the latent vector z can be represented by Eq. (1). The decoder receives z as the input and returns the reconstructed image

as output.
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Fig. 3: Schematic of MDN-RNN. The input of the LSTM
is 32 continuous 35-dimensional vectors, each composed of
a 32-dimensional latent vector output by the VAE and a 3-
dimensional action vector. The input is then transformed into
a 256-dimensional output, and the dense layer transforms it
into a 327-dimensional vector.

Therefore, we expect rapid and precise reaching when
learning yields the biggest reward. Specifically, we use
the covariance matrix adaptation evolution strategy (CMA-
ES) [18] to train the controller. The CMA-ES process was
as follows:

1) Create multiple agents and initialize the parameters to
be optimized for each agent.
2) Loop through the following operations:

(a) Evaluate each agent in the environment and
return the average total reward for multiple
episodes.

(b) Breed the agent with the best score and generate
a new agent, adding randomness to the param-

Input: 288
Output: 3

Dense

Fig. 4: Schematic of Controller. A combination of the
32-dimensional latent vector of the VAE and the 256-
dimensional latent vector of LSTM is used as the input, and
the output is a three-dimensional action vector.

eters.
(c) Add newly created agents and remove poorly
performing agents.

III. SIMULATION AND RESULTS

We extracted six different viewpoints and ran the sim-
ulation four times under the same constraints. The polar
coordinates of the body system presented in Fig. 5 were used
to describe these viewpoints. The viewpoint angles used in
the simulation are listed in Table I, and the number of epochs
is listed in Table II. The training of VAE and RNN started
with a learning rate of 0.001, and if the loss did not improve
for five consecutive epochs, the learning rate was halved,
and the training was continued. In addition, if the loss did
not improve for more than 30 epochs, we considered that
the model had stopped improving. Consequently, we stopped
training to prevent overtraining and save time. We also set up
four options for the location of the target and placed them at
the corners of the table, as shown in Figs. 6(a), 6(c), 6(d), and
6(f), respectively. The simulation results for each viewpoint
are presented in Figs. 7. The horizontal axis represents the
epoch, and the vertical axis represents the total reward in



Fig. 5: Polar coordinates of the robot arm. 6 is the pan angle,
and ¢ is the tilt angle.

TABLE I: Selection of viewpoints

\ [ a[bfc[d]e]f]
PT] 0 459 | 0 | 45 ] 90
G [°] |30 | 30 | 30 | 45 | 45 | 45

o

the corresponding episode. The solid and dashed lines in the
figure represent the mean values, and the semi-transparent
region represents the 95% confidence interval.

A. Comparison of 0-direction

The controller was trained for 10,000 epochs, and the
rewards evaluated every five epochs are shown in the graphs.
The results for ¢ = 30° are shown in Fig. 8(a), where
0 = 90° has the largest reward. The results for ¢ = 45°
are shown in Fig. 8(b), where the differences between each
0 angle are small.

B. Comparison of ¢-direction

The controller was trained for 10,000 epochs, and the
rewards evaluated every five epochs are shown in the graphs.
The results for 8 = 0°, § = 45°, and 0 = 90° are shown
in Figs. 9(a), 9(b), and 9(c), respectively. Fig. 9 shows that
the reward is maximized when ¢ = 30°, except in the early
stages of training.

C. TOP25% reward evaluation

Because rewards are recorded every five epochs for 10,000
epochs of training, we sorted the 2,000 data in order of
increasing reward and retrieved the largest 500 rewards.
Then, we calculated the average, the results of which are
listed in Table III. The bold-type characters represent the
higher reward in each column, where 6 is fixed.

IV. DISCUSSION

In this study, we used the reinforcement learning reward
to demonstrate working efficiency. The greater the reward,
the higher the efficiency. As shown in Table III, for the same
6, when ¢ is 30°, the reward is higher than when ¢ is 45°.
The reason for this could be that the viewpoint moves on
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Fig. 6: Viewpoints used for learning in Table I.
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Fig. 7: All-viewpoints results. The horizontal axis represents
the epoch, and the vertical axis represents the total reward in
the corresponding episode. The solid and dashed lines in the
figure represent the mean values, and the semi-transparent
region represents the 95% confidence interval.

a sphere, as shown in Fig. 10, when the robot arm moves
the same distance along the vertical direction, the change
in pixels is more significant when ¢ is 30° than when ¢ is
45°. Specifically, the larger the angle ¢ of the viewpoint, the
harder it is to perceive the vertical motion of the robot arm,
which results in a lower reward.

The difference above caused by the tilt angle ¢ has also
been observed in previous research [9]. Sato et al. used a
subject experiment to investigate the optimal viewpoint of
the skilled operator and mentioned that the lower the tilt
angle ¢ in the release movement of the hydraulic excavator,
the higher the efficiency of the operation because the operator
knows the vertical distance to the ground.

The statement above is the same as the result of this study,
suggesting the validity of the world model in evaluating the
proper viewpoint for human operators.

In addition, in a previous study [9], two different subjects
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TABLE II: The number of epochs

Epochs
VAE 200
MDN-RNN 60
Controller 10,000

TABLE III: TOP25% reward evaluation

| [0=0"][0=45 ] 0=090"|
$=30° || -352 | -377 | -3.06
$=45" || 389 | 411 | 383

took 17.0 seconds and 47.6 seconds, respectively, for the
same task at the same viewpoint. The time differed sig-
nificantly owing to individual differences. Conversely, the
method proposed in this study can avoid the influence of
individual differences using reinforcement learning.

V. CONCLUSION

In this study, we used a world model [10] and reinforce-
ment learning to evaluate the optimal viewpoint for work
efficiency. The simulations of multiple viewpoints showed
that the world model demonstrated a trend similar to that
of the human subject experiment. In computational neuro-
science, the manifold hypothesis posits that the distribution

¢ =30°

Fig. 10: Comparison of viewpoints in # = 90°. The view-
point moves on a sphere; when the robot arm moves the same
distance along the vertical direction, the change in pixels is
larger when ¢ is 30° than when ¢ is 45°.

of data observed in the real world can be perceived as a low-
dimensional manifold. Just as the human brain constantly
converts high-dimensional information into abstract low-
dimensional information, the VAE of the world model per-
forms the same function. Our simulation results suggest the
possibility of evaluating the optimal viewpoint for humans
using the world model. The use of reinforcement learning
instead of subject experiments has the advantage of dealing
with the lack of environmental information in advance and
eliminating individual differences in subject experiments.
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