Solving Well-posed Shape from Shading Problem
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Abstract—We propose a method for solving well-posed shape
from shading problem by using implicit neural representations.
We build an image irradiance equation and solve the equation
by a sinusoidal representation network called SIREN, which is
proposed by Sitzmann et al. in 2020. Object surface is expressed
by Oren-Nayar model and a perspective projection model with
light source located at the optical center is considered. Based
on the above models, image irradiance equation is constructed,
which is a partial differential equation (PDE). We introduce a
neural network SIREN to solve this PDE, where implicit neural
representations use the sine as a periodic activation function.
Experiments are performed on three synthetic images and two
real images. Results demonstrate that our proposed method
performs with much higher accuracy.

Index Terms—Shape from shading, implicit neural represen-
tations, partial differential equation, 3D reconstruction

I. INTRODUCTION

To reconstruct the 3D shape of an object from its 2D image
has been a fundamental task in computer vision. Techniques
like simultaneous localization and mapping (SLAM) and struc-
ture from motion (SfM) can realize reconstruction of the
environment. ORB-SLAM [1] was a feature-based SLAM and
it used ORB features, which allowed real-time performance
without GPUs, and showed good invariance to viewpoint. This
system can reconstruct the environment in real time, in small
and large, indoor and outdoor environments. Schoenberger
et al. [2] proposed an incremental SfM, which can improve
the robustness and accuracy of the reconstruction process
while reducing the computational cost. However, such feature-
based methods, which use multiple images to reconstruct the
scene, may cause problems when there is little light in the
environment or there is not enough texture for the surface.
The reason is that feature extraction becomes difficult and
then it is hard to correspond feature points. To overcome this
difficulty, shape from shading (SfS) is an effective technique,
which we will demonstrate in this study, because it is to use
single intensity image to build the 3D environment.
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StS deals with reconstruction of the shape from a gradual
variation of shading in the image [3]. Given a gray-scale
image, SfS is to recover light source, surface normal, depth
and albedo at each pixel of the image. To analyse the com-
ponents of an image is not simple due to concave or convex
ambiguities [4]. As a result, SfS problem has been regarded
as an ill-posed problem for a long time. Even based on some
assumptions that the surface is perfectly Lambertian surface
and light direction is already known, solving the function
between the brightness and shape is still a tough problem.
StS was introduced by Horn et al. [5] who first derived an
equation describing the relationship between the shape of a
surface and its corresponding brightness. The early days of SfS
approaches [6] are based on the assumptions that (1) object
surface is Lambertian surface, (2) light source is located at
infinity, (3) the camera model is orthographic. Based on the
above assumptions, they built an image irradiance equation
and calculated the numerical solution. These assumptions
simplified the complicated shading and imaging process, but
in this way, reconstructed result had bad accuracy because it
is impossible that object surface is perfect diffuse reflection.
Moreover, most cameras are pin-hole cameras and light source
is usually near the object, not at infinity. To improve the
accuracy of SfS problem, Lee et al. [7] proposed a more
realistic model. They assumed a new imaging model where
a perspective camera projection and light source located at
the optical center were performed. Okatani et al. [8] used an
endoscope camera and proposed a notion of equal distance
contour and obtained the equation for this contour.

Recently, many learning-based SfS have been proposed and
they have achieved high accuracy. The 3D object reconstruc-
tion method based on deep learning is to train neural networks
to learn the mapping relationship between 2D image and 3D
object. Choy et al. [9] proposed a recurrent neural network
architecture, which takes in one or multiple images of arbitrary
viewpoints and outputs a 3D occupation grid result. It shows



good performance even when the object has few texture. Wu
et al. [10] represented 3D shape by using convolutional deep
belief network. Their model learned complex 3D shape from
raw CAD data and it realized shape completion from 2.5D
depth maps.

In this study, our problem setting is that there is an object in
a dark environment. A camera with flash light is used to take a
photo and there is no other light source in the environment. As
a result, we use the perspective projection model and assume
the light source is located at the optical center. We think the
object surface perform diffuse reflection and apply Oren-Nayer
model [11] in our method. An attenuation term 1 /r2 is also
considered because it is also one of the plus to guarantee a
well-posed SfS problem. After that, we derive an non-linear
PDE and calculate its solution by sinusoidal representations
network SIREN [12] where we use ADAM optimizer [13] for
updating parameters of the network. Compared with previous
works, our proposed method solve a well-posed SfS problem
and has higher accuracy in calculating the depth of the objects.

II. RELATED WORKS
A. Well-posed SfS problem with numerical solution

There are many methods that deal SfS problems with nu-
merical solution. Ahmed et al. [14] used a linear combination
of Lambertian model and Ward [7] model to express the
hybrid surface. Ikeda [15] applied a linear approximation
to hybrid reflectance map composed of Lambertian model
and Phong model [16]. Considering the reflectance model
and projective camera model, they could obtain a partial
differential equation (PDE) and they calculated its numerical
solution. Wang et al. [6] proposed a hybrid reflectance model
composed of a linear combination of Oren-Nayar model [11]
and Ward model [17]. Incorporating perspective camera model
and light source located at optical center, they built an image
irradiance equation. It is also a Hamilton-Jacobi equation and
they calculated its viscosity solution of the equation by using
iterative sweeping method.

B. Learning-based SfS problem

Learning-based SfS problem deals with decomposing image
components, including reflectance, surface normal, lighting,
shading etc.. Sengupta et al. [18] proposed learning-based
inverse rendering which jointly estimated albedo, surface nor-
mal and lighting. Their original residual appearance renderer
(RAR) performed self-supervised learning using reconstruc-
tion loss. Janner et al. [19] proposed a shared convolutional
encoder and three separated decoders for lighting, shape and
reflectance. After that, shape and lighting predictions were
used to train shading function. But they only used synthetic
image dataset to finish their experiment. Li et al. [20] used
synthetic data to train CNN-based intrinsic image models
and generalized from synthetic data to real world images.
However, in their method calculation cost was high. Generally
speaking, learning-based SfS problem is still solving an ill-
posed problem, which means it may cause ambiguities in their
reconstruction process.

C. Gradient descent-based PDE solution

Deep learning has revolutionized fields such as images,
text, and speech recognition. These fields required statistical
approaches which can model non-linear functions of high-
dimensional inputs. Deep learning, by using multi-layer neural
networks, has proven effective in practice for many tasks.
Deep learning can also be used for solving partial differential
equation. Deep Galerkin method (DGM) [21] calculated high-
dimensional PDE by deep neural network. By minimizing
squared error, their method could solve high-dimensional
Hamilton-Jacobi-Bellman PDE and Burger’s equation. Deep
Ritz method (DRM) [22] used two residual connections in
their network, which guaranteed avoiding vanishing gradient
problem.

In this paper, a photo of an object located in a dark
environment is taken by a camera with flash light. We think
the object surface performs diffuse reflection and apply Oren-
Nayer model [11] in our method. We also use the perspective
projection model and assume the light source is located at the
optical center. The attenuation term 1/r2 is also considered
because it is one of the plus to guarantee a well-posed SfS
problem. Compared to [6], after obtaining the non-linear
PDE, our method calculates its solution by implicit neural
representations SIREN where ADAM optimizer is used for
updating parameters of the network.

III. METHOD

Our study is to solve well-posed SfS problem by using
implicit neural representations. The advantage is eliminating
the ambiguity in SfS problem and improving accuracy for
depth estimation. In this section, we summarized our method
in two subsections. The first section introduces how to build
the image irradiance equation which describes the relationship
between light source, surface reflection and projection. The
second half is about implicit neural representations for solving
this equation.

A. Construct image irradiance partial differential equation

1) Perspective camera model: As we think a camera per-
forms perspective projection and light source is located at the
optical center [23], this can be modeled in Fig. 1.

The scene is represented by a surface S(x). f is the focal
length of the camera.

sto) = e () v

where

€. 2

Q is the given image domain. u(x) represents the depth
along the projection direction. For such a surface S(x), we
want to calculate the normal vector at the point S(x). The
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Fig. 1. Camera model with perspective projection and light source located at
optical center.

normal vector can be obtained by compute tangent vectors in
x1 and xo directions.
fVu(x)
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The single point light source is located at optical center, so
the unit light vector L(x) can be described as

1 —T
Lx)= —— : )
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The term cos ; is the dot product between L(x) and n(x),
using the change of variables v(x)=Inu(x)
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2) Oren-Nayar reflection model: We try to find a more
realistic reflection model to express diffuse surfaces instead
of applying Lambertian surface model in our method. Oren-
Nayar model [11] was a comprehensive model for roughly
diffuse object surface. It fully considered geometric and ra-
diometric phenomena such as masking, shadowing and inter-
reflections between points of the surface. This model followed
the bidirectional reflectance distribution function (BRDF) and
it assumed that the surface was composed of V-cavities.
Each cavity consisted of two planar facets. Considering a
Gaussian distribution of facet slopes and using the geometric
relationship shown in Fig. 2, a simplified expression for the
reflected radiance can be summarized as follows.

Fig. 2. Reflection geometry model. (6;,¢;) is the incident direction L,
(0r, @r) is the reflected direction V.

L.(0;, 95 0,, ¢,) = BIO cos 6; x
T
(A + Bmax[(), COS ((br - ¢z)] sin o tan ﬁ),

(6)

where A = 0552 o33, B = 04502%09, a =
max|[0;,0,], 8 = mln[@l, 0 ] Albedo p represents the fraction
of incident energy that is reflected by the surface. Iy means
the intensity of point light source. The parameter o is used to
measure surface roughness.

As we assume the perspective camera model, 8, = 6, =
a = B, ¢; = ¢.. We also consider the attenuation term
1/7? because it is another plus to guarantee a well-posed SfS
problem, the reflected radiance equation becomes

1
L, = B%(Acosei + Bsin?6;). @)
T
The relationship between image brightness and surface
radiance [8] is

T (d\®
4
E; = LTZ <f> COS ™ X, (8)
where F; is image irradiance, which is considered to be equal
to image brightness. d is the diameter of the lens and f is the
focal length. The term cos* y implies nonuniform brightness
even for uniform illumination, but actual optical system is
designed to correct it. As a result, we may consider that image
brightness is proportional to surface radiance:

E; =)L,. )

If we denote I =
becomes

)]\EIO’ k = p, the brightness equation
1k

I= ﬁf(ACOSG + Bsin? ;).

(10)



3) Build the image irradiance equation: Considering the
above conditions, we can combine Egs. (5) and (10) and build
image irradiance equation.

2
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D@ Vo) = % A\/F(m,w)+Q2(w)+BF(E’V”)+Q2(E)}
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r = fu(x) = fe'™®.

B. Implicit neural representations to solve PDE

We used sinusoidal representation networks (SIREN) [12]
to calculate the solution of Eq. (11). SIREN is a powerful
paradigm which can represent implicitly defined differential
signals. For function ®(x) that satisfy equations of form

F(x,®(x), VO(x),...) =0, (12)
we can learn a neural network that parameterizes ®(x) to map
a while satisfying the constrained condition in Eq. (12). The
input for the network is the spatial coordinate x € R™. ®(x)
is implicitly defined by the function F'

We parameterize @y as fully connected neural network with
parameters 6, and solve the optimization problem by gradient
descent. Our neural network is a four layers network with one
layer of input, three hidden layers. All layers are multi-layer
perceptrons (MLPs) with sinusoidal function as the activation
function. For pixel coordinate x; = (x;,y;), we construct the
loss function

S ()
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J(®) measures how well the function ®y(x) satisfies the
PDE differential operator. If J(®) = 0, then ®p(x) is a
solution to PDE.

The goal is to find a set of parameters 6 so that ®y(x) min-
imizes the loss function J(®). If the loss J(®) is small, then
Dy (x) will closely satisfy the PDE. In our proposed method,
parameters 6 are updated by using the well-known ADAM
algorithm, which was proved to be a very effective optimizer
in machine learning. It yields fast and robust convergence in
our work and the hyper-parameters for ADAM have intuitive
interpretations and typically require little tuning.

IV. SIMULATION EXPERIMENT

To evaluate our proposed method, a simulation experi-
ment was carried out. We compared our work with Wang’s
method [6]. All algorithms were implemented by using Python
code. Our proposed method was performed on Google Colab.

g 8 8 8
depth

(©)
0
y
w

D © @ o 00 1320

(f)

depth

Fig. 3. Experiment results: (a)-(c) shading synthetic images of sphere, vase
and mug; (d)-(f) normalized depth maps by proposed method correspondingly;
(g)-(1) normalized depth maps by Wang’s method correspondingly.

A. Experimental setup

We used an open-source software Blender to create 3D
models of a sphere, a vase and a mug, which are shown
in Fig. 3(a), Fig. 3(b) and Fig. 3(c), respectively. These
models are classical objects in SfS study [6] [14] [23]. We
set the roughness o of all three models as 0.5. All images are
presented with a resolution of 128 x 128 pixels. Point light
source and focal center of the pin-hole camera sit at the same
spatial location.

B. Results and discussion

Figures 3(d)(e)(f) are depth maps by our proposed method
for sphere, vase and mug, respectively. We could see that our
proposed method reconstruct objects’ shape successfully and
the shape of the objects look clearly. However, there seems to
be many noises in the surrounding pixels of objects. We also
implemented Wang’s method [6] to see how well-posed SfS
problem performed by using numerical method to solve its
solution. As illustrated in Fig. 3(g), Fig. 3(h) and Fig. 3(i),
they are depth maps by Wang’s method for sphere, vase
and mug respectively. We find that their method shows good
performance for the surrounding pixels of objects. However,
the edge of the objects looks blurred.

In order to further evaluate the performance of the proposed
method, a quantitative comparison between our method and
Wang’s method is employed by using mean absolute error
(MAE) and root mean square error (RMSE) for three synthetic
images. We obtained the ground truth of depth maps for
three synthetic images by Blender. We used a mask to cover
the surrounding pixels of the original images and calculated
MAE and RMSE by using the pixels where objects occupied.
TABLE 1 lists the comparison of depth estimation for our
proposed method and Wang’s method. For the same iterations,
our proposed method shows more superiority than Wang’s



TABLE I
MAE AND RMSE COMPARISON OF OUR PROPOSED METHOD AND
WANG’S METHOD FOR THREE SYNTHETIC IMAGES.

Images lterations Proposed method Wang’s method

MAE | RMSE MAE | RMSE
Fig. 3(a) 50 0.0857 | 0.1515 || 0.2183 | 0.2740
Fig. 3(b) 40 0.0466 | 0.1243 || 0.1577 | 0.2070
Fig. 3(c) 100 0.0471 | 0.1075 || 0.0903 | 0.1309

method in the reconstructed errors for all three tested images.
The MAE is given by

1 = -
MAE_ng|DZ——Di|, (14)

i=1

where ﬁi is estimated value, D; is actual value.
The RMSE is given by

s = | S0 =D
T )

where ﬁt is estimated value, D; is actual value.

In our proposed method, we used ADAM [13] optimizer for
iteration, which was proved to be a very effective optimizer
in machine learning. It yields fast and robust convergence in
our work and the hyper-parameters for ADAM have intuitive
interpretations and typically require little tuning. On the other
hand, in Wang’s method, they applied Newton method to
iterate. Their method was also based on 2D numerical Hamil-
tonian and fixed-point iterative sweeping method. However,
their method was dependent on initial value and some artificial
viscosities, which may influence the solution of the PDE.
Moreover, due to the fixed-point iterative method, value of
every pixel was dependent on its neighboring value result,
which may be the reason why the edge of the objects looks
blurred in their depth maps.

15)

V. REAL EXPERIMENT
A. Experimental setup

To prove the effectiveness of our proposed method, we
also used iPhone XS to take two real images of vase and
David’s statue for experiment which are shown in Fig. 4(a) and
Fig. 4(b), respectively. The material of the vase and David’s
statue is plaster. In a real dark environment, we used iPhone’s
flash as the only light source for taking photos. Resolution of
two real images are also 128 x 128 pixels.

B. Results and discussion

Figures 4(c) and (d) show depth maps by our proposed
method for vase and David’s statue. Figures 4(e) and (f)
illustrate depth maps by Wang’s method for vase and David’s
statue. Similar to the results on synthetic images, depth maps
by our proposed method show clear edge for both images,
but there are some noises for the surrounding pixels. Wang’s
method shows good performance for surrounding pixels while
edge of the objects looks blurred. As the ground truth is
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Fig. 4. Experiment results: (a)-(b) real images of vase and David’s statue
obtained by iPhone; (c)-(d) normalized depth maps by proposed method corre-
spondingly; (e)-(f) normalized depth maps by Wang’s method correspondingly.
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unavailable for two real images, we cannot calculate the MAE
or RMSE for these two real images.

VI. CONCLUSIONS

In this paper, we proposed a method of solving well-posed
SfS problem by using implicit neural representations. We
explained building the image irradiance equation and solve
the equation by SIREN. Object surface is expressed by Oren-
Nayar model and a perspective projection model with light
source located at the optical center is considered. Based on
the above models, image irradiance equation is constructed,
which is a partial differential equation. We introduce a neural
network SIREN to solve this PDE, where implicit neural
representations use the sine as a periodic activation function.
Experiments are performed on three synthetic images and two
real images. Results demonstrate that our proposed method
performs with high accuracy when estimating depth of the
objects.

Possible real world application for SfS study includes face
reconstruction [24] where shape, light and reflectance could
be obtained and [25] where depth map of faces could be
estimated. [8] also provided another application that SfS study
of using endoscopic camera estimates stomach wall shape so
that more quantitative evaluations and morphological studies
can be performed further.

Some noises occur for the surrounding pixels in our pro-
posed approach. Eliminating surrounding noises may be one
of our future works. Future work may also include integrating
our result into learning-based SfS approach. By solving an
ill-posed problem, image components including reflectance,
lighting, shading are obtained in learning-based method. We
think our work of solving well-posed SfS by implicit neural
representations could improve the accuracy performance of
learning-based SfS methods.
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