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Abstract— We discuss a learning–based treatment of optimal
decision making in continuous time, states and actions, relying
on direct optimization of policy networks. Specifically, we
consider the problem of controlling physical systems with
unknown dynamics and propose to learn a surrogate differential
equation model alongside the policy through observations of the
state. We show how model errors propagate to the Lagrangian
multiplier of the policy optimization problem.

I. LEARNING POLICIES IN CONTINUOUS TIME, STATES
AND ACTIONS

We consider the following class of deterministic
continuous–time dynamical systems:

ṡt = f(st, at), t ∈ T (1)

with state st ∈ S ⊂ Rn and action at ∈ A ⊂ Rm. The vector
field f : S × A → Rn is assumed to be smooth enough so
that solutions of (1) are forward complete on the compact
time domain T := [0, T ] for any initial condition s0 ∈ S. The
initial conditions are assumed to be distributed according to
ρ0(s) with support in S.

In its simplest instance, optimal decision making in contin-
uous time, and state–action spaces can be reduced to finding
an optimal policy π = {at}t∈T via the following nonlinear
program:

inf
π

Es0 [J(s0, π)]

subject to ṡt = f(st, at)

at ∈ π

(2)

where J(s0, π) is a smooth objective function measuring
the performance of the policy on a given task. With St =
st(s0, π) the trajectory of the system (i.e. the solution of (1))
at time t ∈ T given initial state s0 and policy π, the objective
J is usually designed to comprise a running (integral) term
and a terminal term, e.g.

J(s0, π) = Et [rt(St, at)] +R(ST , aT ), (3)

In this manuscript we consider the following class of deter-
ministic neural network policies [1].
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Assumption (Deterministic Policy): Actions are pa-
rameterized by a neural network µθ : S → A
with parameters θ, realizing the state–feedback map
st 7→ at, i.e. at = µθ(st). The selection problem of
a policy π = {µθ(st)}t corresponds to the choice of
network parameters θ ∈ Rp.

If the dynamics (1) are known, the control problem is clas-
sified as model–based. Nonlinearities within the controlled
vector field f(st, at) and non–convexity of the desiderata
J(·, π) render, in most cases, the control problem (2) in-
tractable to be solved analytically. Numerical optimal poli-
cies can still be found through e.g. approximate dynamic
programming [2], [3], [4] or relying on Pontryiagin maximum
principle [5], [6]. Alternatively, receding horizon [7], [8],
[9] and shooting methods [10], [11] can be used to directly
optimized the parameters θ of the policy network.

A. Direct optimal policies via gradient descent

In this work, we iteratively refine an optimal policy by
stochastic gradient descent on the policy parameters θ. As
the policy is uniquely determined by the value of θ, we write
πθ. One iteration of the training procedure works as follows:
an initial condition (or a batch of them) is sampled from
the distribution ρ0. Then, the initial value problem (IVP)
is (numerically) integrated to unroll the episode. After the
loss J(s0, π) is computed, the policy parameters are updated
according to a chosen gradient–based optimizer.

s0 ∼ ρ0(s) 1. sample initial conditions
s0, θ 7→ {(st, at)}t∈T 2. unroll episode
{(st, at)}t∈T 7→ J(πθ) 3. compute loss function

θ ← θ − η∇θJ(πθ) 4. update policy parameters

The implementation of such training algorithm neces-
sitates of two distinct classes of numerical routines: a
differential equations solver (to unroll the episode) and a
differentiation algorithm to compute the loss gradient w.r.t.
the policy parameters. In the typical model–free setting we
think the environment as an oracle providing complete state
trajectories given the initial state s0 and the policy π. Addi-
tionally, here we can use the model to differentiate exactly
(up to numerical integration errors) through the solution of
(1) via e.g. the adjoint method [5], [12] or simply differen-
tiating through the discrete steps of the forward numerical
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integration (discrete adjoint). In other words, we have an
oracle for the gradients of policy parameters. Gradient based
optimization of continuous–time neural policies is enabled by
e.g. differentiable simulation environments [13], [14], [15],
[16], [17] and numerical routines for differential equations
integrated in popular deep learning software ecosystems such
as PyTorch [18] or JAX. See, for example, torchdyn [19],
torchdiffeq [20] or diffrax [21].

B. Stabilization as Maximum likelihood

Consider the mean squared error loss:

J(s0, πθ) =
1

2
Et

[
∥sT (s0, πθ)− s∗∥2

]
, s∗ ∈ S (4)

penalizing the distance between final state sT and the target
s∗. Achieving stabilization of s∗ by minimizing (4) corre-
sponds (up to a normalizing constant) to a maximum like-
lihood problem infθ − logN (ST |s∗, I). The Fokker–Planck
equation describes the evolution of the probability density
function of a continuous–time stochastic process. Particu-
larly, the probability density ρt(s) of state st in (1) evolves
according to

∂tρt(s) = ∇ · (f(s, at)ρt(s))

It is thus possible to train deterministic policies that transport
distributions ρ0(s) of initial states into target distribution
ρ∗T (s) in a time T via the policy πθ.

If ρ0(s) has tractable likelihood (or can be freely assigned)
and a sampler is available for ρ∗(s), policies can be effi-
ciently trained in a continuous normalizing flow [22] fashion
integrating the system backward in time and training on the
exact log–likelihood

log ρ∗(sT ) = log ρ0(s0)−
∫ T

0

∇ · f(st, at)dt.

computed in expectation over trajectories of the system.

II. SURROGATE ODE MODELS

When the system dynamics f(st, at) are not known, it
is no longer possible to exactly back–propagate through
trajectories, loosing the oracle for policy gradients. A sim-
ple gradient estimator can be learned by training a neural
approximator γω : S×A→ Rn with parameters ω such that
the forward simulation of the system

˙̂st = γω(ŝt, ât), t ∈ T (5)

matches the evolution of the true state {st}t∈T. Then, the
surrogate model naturally induces the gradient estimator
∇θĴ(s0, πθ) for the policy gradients ∇θJ(s0, πθ) where
Ĵ(s0, πθ) denotes the control objective computed with the
estimated trajectories. In §III we measure the quality of such
estimator highlighting some limitations of naive surrogate
models in long time horizons.

The surrogate ODE model (5) belongs to the class of
neural differential equations [20], [23], [24]. Neural DEs can
be parameterized with different design flavors, e.g. VAE–like
[25], using rough paths [21] or state–space models [26], [27].

Training can be achieved, for example, by maximizing
the likelihood of some chosen prior p(st) over trajectories1

of the simulated system. A common choice for continuous–
time learning models is p(st) = N (st, σtI) where σt is often
taken increasing in time to account for epistemic uncertainty
of predictions [25]. This corresponds to minimizing the log–
likelihood

−Es0Et [logN (ŝt(πθ)|st(πθ), σtI)]

Trajectories collected off –line with any policy can be used to
pre–train the surrogate model (see e.g. [28], [29]). Greedy
trajectories2 observed during policy optimization steps are
instead available to fine–tune the learned dynamics alongside
with the policy. In the latter setting, an additional reconstruc-
tion metric is the discrepancy between the control objective
computed on nominal and estimated trajectories, i.e.

Es0 [J(s0, πθ)− Ĵ(s0, πθ)]

As the control objective is computed with the current candi-
date optimal policy, reduction of this discrepancy improves
gradient estimates on the greedy paths.

If the policy and the surrogate model parameters
are optimized simultaneously (on–line setting), the
policy induces the distribution of trajectories (with
instantaneous probability ρt(s)) used to train γω .
Conversely, the surrogate model induces the gradient
estimator.

A. Injecting inductive biases in the surrogate model

In practical control problems of physical systems we can
inject domain knowledge on the underlying dynamics into
the surrogate model. Most cases fall in the following two
scenarios, listed by difficulty:
i. The model is partially known, e.g.

ṡt = f(st, at) + g(st, at)

with a known term f and a small unknown term g.
ii. The physics first principles of the process are known

but no actual computational model is available.
In the first scenario, the surrogate model has to approximate
only the discrepancy term g(st, at). Here simple parameter-
izations are often sufficient to track the policy gradient, e.g.
Gaussian Processes [30].

In the second scenario the surrogate model usually consists
of a neural architecture wrapped with domain–specific first
principles equations. Particularly appealing to the roboticist
reader are Lagrangian and Hamiltonian variants [31], [32]
of Neural ODEs.

It is worth to be noted that domain knowledge and
inductive biases can also be injected in the policy network
design, e.g. enforcing stability or passivity of the closed–loop
system [33]).

1Collected either on and off –line.
2Computed with the current estimate of the optimal policy.



Surrogate ODE models trained for decision making are the
continuous counterparts of notable model–based reinforce-
ment learning algorithms such as PILCO [34], [35] world
models [36], decision transformers [37], [38] or generalist
agents [39].

III. GRADIENT ERROR PROPAGATION ANALYSIS

We can now proceed to analyze the performance of the
gradient estimator. Speficically, the following will introduce
the a bound on the estimation error of the Lagrange mul-
tiplier λt of the optimization problem3 which carries most
of the model uncertainty from the forward integration to the
policy gradients. As the policy is a pure state feedback we
write f̄θ(st) = f(st, µθ(st)) and γ̄ω,θ = γω(st, µθ(st)). The
following assumptions are considered:
i. The surrogate dynamics γω are such that γω(st, at) =

f(st, at)+ε(st, at) with ε measurable on T, ∃δf : ∀t ∈
T 0 ≤

∫ t

0
∥ε(sτ , aτ )∥dτ ≤ δf .

ii. The dynamics f , the surrogate dynamics γ, the residual
ε and all their partial derivatives are Lipsichitz contin-
uous w.r.t. all their arguments4.

iii. The objective only comprises a terminal termm i.e.
J(s0, πθ) = R(ST ).

Error Analysis: Tracing the model error propagation
from the forward process to the Lagrange multiplier,
we need to overcome a series of integral bounds. We
leverage of smoothness assumptions of all functions
involved to linearize such bounds and apply Gron-
wall’s lemma.

Lemma 3.1 (Gronwall’s Lemma5 [41]): Let {xt}t : T →
R and let A ∈ R and bt a non–decreasing function. If xt ≤
bt +

∫ t

0
Axr dτ then xt ≤ eAtbt.

A. Model error bound 7→ state error bound

Let s̃t = st − ŝt be the state prediction error at time t.
The error is then governed by the following dynamics

s̃t =

∫ t

0

[
f̄θ(sτ )− γ̄ω,θ(ŝτ )

]
dτ.

We want to find an upper bound for ∥s̃t∥. It holds

∥s̃t∥ =
∥∥∥∥∫ t

0

[
f̄θ(sτ )− γ̄ω,θ(ŝτ )

]
dτ

∥∥∥∥
≤

∫ t

0

∥∥f̄θ(sτ )− f̄θ(ŝτ )
∥∥dτ +

∫ t

0

∥ε̄θ(ŝτ )∥ dτ

≤
∫ t

0

mf ∥sτ − ŝτ∥︸ ︷︷ ︸
∥s̃τ∥

dτ + δf

≤ δfe
mf t (Gronwall’s Lemma).

3see [12] for a detailed derivation of the adjoint equation driving the
Lagrange multiplier

4For compactness, we denote all the Lipsichitz constants with m (e.g.
mf ,mγ , etc.), without explicitly declaring them.

B. State error bound 7→ action error bound

Similarly, we can bound the error we have on each action
computed with the surrogate state ãt = at − ât

∥ãt∥ = ∥µθ(st)− µθ(ŝt)∥ ≤ mµ∥st − ŝt∥ ≤ mµδfe
mf t.

C. Error propagation to Lagrange multiplier

We can finally compare the nominal and surrogate adjoint
equations [12]

λt = b+

∫ t

0

Aτλτdτ, λ̂t = b̂+

∫ t

0

Âτ λ̂τdτ,

with

At =
∂f̄θ(st)

∂st
=

∂f

∂st
+

∂f

∂µθ

∂µθ

∂st
, b =

∂R(sT )

∂sT
,

Ât =
∂γ̄ω,θ(ŝt)

∂ŝt
=

∂γω
∂ŝt

+
∂γw
∂µθ

∂µθ

∂ŝt
, b̂ =

∂R(ŝT )

∂ŝT
,

and compute the error λ̃t = λt − λ̂t. We have:

λ̃t = b̃+

∫ t

0

[
Aτλτ − Âτ λ̂τ

]
dτ (6)

where b̃ = b− b̂ = ∂sR(sT )− ∂ŝR(ŝT ). It holds,

∥b̃∥ ≤ m∂J∥s̃T ∥ ≤ m∂Jδfe
mfT .

Next, consider the term under integral sign in the rhs of (6),

Atλt − Âtλ̂t =

[At − Ât]λt + Âtλ̃t =[
Df̄θ(st)− Df̄θ(ŝt)

]
λt︸ ︷︷ ︸

⋆

−Dε̄θ(ŝt)λt︸ ︷︷ ︸
⋆

+ Âtλ̃t︸︷︷︸
⋆

=

The norm of the first term of the sum can be bounded as

∥⋆∥ ≤ ∥Df̄θ(st)− Df̄θ(ŝt)∥∥λt∥ ≤ m∂fδfe
mf t∥λt∥.

Further, the norm of the second and third terms can be
bounded as

∥⋆∥ ≤ mε∥λt∥, ∥⋆∥ ≤ mγ∥λ̃t∥

Taking the norm of (6) we thus obtain

∥λ̃t∥ ≤

d︷ ︸︸ ︷
m∂Jδfe

mfT +

∫ t

0

mγ∥λ̃τ∥dτ

+

∫ t

0

(m∂fδfe
mfτ +mε)∥λτ∥dτ︸ ︷︷ ︸

ct

Using

∥λt∥ ≤ ∥b∥+
∫ t

0

∥Aτ∥∥λτ∥dτ ⇒ ∥λt∥ ≤ mJe
mf t,



yields to

ct =

∫ t

0

(m∂fδfe
mfτ +mε)mJe

mfτdτ

= mJm∂fδf

∫ t

0

e2mfτdτ +mJmε

∫ t

0

emfτdτ

=
mJm∂fδf

2mf
(e2mf t − 1) +

mJmε

mf
(emf − 1)

=
mJ

2mf
[m∂fδf (e

2mf t − 1) + 2mε(e
mf − 1)].

Finally,

∥λ̃t∥ ≤ d+ ct +

∫ t

0

mγ∥λ̃τ∥dτ.

Since d + ct is non-decreasing in t (ct is the integral of a
non-negative function), Gronwall’s Lemma reads

∥λ̃t∥ ≤ (d+ ct)e
mγt = κt.

The term d = m∂Jδfe
mfT bounds the error ∥b̃∥ ≤ d

caused by propagating discrepancies in the final state s̃T
to the objective R(sT ) and its partial derivative ∂R/∂sT .
For example, if R(sT ) =

1
2s

⊤
TQsT , We have b̃ = Qs̃T and

m∂J = sup∥s∥=1 ∥Qs∥.

IV. DISCUSSION

This manuscripts introduced preliminary investigations on
surrogate models that learn the continuous dynamics of the
environment. In practice, the surrogate model serves as a
proxy to the policy gradients.

As such surrogate model converges to the actual dynamics
of the system, i.e. δf → 0 and mϵ → 0, the parameter ct
converging to zero. Thus, the error of the Lagrange multiplier
also goes to zero, ∀t ∈ T lim|f̄θ−γ̄ω,θ|→0 κt = 0. Besides,
the error grows exponentially with the the length of the time
horizon.

We are currently investigating model-based reinforcement
learning for continuous stochastic dynamics [42] and SDE-
driven stochastic policies. Interesting directions in this space
include studying propagation of uncertainties on the objec-
tive function, integration time (episode lenght) as well as
characterize solutions under partial observability of the state
and reachability of the surrogate model.
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