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Abstract— Acoustic cameras, also known as 2D forward look-
ing sonars, show high reliability in underwater environments as
they can produce high resolution images even if the illumination
is limited. However, due to the unique imaging principle, it
is hard to estimate ground-truth-level extrinsic parameters
even in a known 3D scene. Usually, there are methods such
as direct measurements by rulers to acquire a rough pose
with centimeter-level error. It is necessary to refine the pose
to millimeter-level error. In this work, we develop a novel
differentiable acoustic camera simulator, which can be applied
for estimating accurate 6 degrees of freedom pose of the acoustic
cameras. We calculate the derivatives of synthetic acoustic
images with respect to camera pose, and further integrated
them into a gradient-based optimization pipeline to refine the
pose. To mitigate the domain gap between real and synthetic
images, an unpaired image translation method is used to
transfer the real image to synthetic domain. Experiments prove
the feasibility of the proposed method. It outperforms methods
of previous research for higher efficiency and accuracy.

I. INTRODUCTION

In recent years, automated underwater tasks have be-
come increasingly important and extensive for purposes
such as underwater construction, inspection, and resource
exploration [1]. Underwater vehicles like autonomous un-
derwater vehicles (AUVs) and remotely operated vehicles
(ROVs) are widely used in these tasks as to improve the
efficiency and protect human beings from the potential
hazards in open water environment. To obtain underwater
visual information, optical cameras and acoustic cameras are
commonly mounted on underwater vehicles as perception
sensors. However, the performance of optical cameras is
extremely limited to weak illumination and water turbidity.
Acoustic cameras, also known as the 2D forward looking
sonars, show higher reliability in underwater scenarios [2].
They can continuously generate acoustic images while being
resistant to low-light circumstances, making them important
sensors for underwater tasks [3]–[5].

Finding the accurate 6 degree-of-freedom (6DoF) relative
pose between cameras and scenes, which is also known as
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extrinsic parameter calibration, is a non-trivial problem for
acoustic cameras. It can be used to tasks such as robot
navigation and underwater monitoring. Furthermore, due to
the rapid development of deep learning, there are pressing
needs for datasets with accurate ground truth. A dataset with
accurate pose ground truth is vital for tasks such as 3D
reconstruction and localization [6]. Considering the range
resolution of the state-of-the-art acoustic cameras (3 mm for
ARIS EXPLORER 3000), the acceptable pose error should
be at millimeter level. However, due to the unique imaging
principle of acoustic cameras, it is hard to estimate the
extrinsic parameters in a known 3D scene. Currently, the pose
is usually measured manually with equipment such as rulers,
or ultra-short baseline system (USBL), but these approaches
are constrained by the inability to pinpoint the acoustic
camera’s origin, which can only offer a rough pose with
centimeter-level error. Comparing synthetic acoustic images
from the simulator and the real images is a possible method
to estimate more accurate pose [7], [8]. Such methods usually
follow a coarse-to-fine scheme, by globally estimating the
pose with a rough-grained sampling of the large search space,
and then locate the camera in a fine-grained local space. In
[7], the aforementioned scheme is applied; however, such
method has limitations in that only 3DoF poses can be
estimated. In [8], the similar scheme is utilized, although
6DoF pose estimation is achieved, the search in local space
is discrete, which requires fine-grained sampling for high
accuracy results. This leads to synthetic image generation
with a huge number, which may take more than 11 hours.

In this work, we propose a method for acoustic camera
pose refinement by developing the first differentiable acoustic
camera simulator. Differentiable rendering techniques allow
the gradients of rendered images to be calculated with
regard to scene parameters such as camera pose. It can be
integrated in gradient-based optimization pipeline to refine
the 6DoF pose for the acoustic cameras [9]. With GPU
acceleration, it can generate synthetic images with faster
speed and require much less synthetic images compared to
the brute force search in [10]. For comparing the synthetic
and the real images, one main concern is the domain gap.
Previous methods use edge features to mitigate the domain
gap [7], [10]. Inspired by [11], this work uses a generative
adversarial network (GAN) to deal with the gap. The network
is trained on unpaired datasets with contrastive learning [12].
Experiments prove the feasibility of the proposed method,
it outperforms methods of previous works for a higher
efficiency and accuracy.

The rest of the paper is organized as follows. In Section
II, preliminaries about acoustic camera principles are intro-



Fig. 1. Viewing scope of acoustic camera. The camera view is determined
by the azimuth angle θcam, elevation angle ϕcam, and ranges (rmin, rmax).

Fig. 2. Acoustic camera projection. A point (Xc, Yc, Zc) in 3D space is
projected to (xc, yc) in 2D image plane.

duced. The proposed differentiable acoustic camera simu-
lation system and camera pose refinement are explained in
Section III and Section IV respectively. Section V presents
the experiments and evaluations. Finally, in Section VI,
conclusions and future work are summarized.

II. PRINCIPLES OF ACOUSTIC CAMERAS

An acoustic camera generates images by transmitting
acoustic waves within a fan-shaped scope determined by
fixed parameters of the camera including the azimuth angle
θcam, elevation angle ϕcam, and its minimum and maximum
ranges (rmin, rmax), as illustrated in Fig. 1. The acoustic
waves are transmitted forwards from the camera and reflected
backwards when hitting objects.

A 3D point in the acoustic camera coordinate system
can be represented as (r, θ, ϕ) and can be transferred into
Euclidean coordinates (Xc, Yc, Zc) based on Eq. (1):Xc

Yc

Zc

 =

r cosϕ cos θ
r cosϕ sin θ

r sinϕ

 . (1)

The acoustic camera projection model is illustrated in
Fig. 2. When projecting from 3D space to 2D image plane,
each point (r, θ, ϕ) in the 3D area is mapped to (r, θ) in
the 2D image. The point (xc, yc) in the Euclidean image
coordinates can be represented as Eq. (2).[

xc

yc

]
=

[
r cos θ
r sin θ

]
. (2)

In other words, the elevation information ϕ is missing
during projection.

III. DIFFERENTIABLE SIMULATION SYSTEM

Collecting underwater acoustic image dataset is difficult
because operating cameras in open water can be risky and
of a high cost [13]. A promising solution to this challenge
is developing an acoustic camera simulation system which
allows controlling systems and evaluating algorithms without
going to the real underwater environment. It helps reduce the
cost and risk of in-field experiments.

In previous research, the acoustic image simulator is based
on 3D rendering using a modeling software Blender [11],
[14]. However, as the rendering process is non-differentiable,
it cannot be integrated to other frameworks to solve the
inverse rendering problem like pose estimation. Besides, it
requires several seconds for processing one image, which is
slow.

In our work, the first differentiable acoustic camera simu-
lation system is proposed and used to simulate scenarios of
underwater tasks and to generate synthetic acoustic images.

A. Overview

The proposed simulation system consists of three parts,
including 3D scene assembling, perspective camera view
rendering and differentiable acoustic camera view generation,
as illustrated in Fig. 3. Generally, the acoustic camera simu-
lator takes scene parameters including camera, geometry and
materials as inputs, and produces synthetic acoustic images
via differentiable rendering. Materials and the geometry are
fixed information defined by the underwater environment,
while the camera pose is initialized by a rough guess. Ground
truth image is a real image taken from the target camera pose.
We define an objective function to measure the difference
between synthetic images and ground truth images. Since the
image generation process is differentiable, we can calculate
the gradients of image with respect to the input camera pose.
The gradients are further used in backward pose optimization
to update pose parameters until loss being converged.

B. 3D Scene Assembling

In 3D scene assembling, scene parameters including cam-
era, geometry and materials are defined. We construct 3D
scene objects and underwater seafloor plane using Blender.
An example of constructed scene is shown in Fig. 4. Each
object is represented in the format of triangle meshes and is
assumed to follow the Lambertian reflection rules.

To simulate the acoustic camera, we use the perspective
camera model with the same aperture angle, and set a point
light at the camera position with the attenuation of the ray
strength based on the inverse square law. The sensing range
is defined by the specifications of the acoustic camera.

C. Perspective Camera View Rendering

Rendering can be defined as a function that takes a 3D
scene as an input and outputs a 2D image. Differentiable
rendering makes the derivatives of this function be calculated
with respect to different scene parameters.

In perspective camera view rendering, the task is as the
following. Given a 3D scene with a continuous parameter



Fig. 3. Overview of the proposed differentiable acoustic camera simulation system.

Fig. 4. 3D scene objects constructed by Blender.

set Φ constructed in 3D Scene Assembly, we generate an
intensity map and a depth map as output. In the intensity
map, each pixel represents the backscattered intensity value,
while in the depth map, each pixel represents the range
from camera to objects. Both intensity maps and depth maps
are θ − ϕ images that each pixel can be denoted as (θ, ϕ)
in acoustic camera coordinates. An example of perspective
camera view rendering output is shown in Fig. 5.

We implement this part using a differentiable renderer
framework named Redner [15]. It offers a comprehensive
solution to compute derivatives of scalar functions over a
rendered image with respect to arbitrary scene parameters
without approximation. The backscattered intensity map is
simulated in an optical camera way as we simplify the sound
propagation process as multiple ray casting within the scope.
Monte Carlo sampling [16] is used to estimate both the
integral and the gradient of the integral. The core strategy for
computing the gradient integral is to split it into smooth and
discontinuous regions [17]. For smooth regions, traditional
area sampling with automatic differentiation is employed,
while for discontinuous regions, a novel edge sampling
method is used to capture the changes at boundaries.

D. Differentiable Acoustic Camera View Generation

In differentiable acoustic camera view generation part,
acoustic image is generated from intensity map and depth
map, following a differentiable pipeline. As both intensity

Fig. 5. Perspective camera view rendering outputs. Both intensity map and
depth map are expanded by (θ, ϕ).

map and depth map are θ−ϕ images, we firstly convert them
into pixel coordinates by transforming and mapping along the
origin. We denote pixel pi in intensity map as (θi, ϕi). The
pixel coordinate transformation is performed as:

θ
′

i =
θi
θr

× θap −
θap

2
, (3)

ϕ
′

i =
ϕi

ϕr
× ϕap −

ϕap

2
, (4)

where θap and ϕap refer to aperture angles in azimuth
direction and elevation direction, and (θr, ϕr) is the image
resolution. The coordinate of pi is updated as (θ

′

i, ϕ
′

i).
According to equation (1), we can further integrate 2D

information in both depth map and intensity map into a set
of 3D points in Euclidean coordinates. We denote the set
as P = {⟨xi, yi⟩}Ni=1, which includes N tuples of a point
position xi = (xi1, xi2, xi3) and a intensity value yi of pixel



pi. The point position is calculated as follows, where ri is
the corresponding pixel value in the depth map.xi1

xi2

xi3

 =

ri cosϕ′

i cos θ
′

i

ri cosϕ
′

i sin θ
′

i

ri sinϕ
′

i

 . (5)

Acoustic images are formed by azimuth angle θ and range
r coordinates. Points in set P forms a 3D cube represented by
[r, θ, ϕ]. We re-scale the coordinates by the camera aperture
parameters and acoustic image resolutions in three directions.
To allow for the gradient flow in 3D-to-2D projection,
we represent each point xi by a smooth Gaussian density
function fi(·) and the occupancy function of the point cloud
is a clipped sum of the individual per-point functions [18]:

o(x) = clip(
N∑
i=1

fi(x), [0, 1]), (6)

fi(x) = ciexp
(
−1

2
(x− xi)

TΣ−1
i (x− xi)

)
, (7)

where ci and Σi are size parameters, and x is the set of
points xi. The resulting function can be discretized to a grid
of resolution. We perform integration along elevation angle
to get synthetic acoustic images.

IV. CAMERA POSE REFINEMENT

The pose refinement task is regarded as, given a target
real acoustic image I1 taken from a known 3D scene, and
an initial guess of 6DoF camera pose w, we aim at finding
the accurate pose of camera from which the target image is
taken.

The derivatives of synthetic acoustic images can be ob-
tained by differentiable rendering. Therefore, we adopt an
optimization method using gradient descent algorithm [19]
on the loss between target image and synthetic acoustic
image to refine the translation and rotation of the pose.
Acoustic camera 6DoF pose w is denoted as follows.

w =
[
x, y, z, φx, φy, φz

]
, (8)

where x, y, x refer to the translation in world coordinate and
φx, φy, φz refer to the rotation in Euler angles.

The prior knowledge of the camera pose is used as initial
guess ŵ before pose refinement. It can be obtained by
manually measuring the approximate pose of the camera
using a ruler. Another approach is creating a synthetic
dataset consisting images of a large variety of viewpoints
and searching for the closest one to the target image within
this dataset [8]. The corresponding camera pose can be used
as a guess. Since the initial guess is not sufficiently precise, it
usually differs from the ground truth pose by approximately
5 cm per scale.

The goal of the pose refinement is to determine a more
accurate pose of the camera. Starting from the initial guess ŵ,
the differentiable simulator R outputs the rendered acoustic
image I2 taking w as scene parameter. However, there is a
large domain gap between the real acoustic image I1 and
the synthetic image I2, for example, the heavy noise in real

Fig. 6. Test result of Constrastive Unpaired Translation (CUT) model.
(a) Synthetic acoustic image generated by our simulation system, (b) Real
acoustic image, (c) Fake synthetic acoustic image, converted from (b) using
CUT.

acoustic images can not be represented in simulation. It is
hard to directly compare and utilize the difference between
real acoustic images and synthetic images. In this case,
we train a constrative learning model named Contrastive
Unpaired Translation (CUT) [12] on pairs of real acoustic
images and synthetic images, and use it to transfer real
acoustic images to be like synthetic images. We denote the
converted image as I′1.

Fig. 6 illustrates a test example of CUT. The model is
trained on a small number of paired images while gener-
ating realistic results. The fake synthetic acoustic image I′1
transferred from real acoustic image I1 is very close to the
ground truth synthetic acoustic image I2.

Since we eliminate the domain gap by transferring the
target image I1 to I′1, we can use loss L to measure the
difference between target image I′1 and the generated acoustic
image I2. We aim at finding a pose w such that the loss L
is minimized.

w = argminL(w). (9)

We iteratively refine the guess using gradients and back
propagation.

wi+1 = wi − α∇L(w), (10)

where α is the learning rate determines how far we move
along the negative gradient direction. We use L1 loss (Mean
Absolute Error, MAE) L1 to measure the difference, which
is the sum of the all the absolute differences between the
true pixel values in target image I′1 and the pixel values in



predicted image I2.

L1 =

n∑
i=1

|I1 − I2|, (11)

.
Algorithm 1 shows the overall framework of pose re-

finement, which is based on a neural network structure
performing forward and backward optimization. Pose is
initialized as ŵ for we assume we have a prior knowledge of
the rough camera pose. I2 is the rendering output acoustic
image from the differentiable simulator R, which takes w as
scene parameters.

Algorithm 1 Acoustic Camera Pose Refinement
procedure POSE REFINEMENT(ŵ, I′1)

Initialize the camera pose w = ŵ
while not converge do

Render from w in simulator R
Get image I2 = R(w)
Calculate L(I′1, I2)
Calculate gradients of L with respect to w
Backpropagate and update the camera pose w

end while
the loss L is converged, return pose w as output

end procedure

To measure the quality of acoustic images after pose
refinement, we introduce two metrics including Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) for
comparing the target image and the final reconstructed image
[20]. PSNR is an expression for the ratio of signal power to
noise power:

PSNR = 10 log10(
m2

L2
), (12)

where m is the maximum value of a pixel in image which
in this case equals 255. A higher PSNR score suggests a
higher image quality. SSIM is used to measure the similarity
between images based on three comparison measurements
including luminance, contrast, and structure. SSIM index is
calculated as:

SSIM =
(2µ1µ2 + C1)(2σ12 + C2)

(µ2
1 + µ2

2 + C1)(σ2
1 + σ2

2 + C2)
, (13)

where µ1, µ2 are the average and σ1, σ2 are the variance
of I1, I2. Besides, C1, C2 are the variables to stabilize the
division with weak denominator and σ12 is the covariance.

V. EXPERIMENTS

We utilize the real dataset in [6]. The 3D models of
the objects are generated in land by structure from motion.
Then, the objects are placed in a water tank with designed
configuration. All objects on the scene are represented in
triangular meshes format for applying rendering. Regarding
the underwater seafloor, there are grids formed by strips of
specific material. Acoustic camera 6DoF pose is represented
as translation x, y, z in meter scale and rotation φx, φy, φz

TABLE I
CAMERA POSE BEFORE AND AFTER REFINEMENT

x [m] y [m] z [m] φx [rad] φy [rad] φz [rad]
Target 0.1635 -1.5768 2.0047 0.900 -0.027 1.503
Initial 0.1500 -1.6000 1.9900 0.890 -0.010 1.510

Refined 0.1643 -1.5775 2.0037 0.901 -0.024 1.500

TABLE II
EVALUATION OF REFINEMENT RESULTS (MEASURED IN AVERAGE).

Initial Refined
Converge Time – 17 min 36 sec

PSNR (dB) 26.86 42.25
SSIM 0.9135 0.9940

as angle in radius. The output images of perspective camera
view rendering are in resolution (720, 1200), while the
synthetic acoustic images are in resolution (512, 128). We
set the aperture angles in elevation direction and azimuth
direction of acoustic cameras to be 18 and 30 respectively in
degree and the resolution in range direction to be 0.006 m
for a standard sensing scope based on the specification of
ARIS EXPLORER 3000.

Datasets of two domains are constructed for training the
CUT model. For real acoustic image dataset, we perform
image generation experiments in a water tank within a 1.8
m × 1.8 m × 0.4 m space and set the camera poses to
be a variety of orientations at different positions. The poses
of camera are recorded and used as inputs to simulation
system to generate corresponding synthetic acoustic images.
Synthetic images have an average of 0.33 second generation
time and each image is cropped and resized to be (128, 512)
in resolution. We randomly select 295 pairs of images to
form the training set and select 98 pairs of image to form
the test set. The CUT model is trained of 400 epochs on
Intel(R) Core(TM) i9-11900K CPU and a NVIDIA GeForce
RTX(TM) 3090 GPU. The output test results have 0.993
similarity score in average to the ground truth synthetic
image.

For pose refinement, the target image is selected from CUT
test result images. It was measured by ruler to get an initial
guess of camera pose. We implemented the gradient descent
algorithm using Pytorch framework and trained the model
on NVIDIA Tesla T4 GPU. In optimization, we use six
independent Adam optimizers for 6DoF respectively, and set
six MultiStepLR schedulers that decay the learning rate with
a multiplicative factor when a certain milestone is reached.
Specifically, our learning rate for translation x, y is set to
0.0002 while learning rate for translation z and rotations is
set to 0.0001.

Table I shows camera poses before and after refinement
and Table II shows the quantitative evaluation for refinement
results. The refined camera poses show high accuracy com-
pared to ground truth with an average position error being
less than 0.001 m. Both PSNR and SSIM score reveal the
improvement of image quality after refinement. Besides, re-
garding the refinement time, it is significantly more efficient
than methods in [8] based on fine-grained sampling. It is also



Fig. 7. L1 Loss before and after refinement. It is calculated between the
target image and synthetic image.

intuitive from the comparison in Fig. 7 that loss between
ground truth and reconstructed image has been reduced
greatly after the pose refinement. The experiment results
prove the effectiveness of our proposed acoustic camera pose
refinement approach using differentiable rendering.

VI. CONCLUSIONS

In this paper, a method for acoustic camera pose refine-
ment is proposed. We developed a novel acoustic camera
simulator using differentiable rendering. With the help of
differentiable rendering, we are able to compute the gradients
of the synthetic acoustic image with respect to camera pose,
and use them to optimize the six degree-of-freedom pose
for the acoustic cameras. Considering there is a domain
gap between real acoustic image and synthetic acoustic
image, we trained an image-to-image translation network
CUT to transfer real acoustic images to be synthetic images.
And use the transferred image as target for optimization of
pose. The experiments prove the feasibility of this method.
It outperforms the methods proposed in [8] for a higher
efficiency.

In the future, efforts should be made in further improving
the accuracy and precision when the initial guess error
becomes larger and solving the inconsistency between real
and synthetic images in terms of image illuminance. We
also believe that the differentiable acoustic simulator has a
broader perspective, which can be applied to various tasks
such as inverse rendering.
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