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Abstract— Event cameras offer attractive properties com-
pared to conventional frame-based cameras, such as high
temporal resolution, very high dynamic range, and low power
consumption. Thanks to these characteristics, event cameras
have a great potential for sensing challenging lighting or
high motion conditions in computer vision tasks and robotics
applications.

Traditional patterns such as chessboard and circle grid based
methods have been proposed to calibrate or estimate the pose of
the event camera. However, these methods are less versatile as
they require the entire board to be visible in all images and do
not allow occlusion. To overcome these limitations, this paper
proposes a new method to estimate the 6DoF pose of an event
camera using a Charuco board based on image reconstruction
with a deep learning approach. Using images reconstructed
from the event streams captured of the Charuco board, it can
be successfully estimated the 6DoF pose of the event camera
even in the presence of occlusion. Experiments performed in a
simulation environment show the effectiveness of the proposed
method.

I. INTRODUCTION

In recent years, the demand for 3D sensing technology has
increased. Conventional frame-based cameras have typically
been used to capture information. A conventional frame-
based camera captures a scene by accumulating photons
reflected from objects over a period of time to produce an
image. Conventional cameras have been used in many studies
on 3D sensing due to their advantage of high-resolution
images. However, conventional frame-based cameras often
suffer from low frame rates, high latency, or poor adjustment
to extreme lighting conditions.

Recently, new image sensors, called event cameras, neu-
romorphic cameras, or dynamic vision sensors offer a revo-
lutionary new paradigm for capturing scenes. Event cameras
have received a lot of attention for their potential in robotics
and sensing in challenging environments, such as optical flow
estimation, object segmentation, and visual odometry in low-
light, dynamic scenarios, etc [1]. Inspired by the behavior
of a biological retina, event cameras have a hardware setup
that is fundamentally different from conventional frame-
based cameras. Instead of recording image frames, event
cameras record asynchronous sequences of intensity changes
per pixel with precise time stamps. It allows capturing data
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Fig. 1. Overview of event camera pose estimation using Charuco board.

for high temporal resolution, very low power consumption,
and high dynamic range. While event cameras have many
advantages over conventional cameras, their differences from
conventional frame-based cameras prevent the direct use of
standard computer vision techniques on event data.

In the case of conventional frame-based cameras, fiducial
marker systems such as ARTag and ArUco have been widely
researched in computer vision and robotics like augmented
reality, and camera calibration [2]-[4]. These systems are
very useful for camera calibration, monocular pose estima-
tion, and pose verification. Conversely, in the case of event
cameras, there are still few systems for pose verification and
pose estimation. Several methods are proposed for the cali-
bration of event cameras. Such as, Huang et al. [5] proposed
a dynamic event camera calibration system using a circle
grid pattern. Muglikar et al. [6] proposed an event camera
calibration framework using a traditional chessboard. These
methods can be extended to be also used to estimate camera
pose. While these methods can archive high accuracy but
only in good conditions, it is lack versatility and robustness
since it requires that the entire board must be visible in
all image and all corners or circles must be detectable in
order to be able to be used and of cause occlusions are
also not permitted. This motivated us to use the Charuco
board to estimate event camera pose more robustly since the



Charuco board is known to overcome these limitations of
classical checkerboards and circle grid boards in the case of
conventional frame-based cameras [7].

In this paper, we propose a new method for estimating
event camera pose using a Charuco board through an im-
age reconstruction approach. An overview of the proposed
method is shown in Fig. 1. The event streams captured of
the Charuco board are then used to reconstruct grayscale
intensity images. We define the world coordinate system
with reference to the Charuco board. Firstly, the poses of the
Charuco board in the camera coordinate are estimated using
the reconstructed images. Then, coordinate transformations
are then utilized to estimate the camera poses. The estimation
method is evaluated throughout the simulation.

The potential advantage of the Charuco board is that the
Charuco board combines the benefits of the Aruco marker-
based approach and chessboard pattern-based approach. All
checker pattern is uniquely coded and identifiable. This
allows even partially obscured or non-ideal images to be
used to estimate camera pose. This is particularly relevant
in the case of event cameras since although techniques
for reconstructing intensity images from events have been
actively studied and it is possible to reconstruct high dynamic
range images at a very high frame rate [8]-[11], however,
the quality of reconstructed images is still limited and often
contains partial artifacts per image [10]. In this paper, we
also propose a method that applies some image processing
techniques such as denoising and contrast adjustment to
improve the quality of the reconstructed intensity images.

The remainder of this paper is organized as follows.
Section II briefly presents the principle of an event camera.
Section III describes our proposed methodology for the
estimation of event cameras using the Charuco board. Section
IV presents the experimental results constructed in the simu-
lation environment. Finally, Section V presents conclusions.

II. PRELIMINARIES OF EVENT CAMERA

Event cameras are arrays of pixels that respond to local
changes in brightness. Unlike conventional frame-based cam-
eras, which capture images using a shutter, event cameras
have pixels that operate independently and asynchronously
respond to changes in brightness that occur. Each pixel in
event cameras is performed as a continuous logarithmic pho-
toreceptor with asynchronous signal processing L(xk, yk, tk)
[12]. It stores a reference brightness level and continuously
compares it to the current brightness level as follows:

∆L(xk, yk, tk) = L(xk, yk, tk)− L(xk, yk, tk −∆tk), (1)

where ∆L(xk, yk, tk) is the change in brightness at the
pixel (xk, yk) and at timestamp tk. If absolute value of
∆L(xk, yk, tk) exceeding given threshold C, the pixel will
respond with an event ek(xk, yk, tk, pk), where pk is a
polarity of the kth event that represents an increase or
decrease in intensity.

Fig. 2. Schematic representation of the proposed method.

III. POSE ESTIMATION USING CHARUCO BOARD

A. Framework overview

A schematic representation of the method proposed in this
study is shown in Fig. 2. The input of the algorithm is the
event streams, which are captured of the Charuco board by
the event camera, and the related information of the Charuco
board. The output is the 6DoF poses of the event camera.
There are 2 main phases. In phase 1, grayscale intensity
images are reconstructed from the event streams using a
neural network. Then, in order to improve the quality of
reconstructed images, some image processing techniques are
applied. In phase 2, from reconstructed images, the Charuco
board is detected, then the 6DoF poses of the camera will
be estimated based on the detection results.

B. Image reconstruction and pre-processing

Fig. 3 shows the process of image reconstruction and
preprocessing of reconstructed images. First, we reconstruct
grayscale intensity images (Fig. 3 (b)) using a neural network
from the original event streams obtained from the event
camera (Fig. 3 (a)). For the image reconstruction process, we
utilized the trained network proposed in E2VID [9]. E2VID
proposed a convolutional recurrent neural network (C-RNN)
that achieves considerable results on image reconstruction
from event streams. To be able to use the event streams in
the C-RNN, it is neccessary to convert the event streams into
event tensors. An event tensor corresponding to the output
of one intensity image is generated by grouping the event
streams, which are in temporal neighborhoods of a fixed
duration time ∆t(s). This results that the event tensors being
generated at a frequency of 1/∆t(Hz), and the grayscale
intensity images are also being reconstructed at the same
frequency.

Second, we noticed that reconstructed images usually
contain a lot of noise and artifacts and tend to have small
dynamic ranges. Therefore, in order to improve the quality of
the reconstructed images, processes including denoising and
contrast adjustment are applied. A Bilateral filter is utilized
to reduce the noise of images. By using the Bilateral filter,
it is possible to smooth the image while preserving edges
as shown in Fig. 3 (c). Next, to improve the brightness, an



Fig. 3. Procedure of the image reconstruction and the preprocessing of reconstructed image: (a) original event data, (b) image reconstruction using neural
network, (c) using a Bilateral filter to smooth the image while preserving edges, (d) contrast adjustment.

contrast adjustment conversion is applied in order to convert
the range of brightness of images to a higher range, resulting
in almost [0, 255] for all images. The contrast adjustment
process is a linear transformation, which can be written as:

g(u, v) = α ∗ f(u, v) + β, (2)

where g(u, v) and f(u, v) are brightness at pixel (u, v)
after and before conversion, respectively. And, α and β are
parameters to control contrast and brightness, corresponding
to the scale and shift amount respectively. The values of α
and β are calculated based on some first reconstructed images
and used for the remaining sequence of reconstructed images.

C. Camera pose estimation

In this phase, reconstructed images of the Charuco board
are used. A Charuco board is a planar board where the
markers are placed inside the white squares of a chessboard.
In this phase, individual Aruco markers will be first detected.
The detected Aruco markers are used to interpolate the
position of the chessboard corners so that it has the versatility
of marker boards since it allows occlusions or partial views.
Each corner on a Charuco board has a unique identifier
assigned.

In the pose estimation step, we define 2 main coordinate
systems as illustrated in Fig 1, the world coordinate system
W and the camera coordinate system C. The world coordi-
nate is defined with reference to the Charuco board pose.
Because the event camera has the same optical system as
the frame-based camera, the model in the case of the frame-
based camera can be used for the event camera. Therefore,
the relation between the 2D point in the reconstructed image
and the corresponding 3D point can be written as follows:
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where
[
u, v

]
represents 2D corner point in the image plane,

which detected from Charuco board. K is the camera intrin-
sic matrix, which can be obtained in advance through the cal-
ibration procedure.

[
Xw, Y w, Zw

]
represent corresponding

3D corner points with respect to the world coordinate system,

which can be calculated from given the marker size and the
board size. Rb and tb are respectively the rotation matrix and
the translation vector, which translate

[
Xw, Y w, Zw

]
from

the world coordinate system to the camera coordinate system.
Given a set of 2D corner points and computable corre-

sponding 3D corner points, the perspective-n-Point (PnP)
algorithm can be applied to estimate the pose of the Charuco
board relative to the camera coordinate system. To detect
the Aruco markers and corners of the chessboard, and to
estimate the Charuco board pose from detected corners, we
use well-constructed functions in the Aruco module provided
in OpenCV [13]. The function also checks if the detected
corners are sufficient for performing the estimation. If not
enough corners are detected, the function returns false for
estimating the pose of the Charco board.

Next, in order to calculate the pose of the camera on the
world coordinate, the coordinate transformation is applied.
As the world coordinate system is defined with reference to
the Charuco board pose, the camera pose can be estimated
as follows:

Rc = R−1
b , (4)

tc = −Rctb, (5)

where, Rc and tc are the rotation matrix, the translation
vector of the camera with respect to the world coordinate
system, respectively. The camera pose is estimated for each
frame of the reconstructed image. Therefore, the frequency
of camera pose estimation depends on the frequency of the
reconstruction of intensity images from the event streams.

IV. EXPERIMENT

In order to verify the proposed method, an experiment has
been carried out by using a simulation environment. Blender,
an open-source 3D computer graphics software [14], was

TABLE I
SPECIFICATIONS OF CHARUCO BOARD

Number of squares 6× 9
Size of board 1.95× 2.85 m
Square length 0.3 m
Marker length 0.225 m

ArUco dictionary DICT 4X4 50



Fig. 4. The simulation experiment setup. The event camera was set up to
point at the Charuco board while moving above.

Fig. 5. Results of event camera pose estimation. The green line indicates
the GT camera path. The yellow line indicates the estimated camera path
of the case duration time ∆t being 5 ms

used to create simulations. To simulate event data, we
adopted the method of constructing an event camera sim-
ulator proposed in [15]. Firstly, we used Blender to create a
3D scene, set camera parameters, and render high frame rate
continuous images. Then, the rendered images were used as
input to the event camera simulator to generate event streams.
Shot noise was also added to the simulation to generate more
realistic data.

The experiment setup is shown in Fig. 4. An event camera
was set up to always point at the floor and Charuco board
while moving above. The specifications of the Charuco
board are reported in Table I. The Charuco board (1.85
× 2.95 m) was placed on the floor and a cube object was

TABLE II
RESULTS OF THE CAMERA POSE ESTIMATION WITH DIFFERENT

DURATION TIMES ∆t FOR IMAGE RECONSTRUCTION

Duration time (ms) 5 8 10
Frequency of pose estimation (Hz) 200 125 100

Number of total frames 791 495 396
Valid rate in estimation 0.814 0.844 0.859

Average RMSE (m) 0.0115 0.0113 0.0113

placed on the board to create occlusion. The event camera
was set about 2 m above the floor and moved along to the
Charuco board. In our experiments, the 6 × 9 Charuco board
which contains the first 27 elements of the DICT 4X4 50
ArUco dictionaries was used as shown in Fig. 4. From those
settings, approximately 4 s of event streams were generated.
From event streams, intensity images were reconstructed
using the trained C-RNN network. As mentioned in III-B,
to use event streams in the trained C-RNN network, it is
necessary to transform the event streams into a sequence of
event tensors by accumulating events over time intervals ∆t.

The estimation results of camera pose with the duration
time ∆t being 5 ms are shown in Fig. 5. We defined
the world coordinate frame with reference to the Charuco
pose. In other words, one of the corners of the Charuco
board was the origin (0, 0, 0) of the coordinate. As shown
in Fig. 5, the yellow line indicates the estimated camera
path while the green line indicates the GT camera path.
Fig. 6 shows reconstructed intensity images and the Charuco
board detection results at different frame numbers of the
case that the duration time ∆t being 5 ms. When the
duration time ∆t being 5 ms, approximately 800 frames of
intensity images were reconstructed from the simulated event
streams. i indicates frame numbers. Corresponding event
frames were also generated and shown on the left side of
reconstructed images. The Charuco board detection results
also were redrawn on the event frames for comparison. As
shown in Fig. 6, the Charuco board was detected despite
the appearance of the obstacle caused by the cube object.
The results in Fig. 5 and Fig. 6 show that the proposed
methodology can basically successfully detect the Charuco
board and accurately estimate the camera pose even though
there was the occlusion occurred by the cube object.

Experiments were also performed with different dura-
tion times ∆t of 5, 8, and 10 ms. This resulted that
the intensity images being reconstructed at 200, 125, and
100 Hz, respectively. Table II summarizes the camera pose
estimation results for different duration times ∆t of image
reconstruction. As shown in Table II, the valid rates in the
estimation of camera pose were 0.814, 0.844, and 0.859,
respectively. And the corresponding average errors of the
estimated camera position were 0.0115 m, 0.0113 m, and
0.0113 m, respectively. Increasing the duration time of the
event stream used to reconstruct one intensity image slightly
improved the valid estimation rate and the error of the
estimation. It could be explained that when increasing the
duration time, the quality of the reconstructed intensity
images was improved and led to a higher valid rate in the
estimation results of camera pose.

Fig. 7 presents the error in estimation results of camera
position over time. As shown in Fig. 7, the errors in the
position estimation are less than 0.02 m at most of the
timestamps, especially in the period of 0-3200 ms. During
this period, the results of the detection of the Charuco corners
were sufficient so it was able to estimate the camera pose
with high accuracy. This can be considered to be good
enough since the camera was quite far always from the



Fig. 6. Charuco board detection results in reconstruction images (2nd and 4th columns) at different frame numbers when the duration time ∆t being
5 ms. Corresponding event frames were also generated (1st and 3rd columns). The detection of the Charuco board was performed in the reconstructed
images. The detected results were plotted on both the reconstructed images and corresponding the event frame images.

Fig. 7. The error (RMSE) in the results of the estimation of camera position
with different duration times ∆t(s). The blue dot line, orange dot line, green
dot line indicate the case of the duration time ∆t = 5 ms, 8 ms, and 10
ms, respectively.

Charuco board. However, the error tends to become bigger
at later timestamps. This can be explained by the camera
being farther away and also the reconstructed image quality
is degraded at the later timestamps.

Charuco vs chessboard and circle grid board: In order
to confirm the versatility of the proposed methods, we also
conducted the second experiment to compare with methods
that use a chessboard or a circle grid board. Note that

to be able to use the chessboard or circle grid board for
camera pose estimation, the entire board must always be
visible to the camera. Therefore, we set up the camera path
so that entire board is always inside the field of view of
the camera and the obstacle above the board as shown in
Fig. 4 also was removed. All setups and processes for image
reconstruction were the same in all the methods. Fig. 8 shows
some estimation results of different methods. As shown in
Fig. 8, the proposed methods were able to detect the Charuco
board even though there were failures in the detection of
the chessboard or circle grid board. The world coordinate
system was set with reference to the center of the boards.
Table III summarizes the camera pose estimation results for
different methods. As shown in Table III, even in the case
that the camera was set to always capture entire the boards,
the valid rate in the estimation of the proposed method
was 0.791, much higher than the methods using chessboard
(0.467) or circle grid board (0.182). However, even though
the proposed method archived quite good results (average
RMSE: 0.008 m), the methods using the chessboard or circle
grid board showed better results, with average RMSEs were

TABLE III
RESULTS OF THE CAMERA POSE ESTIMATION

Methods (ms) Charuco (Ours) chess circle grid
Frequency estimation (Hz) 200 125 100

Number total frames 571 571 571
Valid rate 0.791 0.467 0.182

Average RMSE (m) 0.008 0.003 0.003



Fig. 8. Some estimation results of different methods using chessboard,
circle grid board, or Charuco board.

Fig. 9. Some failure examples of the Charuco board detection in the
sequence of reconstructed images at 200 Hz. The trained C-RNN failed to
reconstruct good quality images at some first frames such as frame no. 14
(a). Or some artifacts appeared in the reconstructed images such as frame
no. 706 (b) frame no. 777 (c).

approximately 0.003 m in both methods. From those results,
we concluded that the chessboard or circle grid board-based
methods are preferable to the Charuco board-based method
for the calibration task that accuracy is more prioritized.
On the other hand, for tasks like camera pose estimation,
the proposed method is preferable because it showed good
accuracy enough and a much higher valid rate, and also
allows the obstacle.

Limitations: Although compelling results have been
demonstrated for pose estimation, we acknowledge a few
limitations still exist in the proposed approach. Fig. 9 shows
some failures in reconstructing intensity images. The trained
C-RNN could not reconstruct high enough quality im-
ages in some frames, such as early frames like frame no.
14 (Fig. 9 (a)) or some later frames like frame no. 706
(Fig. 9 (b)) and frame no. 777 (Fig. 9 (c)). These issues are
considered to be the disadvantages of the proposed method,
which is based on the image reconstruction-based approach.
The intensity image reconstruction approach is useful as
well-constructed algorithms for normal frame-based images
can then be utilized. However, because of using the recurrent
neural network for intensity image generation from event
streams, it also can lead to some common issues which
usually being encountered with the recurrent neural network.
It is the lack of quality at some initial frames or bad results
at one point that will affect the results in later frames.

V. CONCLUSION

In this study, we proposed a novel methodology to esti-
mate 6DoF pose for the event camera based on an image
reconstruction approach using a Neural network. By using
reconstructed images from event streams that captured a
Charuco board, the 6DoF pose of the event camera can
be estimated with high accuracy. Experiments performed in
simulation environments demonstrate the effectiveness of the
proposed method.

In the future, experiments on real event data will be
conducted for further evaluation. Moreover, the methodology
for improving the quality of reconstructed images will be
explored.

REFERENCES

[1] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A.
Censi, S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D.
Scaramuzza, ”Event-based Vision: A Survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 44, No. 1, pp. 154–
180, 2020.

[2] M. Fiala, “Artag, A Fiducial Marker System Using Digital Tech-
niques,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Vol. 2, pp. 590-–596, 2005.

[3] S. Garrido-Jurado, R. Munoz-Salinas, F. Madrid-Cuevas, and M.
Marin-Jimenez, “Automatic Generation and Detection of Highly Reli-
able Fiducial Markers under Occlusion,” Elsevier Pattern Recognition,
Vol. 47, No. 6, pp. 2280—2292, 2014.

[4] F. E. Ababsa and M. Malik, ”Robust Camera Pose Estimation Using
2d Fiducials Tracking for Real-time Augmented Reality Systems,”
Proceedings of the ACM SIGGRAPH International Conference on
Virtual Reality Continuum and Its Applications in Industry, pp. 431–
435, 2004.

[5] K. Huang, Y. Wang, and L. Kneip, ”Dynamic Event Camera Cali-
bration,” Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 7021–7028, 2021.

[6] M. Muglikar, M. Gehrig, D. Gehrig, and D. Scaramuzza, ”How
to Calibrate Your Event Camera,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
pp. 1403–1409, 2021.

[7] D. Hu, D. DeTone, and T. Malisiewicz, ”Deep Charuco: Dark Charuco
Marker Pose Estimation,” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8436–8444, 2019.

[8] C. Scheerlinck, B. Nick, and M. Robert, ”Continuous-time Intensity
Estimation Using Event Cameras,” Proceedings of the Asian Confer-
ence on Computer Vision, pp. 308–324, 2018.

[9] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, ”High Speed
and High Dynamic Range Video with An Event Camera,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 43,
No. 6, pp. 1964–1980, 2019.

[10] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, ”Events-
to-Video: Bringing Modern Computer Vision to Event Cameras,”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3857–3866, 2019.

[11] Y. Zou, Y. Zheng, T. Takatani, and Y. Fu, ”Learning to Reconstruct
High Speed and High Dynamic Range Videos from Events,” Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2024–2033, 2021.

[12] C. Posch, D. Matolin, and W. Rainer, ”A QVGA 143 dB Dynamic
Range Frame-Free PWM Image Sensor with Lossless Pixel-Level
Video Compression and Time-Domain CDS,” IEEE Journal of Solid-
State Circuits, Vol. 46, No. 1, pp. 259–275, 2010.

[13] G. Bradski and A. Kaehler, ”The OpenCV Library,” Miller Freeman
Inc. Dr. Dobb’s Journal: Software Tools for the Professional Program-
mer, Vol. 25, No. 11, pp. 120–123, 2000.

[14] The Blender Foundation, https://www.blender.org, (Accessed 27 Oct.
2022).

[15] D. Gehrig, M. Gehrig, J. Hidalgo-Carrio, and D. Scaramuzza, ”Video
to Events: Recycling Video Datasets for Event Cameras,” Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3586–3595, 2020.


