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Abstract— Tracked robots have high traversability over
rough terrain. However, even for such robots, it is still chal-
lenging to traverse terrain with non-fixed obstacles which may
move when the robots go over them. Therefore, we propose a
reinforcement learning-based method to generate the motion
of the tracked robot to go over the obstacle. We set a task
where the robot attempts to go over a sphere-shaped non-fixed
obstacle and reach the goal. To succeed in the task, we designed
a reward function so that the robot can reach the goal as
straight as possible. As a training algorithm, Deep Q-Network
was used and the robot was trained in a dynamics simulator.
It was confirmed that the robot succeeded in the task using
the trained network, which generated motion for going over a
sphere-shaped non-fixed obstacle.

I. INTRODUCTION

Every year, a plethora of disasters happen in Japan, such
as earthquakes, volcanic eruptions, and typhoons. To mitigate
the damage from those disasters, it is important to swiftly
survey the affected area and to start disaster recovery as soon
as possible. Because there are risks of secondary disasters,
it is not desirable for humans to work onsite. Therefore, it
is highly desirable that robots conduct the recovery tasks
instead of humans. Robots can be distinguished by their
locomotion system: wheeled robots, legged robots, jumping
robots and flying robots have been considered for disaster
recovery work. In this study, we focus on tracked robots due
to their high traversability on rough terrain

Disaster areas are generally complex and are difficult to
traverse even for tracked robots. One of the reasons is the
existence of obstacles. There are many studies regarding
tracked robots’ ability to go over obstacles. For example,
the changeable track mechanism was designed to enable the
robot to ascend stairs [1][2]. In [3][4], by controlling sub-
tracks adaptively with respect to the ground shape, it became
possible for robots to run stably on rough terrain. Also,
the terrain dynamics between ground and tracks, known as
terramechanics, were considered to climb steps [5]. Aside
modeling approaches, there are reinforcement learning-based
approaches to run on rough terrain by selecting the optimal
shape of tracks [6][7][8]. In those researches, the ability
of tracked robots to go over obstacles was analyzed and
improved. However, the target obstacles were fixed obstacles
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Fig. 1: The tracked robot fails to go over non-fixed obstacles.
The robot climbs the obstacle from 1 to 2, and the obstacle
rolls under the robot in 3, which causes the robot to slide
down backward in 4.

such as steps and stairs. In real disaster areas such as flooding
or volcanic activity, there are mostly non-fixed obstacles such
as loose rocks, which may move while interacting with the
tracked robots.

Faced with such non-fixed obstacles, tracked robots may
fail to go over them as illustrated in Fig. 1 because of the
rolling of the obstacles. This may lead to not only damage
to the robot but also failure to reach the desired destination.

Few studies have considered such non-fixed obstacles.
In [9], the authors analyzed sliding-down and turning-over
conditions when the tracked robot goes over a non-fixed
cylinder-shaped obstacle on a slope. However, they did not
explicitly achieve the motion by the tracked robot to allow
going over such a non-fixed obstacle. Thus, the objective of
this research is motion generation for a tracked robot to go
over non-fixed obstacles.

In this paper, we proposed a reinforcement learning-based
method to go over a sphere-shaped non-fixed obstacle by
designing a reward function for a task as described in the next
section. We confirmed the effectiveness of reinforcement
learning-based approach and the tracked robot successfully
generated the motion to go over the obstacle in a dynamics
simulator.
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Fig. 2: This study considers an environment where there is
one sphere-shaped non-fixed obstacle on a flat ground. The
task is to reach the goal line from the start point, in which
the tracked robot is already on the non-fixed obstacle.

II. PROBLEM SETTING

In this study, for the sake of simplicity, we set an environ-
ment where there is one sphere-shaped non-fixed obstacle on
a flat ground, as in Fig. 2. The task is to reach the goal line
X = Xgoal from the start point. In the start point, the tracked
robot is already on the non-fixed obstacle. Here, this study
assumes an environment where obstacles densely exist on
the ground and the tracked robot cannot make path planning
that avoids climbing obstacles.

The coordinate systems fixed to the environment and the
tracked robot are defined as XY Z and xyz, respectively.
r = (xR, yR, zR)

T is the vector of the origin of the tracked
robot coordinate system, θ = (θroll, θpitch, θyaw)

T is the
vector of the tracked robot’s orientation. It is assumed that
these r,θ and their differential values are known, and the
obstacle entry point relative to the tracked robot, y = p is
known.

III. METHOD

A. Learning-based Approach

There are model-based approaches, but those require
experts to design a model for each environment setting.
This process is very laborious, time-consuming and more
importantly, tracked robots cannot perform well when faced
with a new situation. To deal with this problem, it is better
that the tracked robot learns optimal motions to succeed in
tasks through interaction with the environment. Therefore, in
this paper, reinforcement learning [10] is used.

B. Q-learning Formulation

A state, action, and reward at time step t are defined as
st, at and rt, respectively. π(at|st) is called policy, which
represents the probability distribution of at choice when the
tracked robot is in state st. During training phase, policy
π(at|st) is epsilon greedy policy to explore an expectable
action in low probability ϵ as follows:

π(at|st) =

1− ϵ (at = arg max
a′

Q(st, a
′))

ϵ (at is chosen at random)
. (1)

Q-learning is defined as maximizing the Q func-
tion Qπ(s, a) = Eπ[Gt|st = s, at = a], where

Gt =
∑T−t

k=0 γ
krt+k, γ ∈ [0, 1] and T is the final time

step of each episode. Gt is the sum of discounted expected
returns. Qπ(st, at) is updated as below:

Q(st, at)

← Q(st, at) + α(rt + γmax
a′

Q(st+1, a
′)−Q(st, at)).

(2)

Based on Eq. (2), the Q function is updated and con-
verges towards the optimal Q function Q∗. The opti-
mal policy π∗ is deterministic policy and selects action
at = argmaxa′ Q∗(st, a

′).

C. Deep Q-Network

Because Q function is represented as a table of states
and actions, Q-learning cannot be applied directly to the
continuous state space. We decided to use Deep Q-Network
(DQN) [11], which applies a neural network to the Q func-
tion so that continuous state space can be inputted. Q func-
tion is approximated as Qϕ with parameter ϕ. Furthermore,
DQN uses two techniques: experience replay and target
network. Experience replay consists of adding an experience
(st, at, rt, st+1) to a replay buffer and sample mini-batches
from the buffer. Target network consists in setting another Q
network using parameter ϕ′. This parameter ϕ′ is fixed and
synchronized with the original Q network parameter ϕ every
C episode.

D. Definition of State and Action

The state st is defined as st = (r, ṙ′,θ, θ̇, p). Here ṙ′

is the velocity of the robot in the robot coordinate and
is calculated using tranformation matrix from the world
coordinate to the robot one. The action at is defined as 9
discrete actions which are combinations of driving right and
left tracks with 3 discrete angular velocities, 0, v,−v [rad/s].
The definition of the discrete at number is shown in Table I.

Here, cr and cl represent angular velocity commands of
right and left tracks, respectively. For example, in action 0,
rotating right and left tracks both with the angular velocity v,
generates forward motion of the tracked robot. Also, in action
3, rotating right and left tracks with the angular velocity
v and −v respectively, generates counter-clockwise neutral
turn.

TABLE I: Definition of discrete action at.

at number Commands to right and left tracks

0 cr = v, cl = v

1 cr = −v, cl = −v

2 cr = 0, cl = 0

3 cr = v, cl = −v

4 cr = 0, cl = −v

5 cr = v, cl = 0

6 cr = −v, cl = v

7 cr = 0, cl = v

8 cr = −v, cl = 0
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Fig. 3: Illustration of the environment from a top view. The
light blue rectangle is the tracked robot and the green circle
is the sphere-shaped non-fixed obstacle. The red dashed line
represents the goal line.

E. Architecture of DQN

As an approximation function for the Q function, 4 fully
connected layers with 128 units each are constructed. ReLU
function is used as an activation function. In reinforce-
ment learning, the system is usually considered in MDP
framework. However this research problem is essentially a
POMDP problem because the true position of the obstacle
under the robot cannot be measured while going over the
obstacle. To reduce the influence of POMDP, state is stacked
for the past m experiences [11][12]. Thus the input of this
network u is set st−i(i = 0, 1, . . . ,m−1). In the experiment,
m was set to 10. The output is Qϕ(st, at). The loss function
is mean squared error with the output Qϕ(st, at) and target
network Qϕ′(st, at).

F. Design of a Reward Function for the Task

As described in Section II, the task is that the tracked robot
attempts to go over a sphere-shaped non-fixed obstacle and
reach the goal. It is desired that the robot reaches the goal
while keeping going as straight as possible. To reflect this
idea into the reward function, at first, we set a positive reward
if the robot is generating a larger velocity toward the goal.
As shown in Fig. 3, the velocity toward the goal along X
direction is represented as ẋR. If ẋR is positive and large,
the robot is considered to be driving smoothly toward the
goal. If the maximum translational velocity of the robot is
defined as vmax, this reward rvelocity is expressed as follows:

rvelocity =
ẋR

vmax
. (3)

Second, we set a negative reward if the tracked robot
deviates from a straight path to the goal. If |θyaw| is large,
the robot deviates its desired straight direction as shown in
Fig. 3. This reward ryaw is defined as follows:

ryaw =
|θyaw|
π

. (4)

Third, a reward related with the robot’s pitch θpitch was
introduced to avoid the robot going over the obstacle with a
high pitch. The higher the robot’s pitch, the more difficult it
is to go over and more likely to slide down.

rpitch =
θpitch
π

. (5)

From the above, we designed the reward function as
follows:

rt = w1 · rvelocity + w2 · ryaw + w3 · rpitch + w4. (6)

Here, wi (i = 1, 2, 3, 4) are hyperparameters that adjust
the weight of each term. The fourth term in Eq. (6) is a
penalty term for time steps to speed up the robot to reach
the goal.

In addition, the reward rT given at the end of each episode
was set as follows:

rT =

{
RT if the goal was reached
−RT otherwise

. (7)

IV. EXPERIMENT

In this experiment, the proposed method was implemented
to the tracked robot in a dynamics simulator, and we vali-
dated its effectiveness for going over a sphere-shaped non-
fixed obstacle. The expriment environment was constructed
using ROS and Gazebo simulator.

The tracked robot’s 3-dimensional model was made based
on the tracked robot model proposed in [13]. The tracks’
friction coefficient was set to 0.85. We set the value of action,
the track rotational velocity v, to 2.0 [rad/s].

The obstacle’s radius was 0.035 [m] and the mass is about
0.54 [kg] (the density is 3.0 [g/cm3]). The tracked robot has
been confirmed to be able to go over the obstacle of this
size through prior manual operation in the simulator. Also,
it was confirmed that the tracked robot was not able to go
over the obstacle when it was commanded to simply keep
going straight forward.

In this experiment, the task described in Section II is
considered, that is the tracked robot, already on the sphere-
shaped non-fixed obstacle, starts an action, and attempts to go
over the obstacle and reach the goal line. The initial position
and orientation of the tracked robot were (xR, yR, zR)

T
=

(−0.235, 0, 0.14)T , (θroll, θpitch, θyaw)
T

= (0,−0.15, 0)T
and the goal line was set at Xgoal = 0.5.

During training, we changed the obstacle’s initial posi-
tion along y, p at each episode. However we found from
prior experiment that the training was challenging if p was
changed along the whole width of the bottom surface of
the robot. To speed up training, we divided the range of
p into five segments, Di(i = 1, 2, 3, 4, 5), and trained for
each segment. This is emperical considering that the motion
strategy seemed to be different in each segment from the
prior manual operation. Here, we trained the robot from
D1 to D3 considering symmetry. D1, D2 and D3 were
set as [3W/10,W/2], [W/10, 3W/10] and [−W/10,W/10],
respectively, where W is the width of the robot bottom
surface.

The condition to end an episode is that the tracked robot
reaches the goal line, or it significantly goes backward before
reaching the goal or deviates laterally (xR < −0.6 or |yR| >



0.7), or the yaw gets too large (|θyaw| > π
2 ). Episodes were

ended when the time step was over 200.
The hyperparameters of this experiment are shown in

Table II.

V. RESULT

The results of rewards during training in each segment
are shown in Fig. 4. The light blue line shows the reward
in each episode and the blue one shows the moving average
reward every 100 episodes. The moving average reward in
all segments was getting higher as the episode went on.
However, the reward (plotted in a light blue line) is vibrating
and it means that the robot was not be able to succeed in the
task in some situations. The training result will be better by
tuning hyperparameters and this is left as a future work.

Next, we analyze the actual motion generated by the
trained Q network. Fig. 5 shows the result of the generated
motion in segment D3 and Fig. 6 shows the action at selected
by the trained network at each time step1. Taken steps from
the start point to the goal was 137, 1 step took about 0.1 [s],
and the total taken time was about 14 [s].

When the tracked robot was controlled to simply go
forward, the robot was not able to go over the non-fixed
obstacle and continuously slid down as shown in Fig. 5(a).
This was because the obstacle under the robot started rolling
before the center of the gravity of the robot went over the
contact point between the robot and the obstacle.

On the other hand, from Fig. 5(b), the tracked robot
operated two tracks and moved the obstacle to the edge of
the robot’s bottom surface, which led the robot to tilt. Then
one track contacted the ground and went over the obstacle.
Specifically, the tracked robot started an action at t = 0, and
then the robot took the actions a = 3, which can be seen from
Fig. 6. The action 3 rotated the right track v and the left one
−v from Table I and realized the turning motion. Due to this
turning motion, the obstacle moved to the edge of the robot,
which made the robot tilt at t = 25. The left track contacted
the ground surface and could give the traction power from
the ground to the front of the track. Then, the robot moved
forward by a = 7 on the obstacle and went it over around
t = 50. Then, the tracked robot was able to go over the

TABLE II: Hyperparameters used in this experiment.

Hyperparameter Value

w1 1.0

w2 −1.0

w3 1.0

w4 −0.1

ϵ 0.1

γ 0.98

C 20

RT 100

learning rate 0.001

1A video is available at: https://youtu.be/oFCa_oh16u0.

(a) Reward in D1

(b) Reward in D2

(c) Reward in D3

Fig. 4: The result of rewards during training. The light blue
line is the reward in each episode and the blue one is the
moving average reward every 100 episodes. For readability,
the axis of the reward is limited from −200 to 200. The
reward grew higher in all segments as the episode went on.

obstacle at t = 113 and reached the goal line. In the prior
experiment, the tracked robot was operated manually and it
was not able to go over the non-fixed obstacle if it was kept
going forward, using action a = 0. From this experiment,
the proposed method itself did not select the forward action.
Instead, actions which move the robot laterally and relatively
moves the obstacle to the edge were selected as the optimal
policy by the trained network.

Examples of the results of the motion in segments D1 and
D2 are made available online2. The optimal policy is almost
same as the one in D3, which moves the obstacle to the
edge of the robot, then makes it tilt and contact the ground.
However, the selected actions to turn the robot were different
as shown in Fig. 7. This may be because the obstacle’s
motion such as rolling direction changes according to the
track motion selected by the trained network. As a result,
the trained network learned different actions in each initial

2https://youtu.be/lXfPJogBmGk. Note that the trained network
in segment D2 was the one saved at the 1900th episode.
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Fig. 5: Motion results. Fig. 5(a) shows the result where the
tracked robot was simply kept going forward. The robot
started to climb the obstacle. However the robot was not
able to go over it. On the other hand, in Fig. 5(b), the tracked
robot was able to go over using the actions selected by the
trained network.

position of the obstacle to realize the optimal policy.

VI. CONCLUSION

In this paper, we focused on tracked robots and generated
motion for the robot to go over a sphere-shaped non-fixed
obstacle. We used a reinforcement learning-based method
called DQN, and designed a reward function appropriate
for the task. The tracked robot was trained in a dynamics
simulator, and we verified the effectiveness of reinforcement
learning-based method for going over a sphere-shaped non-
fixed obstacle in a simple environment.

Future work is constructing a method for more complex
problem settings such as slope, rough terrain or going over
other types of obstacles of different size, shape and friction.
Actions will be continuous to adapt in various situations. The
implementation of the trained network to the actual tracked
robot is also necessary.
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Fig. 6: The change of selected actions. The trained network
selected action 3 to turn the robot and make it tilt. The
vertical red lines correspond to the key frame of Fig. 5.

Fig. 7: The change of selected actions in segments D1 and
D2. The vertical lines show the time at which the robot tilted.

REFERENCES

[1] Lee C H, Kim S H, Kang S C, Kim M S, Kwak Y K: ”Double-track
Mobile Robot for Hazardous Environment Applications”, Advanced
Robotics, vol. 17, no. 5, pp. 447-459, 2003.

[2] Choi K H, Jeong H K, Hyun K H, Do Choi H, Kwak Y K: ”Obstacle
Negotiation for the Rescue Robot with Variable Single-tracked Mecha-
nism”, Proceedings of the 2007 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, pp. 1-6, 2007.

[3] Okada Y, Nagatani K, Yoshida K: ”Semi-autonomous Operation of
Tracked robots on Rough Terrain Using Autonomous Control of Active
Flippers”, Proceedings of the 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2815-2820, 2009.

[4] Ohno K, Takeuchi E, Chun V, Tadokoro S, Yuzawa T, Yoshida
T, Koyanagi E: ”Rollover Avoidance Using a Stability Margin for
a Tracked robot with Subtracks”, Proceedings of the 2009 IEEE
International Symposium on Safety Security and Rescue Robotics,
pp. 128-133, 2011.

[5] Li L, Wang W, Wu D, Du Z: ”Research on Obstacle Negotiation
Capability of Tracked Robot based on Terramechanics”, Proceedings
of the 2014 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pp. 1061-1066, 2014.

[6] Zimmermann K, Zuzanek P, Reinstein M, Hlavac V: ”Adaptive
Traversability of Unknown Complex Terrain with Obstacles for Mobile
Robots”, Proceedings of the 2014 IEEE International Conference on
Robotics and Automation, pp. 5177-5182, 2014.

[7] Yehezkel L, Berman S, Zarrouk D: ”Overcoming Obstacles with a
Reconfigurable Robot Using Reinforcement Learning”, IEEE Access,
vol. 8, pp. 217541-217553, 2020.

[8] Totani M, Sato N, Morita Y: ”Step Climbing Method for Crawler Type
Rescue Robot Using Reinforcement Learning with Proximal Policy
Optimization”, Proceedings of the 2019 12th International Workshop
on Robot Motion and Control, pp. 154-159, 2019.

[9] Yajima R, Nagatani K, Hirata Y: ”Research on Traversability of
Tracked robot on Slope with Unfixed Obstacles: Derivation of



Climbing-over, Tipping-over, and Sliding-down Conditions”, Ad-
vanced Robotics, vol. 33, no. 20, pp. 1060-1071, 2019.

[10] Sutton R S, Barto A G: Reinforcement Learning: An Introduction,
MIT press, 2018.

[11] Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M
G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G, Peterson S,
Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D,
Legg A, Hassabis D: ”Human-level Control through Deep Reinforce-
ment Learning”, nature, vol. 518, no. 7540, pp. 529-533, 2015.

[12] Haarnoja T, Zhou A, Hartikainen K, Tucker G, Ha S, Tan J, Kumar V,
Zhu H, Gupta A, Abbeel P, Levine S: ”Soft Actor-Critic Algorithms
and Applications”, arXiv preprint arXiv:1812.05905, 2018.

[13] Okada Y, Kojima S, Ohno K, Tadokoro S: ”Real-time Simulation
of Non-Deformable Continuous Tracks with Explicit Consideration
of Friction and Grouser Geometry”, Proceedings of the 2020 IEEE
International Conference on Robotics and Automation, pp. 948-954,
2020.


