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Abstract— Industrial Plants such as refineries are complex
installations that require constant monitoring and inspection to
ensure safe and stable operation. This is currently conducted
by field operators and one of the important tasks is acoustic
inspection, i.e., listening for abnormal sounds while on patrol,
skills of which are difficult to describe in operation procedures.
Due to the issues of skilled staff retirement, costs, and inspection
quality variance, the automation of acoustic inspection is
desirable. Due to the large scale of these installations, several
acoustic landscapes co-exist. This makes the establishment of a
single model for abnormal sound detection difficult. Therefore,
considering a mobile robot patrolling the plant, this study
proposes to divide the robot’s path into a grid where in
each grid cell a distinct model is trained, bypassing the issue
of differing acoustic landscapes. Experiments conducted in
a simulated environment confirmed the effectiveness of the
proposed method.

I. INSPECTION OF INDUSTRIAL PLANTS

While the recent trend is towards the reduction of carbon
emissions due to ecological concerns, industries related to
the processing of crude oil remain a major pillar of modern
societies by providing critical products such as gasoline
for automobiles and plastic goods. At the core of the oil
processing industry are complex plants such as the one
pictured in Fig. 1.

In such installations, one major concern is the mainte-
nance of the machinery: abnormal operation due to aging
or malfunctions may lead to costly production losses and/or
expensive repairs if left unchecked for a long time. There-
fore, plants usually have dedicated groups of field operators
who perform inspection patrol on a high frequency, up to
several rounds per day. Such patrols include conducting a
comprehensive inspection of the equipment while walking
around the plant. In Table I are reported some common
anomalies that can be detected by human senses during their
usual field patrol. It can be seen that field operators apply
their sight, hearing, smell and feeling temperature to detect
anomalies in practice. One issue is that individual differences
between field operators directly affect the quality of the
conducted inspection. Additionally, the process is laborious
and manpower heavy, resulting in high costs. Therefore, the
automation of plant inspection patrol is highly desirable.
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Fig. 1: Kawasaki Refinery (ENEOS Corporation)

Mainly around rotating machinery such as pumps and
compressors, sound is an important factor to detect anoma-
lies. For example, dry/scratched bearing can be conveniently
detected during operation by the high pitch noise they
produce. However it is challenging since several machines
operate in close proximity of each another in a plant and
thus the environment is noisy.

Towards this goal, the development of a mobile robot for
plant inspection is ongoing [1]. Such mobile robots can move
on flat grounds as well as stairs due to their crawlers: they
can therefore follow the same inspection patrol path as field
operators. Due to the potential presence of combustible gases
in the environment, sensors of such robots need to adequately
protected to prevent possible ignition of the surrounding
atmosphere. This raises the costs of sensor installation, thus
the available number of sensors is limited.

Audio-based anomaly detection can be tackled from sev-
eral perspectives. A classification approach using supervised
learning, i.e., gathering training data of normal and abnormal
sound and training a classifier model, has been traditionally
a popular one. Convolutional Neural Networks are often
employed in this task, such as in [2], [3] or [4]. While
highly performing classifiers are reported, it is conditioned
by the availability of adequate training data. Normal sound
data can be easily obtained from normal operation of the
target machinery. However, anomalies are rare in compari-
son, thus gathering enough abnormal sound data for training
is difficult. Additionally, anomalies correspond to any non-
normal operation, therefore it is impossible to collect data



TABLE I: Common issues field operators look for during their usual inspection patrol (obtained through interviews with
actual workers in the field, ENEOS Corporation).

Machinery type Common issues Detection means

Pump

Bearing abnormal sound Hearing
White smoke caused by leakage Sight and smell
Ignition due to leakage Sight and smell
Low oil level Sight
Decrease/loss of coolant due to clogging, etc. Touch
Abnormal heat emission Feeling temperature

Pipe

Surface corrosion Sight
Aging of thermal insulation Sight
Abnormal surface temperature Feeling temperature
Leaks due to corrosion Sight and smell
Gas/oil leakage at flanges Sight and smell

Gauge Abnormal values Sight

Miscellaneous Heat generation from furnace wall due to fallen
refractory bricks

Sight

Inadequate valve opening/closing Sight

for all possible classes of anomaly.
In that sense, unsupervised learning approaches could be

considered more suited for anomaly detection. This term has
historically loosely regrouped various approaches that did
not fit the definition of supervised learning. In recent years,
Autoencoders, consisting of learning a normal model using
only normal data to then discriminate any outlier data as
abnormal, have gained high popularity and seen successful
application to abnormal sound detection [5][6]. However,
those were limited to clean and cured datasets or single
machine monitoring. Plants are large sites that often span
over several square kilometers, with possibly hundreds, if
not thousands, of unique sound sources due to the made-to-
order nature of most machinery of the field and the spatially
irregular arrangement of these machines. This results in
several acoustic landscapes, i.e., environments with differing
sounds, coexisting in a single large environment. Establishing
a single normal model for such an environment is therefore
difficult: the normal sound in one location differs greatly
from the one in another location within the same plant.

Therefore, the objective of this paper is to achieve ab-
normal sound detection for a mobile robot in environment
containing several acoustic landscapes.

II. ACOUSTIC DEFECT DETECTION

As previously stated, the environment considered in this
study is one containing several acoustic landscapes with
differing characteristics. Two states are defined: normal and
abnormal. The normal state corresponds to all equipment
functioning normally. Therefore, all pieces of equipment emit
their normal sound. When a piece of equipment fails, it
emits a different sound, which we designate as abnormal
sound. This is the abnormal state. While normal sound data is
available for use in training, abnormal data is not. A mobile
robot patrols along a route near each piece of equipment.
Using a microphone mounted on the robot, the goal is to
accurately detect the abnormal sound of a piece of equipment
when the robot is in its vicinity.

Fig. 2: Concept of the proposed method: the patrol route of
the robot is divided into a grid and an Autoencoder is trained
on each grid.

A. Concept

The challenge in the considered environment is the co-
existence of various acoustic landscapes. A normal model for
the whole plant, if possible, would therefore be highly com-
plex, require large amounts of training data, as well as long
training time and resources. Therefore, the concept of the
proposed method is to divide the environment into smaller
sub-environments: this would result in each sub-environment
being limited to only a single acoustic landscape. Concretely,
this is achieved through division of the patrol route of the
robot into a grid. Afterwards, in each grid cell is trained an
Autoencoder using only the training data collected on that
particular grid cell. During the actual patrol, the Autoencoder
of the specific grid cell on which the robot is currently
located is used to perform the inspection. This is illustrated
in Fig. 2.

B. Training data acquisition and pre-processing

In each grid cell, the sound signal is gathered through a
microphone. The sound signal, initially a time-series data,
is transformed into Fourier spectrum using the Short-time
Fourier Transform with a sliding Hanning window with



overlap. Those would serve as inputs to the Autoencoder.

C. Autoencoder Architecture

The Autoencoder is one of the unsupervised Deep Learn-
ing methods and can be used for anomaly detection by train-
ing only on normal data. The Autoencoder is comprised of
two symmetrical components: the encoder and the decoder.
The encoder has weights we and biases be as parameters,
as in Eqs. (1,2). Similarly, the decoder has weights wd and
biases bd as parameters, as in Eqs. (3,4). During the training
process, samples are inputted into the encoder first and
reduced into a lower dimension feature space, often referred
to as the latent space in the literature. Following that, the
decoder reconstructs the sample into its original dimension.
For input A = (a1, ..., aN ) and output B = (b1, ..., bN ) of
the Autoencoder, the Mean-Square Error Loss (MSELoss)
is defined as in Eq. (5) and training is conducted so as to
minimize it. Therefore, the Autoencoder learns to compress
and decompress the data with minimal loss of information,
i.e., without reconstruction error.

ue = we · xe + be (1)
xe = relu(ue) (2)

ud = wd · xd + bd (3)
xd = relu(ud) (4)

MSELoss(A,B) =
√

(a1 − b1)2 + ...+ (aN − bN )2 (5)

D. Threshold Value Selection

During inference, a threshold is used on the previously
mentioned reconstruction error to assess whether the con-
sidered sample belongs to the same data distribution as the
ensemble of data provided during training, i.e., if it belongs
to the normal sound data distribution of not. If a normal
sound sample is considered, the reconstruction error should
be low since the Autoencoder was trained on such data. On
the other hand, if a abnormal sound sample is considered,
the differing Spectrum characteristics should not allow the
Autoencoder to successfully compress and decompress the
sample and the reconstruction error should be large.

To determine the appropriate value for the threshold T ,
the reconstruction error of the Autoencoder on the training
data (X1, ...,XNs

) after training is approximated as a con-
tinuous probability density distribution p by Kernel Density
Estimation (KDE) using kernel K as in Eq. (6), where h is
the bandwidth. The value for the bandwidth h is selected as
in Eq. (7) following [7], with IQR the interquartile range
and σ the standard deviation of the kernel function. This
enables setting the threshold which would consider 90% of
the training dataset as normal data.

p(x) =
1

Ns ∗ h

Ns∑
i=1

K(
x−Xi

h
) (6)

h = 0.9min(σ,
IQR

1.34
) (7)

Sound source

Fig. 3: Schematic of the environment built using Pyrooma-
coustics and MIMII dataset.

III. EXPERIMENTS

A. Setup

Experiments were conducted through simulations to con-
firm the effectiveness of the proposed method. Using Py-
roomacoustics [8], a square room containing 16 sound
sources in a 4 by 4 configuration was established. For each
sound source, the sound of a distinct machine contained
in the MIMII dataset [9] was used. The schematic of the
simulation environment is provided in Fig. 3. The path of
the mobile robot was considered as a serpentine one going
between the rows of sound sources and was divided into a
grid with each grid cell being 2 m by 2 m. This resulted in
50 grid cells for the considered environment. In each grid
cell was collected 5168 training sample data. The duration
of each training data sample was about 0.2 s at sampling rate
22050 Hz. Those were converted into Fourier spectrum with
Hanning window of size 4096. In a similar fashion, test data
containing 1292 normal samples and 1292 abnormal samples
over the whole environment was collected.

The considered Autoencoders were all limited to 4 layers
deep, of dimensions 2049, 512, 128 and 32. The learning rate
and weight decay were manually set at 0.08439 and 0.00078,
respectively.

Two scenarios were considered: A, were all sound sources
were normal, and B, where one sound source was abnormal
with the remaining 15 being normal.

B. Results and Discussions

The results obtained using a single Autoencoder for the
whole environment and those obtained using the proposed
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Fig. 4: Result of a single Autoencoder in scenario A.
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Fig. 5: Result of the proposed method in scenario A.

method are shown in Figs. 4 and 5, for scenarios A and B,
respectively. For each grid cell is reported the anomaly rate,
i.e., the percentage of the test data classified as abnormal by
each method. Therefore, the ground truth for the anomaly
rate is 0% for scenario A and 100% for scenario B.

For scenario A, simulating a plant working normally, i.e.,
without any abnormal sound present, it can be seen that
both methods achieved similar outputs. For each grid cell
where evaluation was conducted, the anomaly rates were
very low, under 1%. For scenario B, simulating a plant with
a machine experiencing an issue, i.e., emitting abnormal
sounds, differing outputs were observed for the considered
methods. In the case of a single Autoencoder, the grid
cells immediately adjacent to the source of the abnormal
sounds achieved anomaly detection rates between 57% and
61%. However, for grid cells located further away from the
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Fig. 6: Result of a single Autoencoder in scenario B.
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Fig. 7: Result of the proposed method in scenario B.

abnormal sound source, detection rates fell down to about
10%. This is due to two reasons. Firstly, as sound propagates
in the environment, it attenuates, rendering detection more
difficult at longer ranges. Secondly, the presence of normal
sources results in a mix of abnormal and normal sounds
being captured by the microphone. For grid cells further
away from the abnormal sound source, the sound signal is
predominantly composed of normal sounds, requiring a more
sensitive classifier for detection. In comparison, the proposed
method achieved much higher performance in scenario B.
anomaly detection rates of 100% were achieved for several
grid cells in the vicinity of the abnormal sound source.
Additionally, high anomaly detection rates were obtained for
grid cells further away from the abnormal sound source,



about the double compared to the method with a single
Autoencoder. This shows that the proposed method allows
for higher detection rate of abnormal sounds as well as
detection at longer distances.

IV. CONCLUSION

In this paper was proposed a method for abnormal sound
detection for a mobile robot in environments containing sev-
eral acoustic landscapes. The proposed method bypassed the
issue of establishing a model encompassing such a complex
environment by dividing the path of the robot into a grid
and training a normal sound model using an Autoencoder in
each grid cell.

One issue of the proposed method is the number of
models, which corresponds to the number of grid cells.
Therefore, as the robot path increases, the number of mod-
els also increases. In the future, we plan to improve this
approach by considering merging grid cells so that the
number of models more closely match the number of acoustic
landscapes. Additionally, we plan to conduct experiments in
more realistic environments such as actual plants: in such
settings, factors such as the influence of wind or sounds
produced by the robot itself will need to be considered.
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