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Abstract— 2D forward-looking sonar is a crucial sensor
for underwater robotic perception. A well-known problem in
this field is estimating missing information in the elevation
direction during sonar imaging. There are demands to esti-
mate 3D information per image for 3D mapping and robot
navigation during fly-through missions. Recent learning-based
methods have demonstrated their strengths, but there are still
drawbacks. Supervised learning methods have achieved high-
quality results but may require further efforts to acquire
3D ground-truth labels. The existing self-supervised method
requires pretraining using synthetic images with 3D supervision.
This study aims to realize stable self-supervised learning of
elevation angle estimation without pretraining using synthetic
images. Failures during self-supervised learning may be caused
by motion degeneracy problems. We first analyze the motion
field of 2D forward-looking sonar, which is related to the main
supervision signal. We utilize a modern learning framework
and prove that if the training dataset is built with effective
motions, the network can be trained in a self-supervised manner
without the knowledge of synthetic data. Both simulation and
real experiments validate the proposed method.

I. INTRODUCTION

Sonar sensors play a vital role in underwater perception
as ultrasound is invariant to water turbidity and illumina-
tion conditions. The next generation of 2D forward-looking
sonar (FLS) can generate images with high resolution and
good quality. These sensors are also small in size and are
suitable for use in commercial-class remotely operated vehi-
cles (ROVs) and autonomous underwater vehicles (AUVs).
Furthermore, they have already been applied to underwater
robotics tasks, such as mosaicking, mapping, and navigation
[1]–[3]. Owing to the unique imaging principle, the eleva-
tion angle information is missing during image formation.
Therefore, one of the most focused but challenging topics in
FLS research is the retrieval of 3D information.

Early research focused on the sparse 3D reconstruction
of acoustic images. Point and line features were used to
represent the 3D model, which is unintuitive for human
comprehension [4]. Recently, researchers have focused on
dense 3D reconstruction based on acoustic images. Gen-
erally, these methods can be classified into multiple- and
single-view methods. Multi-view methods use numerous
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Fig. 1. An example of motion degeneration. (a) The 2D forward-looking
sonar moves along the x-axis with a small motion tx. (b) All the 2D pixels
in the acoustic image move −tx in the x-axis. The 2D pixel displacement
is independent of the 3D structure. Such data may deteriorate the self-
supervised learning process of elevation angle estimation.

images to generate 3D models. They usually require a
large number of viewpoints, making it necessary to hover
around the target using underwater vehicles [5], [6] or rotate
the camera with motors [2]. Single-view methods utilize
shadow information or model ultrasound propagation for 3D
reconstructions [7]. Such methods only work under ideal
conditions and are not general and robust. Recent deep
learning-based methods have shown promising results for
the single-view missing dimension estimation problem [8],
[9]. The network in [9] was trained in a supervised manner,
which required 3D supervision. Because acquiring ground-
truth information for underwater scenes can be difficult due
to the limitations of sensing techniques, a self-supervised
training method would be highly valuable. Although in [8],
the missing dimension estimation network can be learned
in a self-supervised manner, it requires pretraining using
synthetic images of a similar target with ground truth labels,
which limits the application of the method because it may
require 3D model of a similar scene, and the preparation
of synthetic data also requires considerable effort. Self-
supervised learning of elevation angle estimation for FLS
without the help of simulation remains an open problem.

The aim of this study was to solve the aforementioned
problem. Self-supervised learning of elevation angle esti-
mation uses two adjacent frames from the acoustic video,
namely, the target view image It and the source Is. A
synthetic target view image Ĩt can be generated from Is,
motion Mt→s, and estimated pixel-wise target view elevation
angle Et = g(It). Here g(.) denotes the neural network.
Ĩt can be expressed as Ĩt = π(Is, Et,Mt→s), where π(.)
denotes the inverse warping process. The basic idea is to
optimize the following equation:

argmin
Et

L(It, Ĩt), (1)



where L is the loss function to minimize the difference
between the original target image and the one from view
synthesis.

We find that the motion type during dataset collection is
crucial, which may lead to training failure if the motion
is improper. As shown in Fig. 1, for some basic motions
such as x-axis translation, the displacements of the pixels
are independent of the 3D structure. In other words, an
arbitrary Et may satisfy Eq. (1), which degrades the training
of network g. To determine the type of motion that may
contribute to training, we first analyze the motion field of the
acoustic images. The motion field provides the relationship
between pixel displacement, pixel position, sensor motion,
and elevation angle. Based on theoretical analysis, we utilize
the most efficient motions to generate the dataset. We then
build a learning framework using modern techniques. For
real noisy images, we use a pre-trained network to generate
a signal mask to filter the background noise and multi-path
reflections for better performance.

In summary, our contributions are as follows.
• We propose a self-supervised learning method for FLS

missing dimension estimation. Furthermore, we prove
that the knowledge of synthetic data is not essential.

• We analyze the motion field for acoustic images and
choose the effective motions to train the missing di-
mension estimation network.

• Extensive experiments including simulations and field
experiments were carried out to verify our method.

II. RELATED WORKS

A. Acoustic Camera 3D Reconstruction

Early research on FLS used point or line features to
retrieve the 3D information of an object. Several methods
have been proposed to estimate the 3D position of the
features and the pose of the camera simultaneously [4], [10],
[11]. However, such sparse representation is not intuitive for
human perception. Feature extraction and data association
are also problems for acoustic images, considering the low
signal-to-noise ratio (SNR). Wang et al. applied a Gaussian
process with AKAZE features for terrain reconstruction [12].
Recent works have also used two acoustic cameras to sense
the environment [13], [14]. However, they still require the
extracted features to achieve stable performance.

Dense 3D reconstruction has been a trend in recent studies.
One direct approach is to use multiple views to construct a
3D model. Akyin et al. applied space carving to small objects
using signal masks [15]. Guerneve et al. linearized the sonar
projection model to an orthogonal projection and applied min
filtering to achieve a carving scheme [5]. Wang et al. used
occupancy mapping with an inverse sensor model to proba-
bilistically carve the space and update an object [2]. Westman
et al. utilized non-line-of-sight for 3D reconstruction [16],
[17]. Qadri et al. proposed an implicit neural representation
for surface reconstruction [6]. The aforementioned methods
achieve convincing results but require numerous viewpoints.
Although in [18], attempts have been made to estimate

3D information with 2∼3 viewpoints, it requires training
with ground truth labels, which is challenging in underwater
environments.

There is a need to estimate 3D information with a single
image for 3D mapping and navigation through a fly-through
motion. The acoustic camera can be considered as a confocal
configuration of a spotlight and camera. Shape-from-shading
scheme can be applied to such problems. Aykin et al.
modeled the ultrasound propagation and assumed diffuse
reflection for underwater objects [7]. 3D models can be
generated from object contours. Westman et al. utilized a
similar scheme for 3D reconstruction of flat continuous
surfaces [19]. The above-mentioned methods have strong
assumptions regarding the scene and may fail owing to the
low SNR of the acoustic image.

Deep learning techniques have been applied to estimate
3D information from a single image. Wang et al. proposed a
method for estimating the front depth of an acoustic image.
It can solve the non-bijective correspondence problem [9].
However, the network was trained in a supervised manner,
where ground truth labels were required. Although labels
can be acquired by generative adversarial network (GAN)
and a simulator, it is necessary to model a similar scene in
the simulator [20]. Considering the difficulty of acquiring
ground truth labels, self-supervised learning methods have
also been proposed. DeBortoli et al. proposed a learning-
based method for elevation angle estimation from a single
acoustic image [8]. The network was first trained in a
supervised manner using synthetic images with ground-truth
labels and then fine-tuned using self-supervised signals for
real images. However, it is unclear whether the network can
be trained without pretraining using synthetic images. In
fact, during training, supervised learning and self-supervised
learning were alternately carried out to ensure performance.
It is also necessary for deeper discussions of the problem,
such as which motion contributes to the training process,
because FLS faces a severe motion degeneracy problem. In
this study, we analyze the motion field of the FLS and choose
efficient motions to build the dataset for self-supervised
training. Using a state-of-the-art training framework and
proper datasets, we train the network with acoustic video
and corresponding motion information only.

B. Monocular Camera Self-supervised Depth Estimation

With the rapid development of deep learning technologies,
depth estimation from a single optical image has shown
stable performance. Initially, most of the methods were fully
supervised, requiring ground truth depth during training [21],
[22]. However, this is challenging in real-world settings,
considering the difficulty of acquiring ground truth labels.
Garg et al. proposed a method for training a depth estimation
network in a self-supervised manner [23]. A pair of images,
the source, and the target with a known small camera
motion were used to train the network. Zhou et al. also
used view synthesis as the supervision signal but proved
that camera motion can also be learned simultaneously
[24]. Pure rotation is a well-known degenerate motion in



perspective cameras. The transformation of the two image
frames becomes homography, where 3D information is no
longer necessary. Considering the projection principle of
perspective cameras, pure rotations may not contribute to
depth estimation training [25]. Improving the performance
on indoor datasets with more rotational motion remains an
open problem. Some recent studies have begun to consider
pure rotation degeneracy [26]. The FLS faces a severe but
unique motion degeneracy problem that will be addressed
and discussed in this study. We focus here on the estimation
of the elevation angle for a given motion and leave the motion
estimation to future work.

III. PROBLEM ANALYSIS

A. Inverse Warping Signal

The core of self-supervised learning is to determine the
optimal Et based on Eq. (1) and use a network g(.) to
learn it. The motion between the two frames must be small
to guarantee sufficient overlap and photometric constancy.
As mentioned above, there are cases in which Et can-
not be solved owing to degenerate motions. To analyze
the degenerate motions, we notice that the self-supervised
learning approaches are highly related to the concept of the
motion field. The motion field models pixel displacement
when the sensor has a small movement. Denoting the pixel
displacement as ds

dt and the motion field estimation process
as f(.), motion field estimation can be described as follows.

ds

dt
= f(s, Et,Mt→s), (2)

where s denotes the position of the 2D pixel. Using ds
dt

and Is, it is possible to generate the synthetic target view
Ĩt. This study uses the motion field model to investigate
the self-supervised learning of the elevation angle estimation
problem.

B. Motion Model

First, we explain the 2D forward-looking sonar projection
model, as shown in Fig. 2. A 3D point in the sonar coordinate
system is written as follows.

ps =
[
r cosϕ cos θ r cosϕ sin θ r sinϕ

]⊤
. (3)

The position of the 2D pixel s is as follows.

s =
[
xs ys

]⊤
=

[
r cos θ r sin θ

]⊤
. (4)

Thus, the relationship between pc and s can be deter-
mined.

s =
1

cosϕ

[
1 0 0
0 1 0

]
ps. (5)

The displacement ds
dt is calculated by differentiating s with

respect to dt based on Eq. (5).

ds

dt
=

1

cosϕ

[
1 0 0
0 1 0

]
dps

dt
+ tanϕs

dϕ

dt
, (6)
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Fig. 2. Projection model and the definition of motion. It can be equivalently
seen as a projection of a 3D point to the ϕ = 0 plane, where the elevation
information is missing. Small translations along x, y and z axes are defined
as tx, ty and tz , respectively. Small rotations along x, y and z axes are
defined as ωx, ωy and ωz .

where dϕ
dt can be further represented by dps

dt as follows.

dϕ

dt
=

1

r

[
− cos θ sinϕ − sin θ sinϕ cosϕ

] dps

dt
. (7)

When there is a small motion (t,ω) of the FLS, the
displacement of the stationary 3D point in FLS coordinates
follows rigid body movement which can be written as
follows.

dps

dt
= −ω × ps − t. (8)

After combining Eq. (6) to Eq. (8), the following rela-
tionship between the displacement and sonar motion can be
acquired, which is also known as the motion field.

dxs

dt

dys

dt

 =



− tx
cosϕ − ( tz sinϕ

r )xs − ωzys

+( sinϕ tanϕtx
r2 )x2

s + (
sinϕ tanϕty

r2

+ tanϕωx

r )xsys + (
tanϕωy

r )y2s

− ty
cosϕ − ( tz sinϕ

r )ys + ωzxs

+(
sinϕ tanϕty

r2 )y2s + ( sinϕ tanϕtx
r2

− tanϕωy

r )xsys − ( tanϕωx

r )x2
s


. (9)

Here, we conduct a discussion based on ARIS EX-
PLORER 3000, where the aperture angle in the elevation an-
gle ranges from [-7◦,7◦]. Then, cosϕ ranges from [0.9925,1],
which is reasonable to approximate to 1. In addition, sinϕ
ranges from [-0.1219,0.1219] and tanϕ ranges from [-
0.1228,0.1228], such that sinϕ tanϕ ranges from [0,0.015],
and the second-order term is approximated to zero. The first-
order terms, sinϕ and tanϕ are maintained. Then, Eq. (9)
becomes

dxs

dt

dys

dt

 =


−tx − ( tz sinϕ

r )xs − ωzys
+( tanϕωx

r )xsys + (
tanϕωy

r )y2s

−ty − ( tz sinϕ
r )ys + ωzxs

−(
tanϕωy

r )xsys − ( tanϕωx

r )x2
s

 . (10)

In [3], motion fields were used for motion estimation of
FLS according to a flat surface. Although an equation similar



to Eq. (9) was induced, it was assumed that the second-order
terms of the pixel position could be ignored. In other words,
the terms with x2

s and y2s were ignored. This may not hold
in many cases because the units of xs and ys are meters. In
fact, especially for xs, it may range from several meters to
tens of meters, and the second-order may be a huge value.

C. Basic Motion Influence

In this subsection, the influence of the basic motion on
the motion field is discussed. Specifically, the following
motions are discussed:1) x-axis, y-axis translations, and z-
axis rotation; 2) x-axis rotation; 3) y-axis rotation; and 4) z-
axis translation.

1) x-axis, y-axis translations and z-axis rotation: By
setting the other motion parameters to zero, the displacement
caused by horizontal motion (i.e., x-axis, y-axis translations
and z-axis rotation) can be written as follows.dxs

dt

dys

dt

 =

−tx − ωzys

−ty + ωzxs

 . (11)

Apparently, the displacement is independent of the ele-
vation angle ϕ. In other words, the elevation angle could
not be retrieved from the aforementioned motion. Notably,
horizontal motion is frequently used for underwater robot
navigation, if the imaging plane is parallel to the motion
plane, 3D information cannot be acquired.

2) x-axis rotation: x-axis rotation is a well-known ef-
fective motion for 3D reconstruction FLS. Empirically, a
small x-axis rotation can generate large displacement. This
study provides a mathematical explanation with the following
equation.dxs

dt

dys

dt

=

( tanϕωx

r )xsys

−( tanϕωx

r )x2
s

=

rωxtanϕ cos θ sin θ

−rωxtanϕcos
2 θ

 . (12)

As a typical case, where r = 3.5 m, ϕ = 3.5◦, and ωx =
10◦ when the azimuth angle changes from −15◦ to 15◦, the
displacement is shown in Fig. 3(a). In this equation, cos2 θ
is relatively large, which makes the displacement obvious. In
this figure, ρ refers to the range resolution equal to 0.003 m
and γ is the tangential resolution when r = 3.5 m. For dxs

dt ,
a change smaller than ρ cannot be detected in the acoustic
image. For dys

dt , a change smaller than γ is difficult to detect.
This may require subpixel optimization for displacement
estimation. Notably, the ARIS EXPLORER 3000 has one
of the best resolutions for FLS. The resolution range for
Blueview P900 is approximately 0.0254 m, which is not
sufficiently sensitive to detect some of the displacements
for a close range. However, sensors such as Blueview are
designed to be applied to a larger scene, and the discussions
in this section also stand by scaling up the problem with a
larger range and coarser resolution.

3) y-axis rotation: For y-axis rotation, the displacement is
dependent on the elevation angle ϕ in the following equation.
Theoretically, ϕ can be obtained from the y-axis rotation.
However, in practice, y-axis rotation is not very efficient [2].

dxs

dt

dys

dt

=
 (

tanϕωy

r )y2s

−(
tanϕωy

r )xsys

=
 rωytanϕsin

2 θ

−rωytanϕ cos θ sin θ

. (13)

With the same configuration (r = 3.5 m, ϕ = 3.5◦, ωy =
10◦), Figure 3(b) shows the sensitivity analysis of y-axis
rotation. From the results, it is known that the displacement
is quite small, which may make it difficult to detect and
influence the 3D reconstruction performance.

4) z-axis translation: z-axis translation is also considered
an effective motion that has been used for 3D reconstruction.

dxs

dt

dys

dt

 =

−( tz sinϕ
r )xs

−( tz sinϕ
r )ys

 =

−tz sinϕ cos θ

−tz sinϕ sin θ

 . (14)

For the sensitivity analysis, with a configuration of r =
3.5 m, ϕ = 3.5◦, and tz = 0.1745 m, the results are shown
in Fig. 3(c). The value of cos θ in Eq. (14) is quite large,
which makes the z-axis translation an effective motion.

The following conclusions can be drawn.

• Basic motions x-axis rotation and z-axis translation are
sensitive to ϕ, which are effective for tasks like 3D
reconstruction.

• The horizontal motions tx, ty, ωz are independent to
ϕ in motion field, which do not contribute to 3D
reconstruction.

• The displacement from ωy is small, which may be
difficult to be detected.

For dataset generation, basic motions x-axis rotation and
z-axis translation are theoretically effective.

IV. END-TO-END LEARNING

A. Learning Framework

The learning framework is illustrated in Fig. 4. We name
the network for elevation angle estimation as EAE-Net. We
use a UNet-structure with a Sigmoid layer before the final
output. The elements in the elevation map are 0∼1. Denoting
the aperture angle in the elevation direction as ϕaperture,
the values in the elevation maps are linearly mapped to
[−ϕaperture

2 ,ϕaperture

2 ] for further processing. By specifying
the output range, the training process has better convergence.
Because there is no 3D supervision, two adjacent frames
from the acoustic video are used for training. We first
estimate the target view elevation map Et and transfer it to
the point cloud. With known motion Mt→s, the point cloud
is transferred to the source coordinates. By sampling the
source image Is, it is possible to generate the synthetic target
image Ĩt. Bilinear sampling is used to ensure the process is
differentiable. The network can be optimized by minimizing
the difference between It and Ĩt. Implementation of inverse
warping π(.) is expressed as Algorithm 1.
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Fig. 3. Sensitivity analysis. (a) The displacement caused by ωx, where r = 3.5 m, ϕ = 3.5◦, and ωx = 10◦. (b) The displacement caused by ωy , where
r = 3.5 m, ϕ = 3.5◦, and ωy = 10◦. (c) The displacement caused by tz , where r = 3.5 m, ϕ = 3.5◦, and tz = 0.1745 m.
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Fig. 4. The illustration of the self-supervised learning framework during
training. For test time, it is possible to estimate the elevation map per image
using EAE-Net.

Algorithm 1: View synthesis in FLS
Input : Elevation map in target view Et, source

image Is, motion Mt→s

Output: Synthetic target view image from source
image Ĩt

1 foreach (rt, θt, ϕt) ∈ Et do
2 Transform the point to the Euclidean coordinates

pt using Eq. (3).
3 ps = Mt→spt.
4 Project ps to the image coordinates by generating

(rs, θs) pairs.
5 Calculate the intensity is of each point using

bilinear sampling.
6 Ĩt(rt, θt) = is.

7 return Ĩt

B. Loss Functions

To compare the synthetic target image Ĩt and the real target
image It, L1 and SSIM loss are used. Together they are
called the reconstruction loss Lr.

Lr = βMt(1−SSIM(It, Ĩt))+(1−β)Mt||It− Ĩt||1, (15)

where β is a hyperparameter that balances the two losses,
and Mt is the mask of the target image. We set β as 0.3.

Smoothness loss Ls is implemented on the elevation maps
in the target view Et. The edge-ware smoothness loss is
expressed as follows. It is assumed that the regions between

the sharp edges are smooth. This is to smooth the elevation
map when there is not much texture in the target view.

Ls = |∂rMtEt|e−|∂rIt| + |∂θMtEt|e−|∂θIt|. (16)

The total loss can be expressed as follows.

L = λrLr + λsLs, (17)

where λr and λs are weights to balance the losses. We set
λr to 2 and λs to 1 here.

C. Signal Mask

For real images, the background noise and multi-path
reflections may influence the training process. This study
focuses more on the geometric process during self-supervised
learning and the influence of noise should be eliminated. For
most 3D reconstruction works, the signal mask is essential
and acquired by methods like binarization and region detec-
tion [2], [19]. This study uses a direct but efficient method.
We manually label the region with informative signals, and
the remaining pixels are considered to be noise. By creating
a small dataset with real image and signal mask pairs, it is
possible to train a network for binary segmentation. We use
a UNet structure as the network and binary cross entropy
(BCE) with Dice loss to train the network [27].

V. EXPERIMENT

A. Simulation Experiment

1) Dataset Generation: We used our simulator in Blender
to build the synthetic dataset*. Here, we synthesized scenes
of seabed terrain using A.N.T. Landscape add-on in Blender
using hetero noise. Because the elevation angle estimation
problem potentially suffers from the non-bijective 2D-3D
correspondence problem [9], one pixel may correspond to
multiple ground truth elevation angle values. To avoid this,
in the synthetic dataset, most of the pixels in the acoustic
image correspond to only one 3D position for a better
evaluation. We generated two different terrains for training,
three different terrains for validation, and three different
terrains for test. We generated training datasets with six
basic motions and evaluate them on one test dataset. The

*https://github.com/sollynoay/Sonar-simulator-blender



configurations of the datasets are listed in Table I. During
training, consecutive three frames were used: the current
frame was the target frame, and the past and the future
frames were the source frames. For the motion between two
adjacent frames, each motion follows uniform distribution
and the scope is shown in Table I. Here, ωy motion is smaller
compared to the other rotational motions because with a
larger ωy value, the overlap of the consecutive frames may
be insufficient.

TABLE I
BASIC MOTION DATASETS

Dataset Training (triplet) Training (Motion) Val Test
tx 3,000 8∼12 [cm]

1,500 1,500

ty 3,000 8∼12 [cm]
tz 3,000 8∼12 [cm]
ωx 3,000 5∼10 [deg]
ωy 3,000 2∼4 [deg]
ωy 3,000 5∼10 [deg]

2) Implementation: This method was implemented using
PyTorch. The network was trained and tested using an
NVIDIA GeForce RTX 3090. We set the learning rate to
0.0005 and batch size to 4. We used the Adam optimizer
and trained the network for 15 epochs for each dataset.

3) Metrics: To evaluate the results, we used the mean ab-
solute error (MAE) of the elevation map. We also transferred
the elevation map into point cloud and used the chamfer
distance (CD) for the evaluation. The ground truth point
cloud is from the entire sensible region in the case of the
non-bijective 2D-3D correspondence problem [9].

MAE =
β

HW
×

H∑
i=1

W∑
j=1

|D̂(i, j)−D(i, j)|, (18)

CD =
ν

S1

∑
x∈S1

min
y∈S2

||x−y||22+
ν

S2

∑
y∈S2

min
x∈S1

||x−y||22, (19)

where β and ν are scale parameters, which refer to 1,000
and 500, respectively. S1 and S2 refer to the two point sets.
We also used a percentage metric that measures the overall
performance of accuracy and completeness with an error
distance smaller than a threshold as the f -score [28]. For
MAE and CD, the results are the smaller the better. The
opposite is true for f -score.

TABLE II
SIMULATION EXPERIMENT RESULTS

EA Point cloud
3D

label MAE [rad] CD [m] f -score
(<1 mm)

f -score
(<3 mm)

EAE ◦ 0.0234 1.210 72.71 90.61
A2FNet ◦ – 1.784 63.52 84.77

tx × 0.0956 161.300 0.06 0.18
ty × 0.1086 191.566 0.02 0.08
tz × 0.0361 3.437 50.29 73.95
ωx × 0.0298 1.972 59.81 83.26
ωy × 0.1086 164.500 0.00 0.00
ωz × 0.0981 176.321 0.00 0.00

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 5. Visualization examples of the elevation angle estimation results.
Color refers to the elevation angle. Images from left to right: (a) input image,
(b) ground truth, (c) supervised learning results, (d) results from tx dataset,
(e) results from ty dataset, (f) results from tz dataset, (g) results from ωx

dataset, (h) results from ωy dataset, and (i) results from ωz dataset. For the
self-supervised method, only ωx and tz datasets can successfully train the
network.

4) Results: The quantitative results are shown in Fig. 5.
EA refers to elevation angle. We also compared the proposed
method with supervised learning methods. EAE refers to
elevation angle estimation using supervised learning. A2FNet
estimates the front depth map instead of the elevation
map [9]. The signal mask in the simulation experiment is
generated by binarization with a threshold. It can be known
that tz and ωx datasets can help the network learn the
elevation angle estimation process. On the other hand, with
other datasets, the network can barely learn any information.
This proves the conclusion in Section III. tx, ty , and ωz

datasets perform poorly due to the motion degeneracy. For
ωy datasets, the results are poor due to the sensitivity of
the sensor. It is unsurprising that supervised learning with
ground truth can generate more accurate results. However,
by using ωx dataset, the network can achieve the same
level as A2FNet. This indicates that with proper training,
self-supervised learning methods can approach supervised
learning. One of the keys is using efficient motion. Since in
terrain datasets, most of the pixels only correspond to one 3D
position, direct elevation angle estimation may outperform
A2FNet.

Figure 5 shows examples of elevation angle estimation
results. It is quite obvious that only tz and ωx datasets
can contribute to training. For other motions, the network
may converge to a random value. This is reasonable because
based on our motion field analysis, an arbitrary elevation
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Fig. 6. Real experiment: (a) moving device, and (b) target scene.

map may satisfy Eq. (1), so that the network may perform
randomly. After iterations and with the help of smoothness
loss, the output of the network becomes a random constant.
It can be also known that ωx motion is more effective. The
results from the tz dataset may contain some artifacts. This
may be because the ωx motion cause more overlaps and the
photometric constancy holds better.

B. Real Experiment

1) Dataset: We built an ωx dataset in a large-scale water
tank to evaluate the proposed method. We used ARIS EX-
PLORER 3000 under 3.0 MHz mode. As shown in Fig. 6(a),
the FLS was moved by a moving device. The FLS was
carried to 51 positions. For each position, AR2 rotator was
used to generate ωx motion. The FLS rotates along x-axis
from -35◦ to 35◦. We used images from 33 positions to
train the network, 9 positions for validation, and the other
9 positions for test. In total, we used 1,071 images for
training, 283 images for validation, and 294 images for test.
We also used triplets to train the network. Denoting the roll
angle for the target frame as α◦, the roll angles for the two
source frames were approximately (α− 10)◦ and (α+10)◦,
respectively. The target scene is illustrated in Fig. 6(b). The
3D ground truth of objects in the scene was measured in
the land environment [18]. They were set up in the water
tank with a known configuration so it is possible to acquire
the CAD model of the scene. It is also necessary to know
the relative pose between the scene and the FLS. The initial
value is measured by a diver using a ruler and the accurate
result is obtained by comparing the synthetic image with the
real image in the edge domain [29]. After acquiring one
pose accurately, the rest can be calculated with the help
of control input for the moving device and the rotator. To
prepare the signal masks, we manually labeled 164 images in
the training set and trained the mask segmentation network.
We set the batch size to 4 and the learning rate to 0.0003.
The network was then trained for 25 epochs. Then, for all
the acoustic images in the dataset, we multiplied the binary
mask by the acoustic image to filter the background noise and
multi-path reflection signals. As shown in Fig. 7, Figure 7(a)
is an example of a raw acoustic image. After filtering the
noise using the mask, the image in Fig. 7(b) was used for
further processing. To train the EAE-Net, we used the same
parameter setting as in the simulation experiment.

2) Results: The quantitative results of the real experiment
are listed in Table III. SM refers to the learned signal

(a) (b)

Fig. 7. Examples of the acoustic images in the dataset. (a) shows the raw
image where there is noise in the non-signal region. Multi-path reflections
may lie in the shadow region which may influence the learning process.
(b) is the image after filtering by the signal mask.

TABLE III
REAL EXPERIMENT RESULTS

EA Point cloud
3D

label MAE† [rad] CD [m] f -score
(<1 mm)

f -score
(<3 mm)

EAE ◦ 0.0139 0.8450 83.43 94.43
A2FNet ◦ – 0.5385 92.67 97.68

ωx w/o SM × 0.0364 5.243 43.16 66.44
ωx w SM × 0.0246 2.729 57.42 83.18

mask. For the self-supervised method, we also discussed
the influence of the signal mask. It is known that using an
ωx dataset, the network can be successfully trained without
pretraining on the synthetic images. Although not as good
as supervised learning results, self-supervised learning with
a learned signal mask can generate results with high quality.
The f -score with a 3 mm threshold is over 83%, indicating
that most of the points have an error smaller than 3 mm.
Considering the resolution in the range direction is 3 mm,
this is acceptable for 3D reconstruction with a single image.
If we directly generate the mask by binarization with a
threshold, the mask is noisy and the multi-path signals
cannot be filtered. The result may become slightly worse
than that with a learned mask. A2FNet here exhibits better
performance because, in the real dataset, there are more
cases where one pixel corresponds to multiple 3D positions.
The MAE metric here is only for reference because there
are multiple ground truth elevation maps. For point cloud
evaluation, the ground truth point cloud is the entire sensible
region [9].

Figure 8 presents the estimation results of Fig. 7 in
terms of point cloud. As shown in Fig. 8(d), the proposed
method successfully estimated the 3D structure of the ob-
ject. The result of the arc in Fig. 8(d) is better than that
shown in Fig. 8(b) from supervised learning. There will
inevitably be some distortions in the point cloud from self-
supervised learning because there will always be regions that
do not overlap between the consecutive frames. The result
in Fig. 8(c) is noisier because of the mask; however, the 3D
structure can still be successfully learned.

VI. CONCLUSION

In this study, we dug deep into the self-supervised learning
of the elevation angle estimation problem for FLS. It is
found that many failure cases may be caused by the motion
degeneracy problem. We analyzed the motion field and
identified efficient motions for network training. We proved

†Ground truth elevation angle for some pixels is not unique.
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Fig. 8. Estimation results of Fig. 7 in the point cloud: (a) the ground truth,
(b) the result of supervised learning, (c) the result without using the learned
signal mask, the mask is from simple binarization with a threshold, and (d)
the result of the proposed method.

that for basic motions, tz and ωx motions can contribute to
the learning process. We also showed that pretraining using
synthetic data is not a must if the dataset is properly built.
The motion field analysis conclusions may not only con-
tribute to self-supervised learning through inverse warping
signal but may also be important to simultaneous localization
and mapping and multi-view 3D reconstruction problems.

Future work may include auto-filtering degenerate motions
from a dataset with various motions. Signal masks should
be further studied. In this study, the motion between two
consecutive frames was considered given. It may also be
worth discussing whether motions can be learned in a self-
supervised manner simultaneously.
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