
Risk-Sensitive Mobile Robot Navigation in Crowded Environment
via Offline Reinforcement Learning

Jiaxu Wu1, Yusheng Wang1, Hajime Asama1, Qi An2, Atsushi Yamashita2

Abstract— Mobile robot navigation in a human-populated en-
vironment has been of great interest to the research community
in recent years, referred to as crowd navigation. Currently,
offline reinforcement learning (RL)-based method has been
introduced to this domain, for its ability to alleviate the sim2real
gap brought by online RL which relies on simulators to execute
training, and its scalability to use the same dataset to train
for differently customized rewards. However, the performance
of the navigation policy suffered from the distributional shift
between the training data and the input during deployment,
since when it gets an input out of the training data distribution,
the learned policy has the risk of choosing an erroneous action
that leads to catastrophic failure such as colliding with a human.
To realize risk sensitivity and improve the safety of the offline
RL agent during deployment, this work proposes a multipolicy
control framework that combines offline RL navigation policy
with a risk detector and a force-based risk-avoiding policy.
In particular, a Lyapunov density model is learned using the
latent feature of the offline RL policy and works as a risk
detector to switch the control to the risk-avoiding policy when
the robot has a tendency to go out of the area supported by the
training data. Experimental results showed that the proposed
method was able to learn navigation in a crowded scene from
the offline trajectory dataset and the risk detector substantially
reduces the collision rate of the vanilla offline RL agent while
maintaining the navigation efficiency outperforming the state-
of-the-art methods.

I. INTRODUCTION

Robot navigation in human-populated environments has
gained wide interest in recent years. Applications using
mobile robots such as delivery, unmanned patrolling, and
floor cleaning are growing rapidly. For applications in spaces
shared with other pedestrians, it is important to realize
safe and efficient robot navigation in crowded environments
which is referred to as crowd navigation [1].

Recently, Deep reinforcement learning (RL)-based meth-
ods [1], [2] have made great progress compared to rule-based
methods [3], [4] of the early time, since they can generalize
to various situations in a crowd through trial and error.
However, realistic simulation is necessary for such a routine.
Due to that the human reaction to the robot movement is
still an open problem [5], there is always a gap between the
simulation and the real-world crowd, which brings a risk of
failure to the learned navigation policy during deployment.

1 J. Wu, Y. Wang, H. Asama: Department of Precision
Engineering, Graduate School of Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan,
wujiaxu@robot.t.u-tokyo.ac.jp

2 A. Yamashita: Department of Human and Engineered Environ-
mental Studies, Graduate School of Frontier Sciences, The Univer-
sity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277–8563, Japan
yamashita@robot.t.u-tokyo.ac.jp

Fig. 1. The risk-sensitive mobile robot navigation is realized as a
multipolicy control framework, in which an LDM-based risk detector that
considered the distributional shift between the training data and the runtime
input controls the switch between an efficiency-prior deep reinforcement
learning offline reinforcement learning (RL)-based policy and a safety-prior
force-based policy and prevents the mobile robot going into states that is
without data support.

The gap is indeed the distributional shift of the state-action
pairs seen during the training and during the deployment.

To alleviate the gap, a straightforward idea is to train the
robot directly in the real world. However, moving robots in
public space is costly considering the low sample efficiency
of the RL-based methods, and sometimes dangerous [6].
On the contrary, learning with an offline dataset involving
human-robot interactions may be desirable [7]. Offline RL-
based methods could train a navigation policy with only
offline datasets [8]. After offline training, the robot could
directly exploit the current policy or start further adaptation
to the environment smoothly. However, the distributional
shift still exists during the deployment due to the limited
diversity of the dataset [7]. The robot has a risk to move to
a state that is out of the training data distribution, in which
the navigation policy may make erroneous actions and cause
catastrophic failures such as collisions with other people [9].
To avoid the risk during deployment, an additional module
along with the offline RL policy is required that can sense
the distributional shift and foresee those failures.

Model predictive control (MPC)-based methods can han-
dle the risk more easily, since they explicitly formularize
the state constraint according to the predicted trajectory of
the pedestrian [10]. However, the performance of MPCs is
degraded when there are high compounding errors in the
pedestrian model, especially when the robot faces a novel

state. Moreover, trajectory sampling from deep networks
introduces a high computational burden, compared to RL-
based methods that directly map from state to action at the
decision time [11].

This work tackles mobile robot navigation that is sensitive
to the risk of erroneous action caused by the distributional
shift by taking advantage of both RL-based methods and
explicit safety constraints. A multi-policy control framework
based on offline RL is proposed (Fig. 1), in which con-
servative Q learning (CQL) is introduced to learn crowd-
aware navigation using offline datasets [8]. The sense of
risk is achieved by a Lyapunov density model (LDM)-based
risk detector, which models the probability of moving out
of the data support. When the robot has the potential to
encounter a state out of the distribution of the training
dataset, the risk detector switches the control to a cautious
risk-avoiding movement that was known to be safe, such as
an emergency stop. Compared to the previous multipolicy
methods which relied on either online trial and error or used
ad-hoc switching without considering the risk [12], [13], this
is the first work in crowd navigation that is able to train with
an offline dataset and tackles risk caused by the distributional
shift.

The rest of the paper is organized as follows. Section II
introduces some related works. Sction III describes the
objective and detailed problem setting. Section IV describes
the proposed method. Section V presents the experimental
tests and the related results and discussion. Finally, the
conclusions and future work are drawn in Section VI.

II. RELATED WORKS

A. Learning-based robot navigation methods

Many online RL-based methods have been proposed. They
mainly focused on representational learning, which targets
a generalizable representation of the robot-crowd joint state
[1], [2]. Some works tackled the design of rewards to inform
the RL agent with the social norm [14], [15]. Although they
greatly improve the generality of navigation in the simulator,
they deployed the model to the real world without consider-
ing distributional shift and the risk of catastrophic failure. In
contrast, Liu et al tackled the problem ill-distributed training
data, and introduced a data augmentation that can alleviate
the distributional shift [16]. They conducted a test on offline
RL and, to the best of the author’s knowledge, this is the only
previous work training crowd navigation under an offline
setting. However, they have not considered the risk of failure.
Shah et al. proposed an offline RL-based visual navigation
and demonstrated the robot was able to learn navigation to
distant goals using only offline training [17]. However, they
only considered static scenes.

B. Risk sensitive motion planning

MPC-based methods could explicitly consider the risk
constraint. Many risk-sensitive path planning researches
adopt Conditional Value-at-Risk (CVaR) to measure the
risk of collision brought by the moving obstacle or the
unstructured environment [18]. However, CVaR is difficult

to calculate in real-time. The previous study [10] developed
a real-time risk-sensitive method based on multimodal hu-
man trajectory prediction. However, these methods relied
on learned deep neural networks (DNN)-based pedestrian
models [19] which uncertainty is difficult to analyze. For
data-driven methods, when the model is highly uncertain of
a novel input, there is a risk that the model takes action that
leads to catastrophic failure. Hoque et al. trained an ensemble
of policies to measure novelty by the standard deviation of
the current output of the ensemble [20]. However, sequential
decision problems have non-i.i.d nature in which a seemingly
safe decision in the current may have a risk to lead the
system to fail in the future. Kang et al. proposed a farsighted
risk measurement using a generalization of control Lyapunov
functions and density models to ensure safety in the future
[9]. This paper leverages the power of the Lyapunov density
model to realize risk-sensitive navigation in crowded scenar-
ios.

III. OBJECTIVE

This work aims to address risk-sensitive robot navigation
in a 2D scenario with a crowd of N humans, where a single
robot navigates through the crowd to its goal as safely and
efficiently as possible. In addition, the proposed system aims
to learn a robot navigation policy from a fixed offline dataset,
which is able to sense the risk of going out of data support
and avoid making erroneous actions caused by distributional
shift.

IV. METHOD

A. Risk-sensitive multi-policy control framework

This section will provide an overview of the proposed
system and then describe each of its modules. The system
consists of a deep reinforcement learning (DRL) agent with
a state encoder, a Lyapunov density model (LDM)-based
risk detector, and a flow-based density model that learns the
distribution of the training data (Fig. 2). Both the DRL agent,
the state encoder, and the LDM are learned using the given
offline dataset using conservative Q-learning (CQL). During
training, the DRL agent learns the navigation policy. Then,
the encoded latent feature of the robot joint state is fed to
the flow-based network to learn the probability density of
the training data distribution. The resulting log-probability
of each latent feature-action pair will then be used to train
the LDM.

B. Reinforcement learning framework

The navigation problem is formalized by the Markov
decision process (MDP) following previous works [1], [2].
The state space S is composed of an observable part O
and an unobservable part H for both the robot and human.
The observable state includes position p = [px, py], velocity
v = [vx,vy] and the agent’s size r. The unobservable part
includes the agent’s goal position pg and the preferred speed
vpre f and direction θ . The robot input state is defined as a
joint state s jn

t = [sr
t ,ot] ∈ S concatenated from the robot state

sr
t and the observable states of humans ot = [oi

t]
N
i=1, where

Fig. 2. Flow chat of learning navigation policy and risk detector. The black
arrow denotes data and labels feeding. The blue arrow denotes forward
processing and the blue dashed arrow denotes the bask propagation. The
state encoder and the navigation DRL policy is learned first. Secondly, a
Flow-based network is trained to model the distribution of the hidden state
of the DRL policy. Finally, the Lyapunov density model is trained using the
minus log probability estimated for each hidden state as a label. Both the
navigation policy and the LDM is trained in CQL fashion.

t denotes the time step, i denotes the human index, and N
denotes the total number of humans in the scenario. The
agent’s actions a are defined as its current velocity and are
assumed to be instantaneous. The optimal policy π∗ : s jn

t 7→ ar
t

maps the joint state S jn
t to the robot action ar

t at time t, which
is to maximize the expected return V ∗(s jn

t):

π
∗(s jn

t) = argmax
ar

t

R(s jn
t ,ar

t)

+ γ
∆tvpre f

∫
s jn

P(s jn
t+∆t |a

r
t ,s

jn
t)V (s jn

t+∆t)ds jn, (1)

V ∗(s jn
t) = Σ

T
k=tγ

kvpre f R(s jn
k ,π∗(s jn

k)), (2)

where P(s jn
t+∆t |a

r
t ,s

jn
t) denotes the unknown transition of the

environment and γ is the discount factor. The reward function
R(s jn

t ,ar
t) is defined following the previous work [1].

R(s jn
t ,ar

t) =

1 (reached goal)
−0.25 (collided)
1
2 (dmin −0.2)∆t (dmin < 0.2)
0 (else)

, (3)

where dmin represents the minimum distance between the
robot and its neighboring humans during the state transition
and 0.2 is the threshold to judge whether the robot entered
the discomfort zone of its neighboring humans.

C. Learning navigation via offline reinforcement learning

Though there are multiple alternatives for offline RL [21],
[22], the proposed system adopts CQL [8] because it directly
addresses the distributional shift and obtains state-of-the-art
results in public benchmark environments. In this paper, a
discrete control for mobile robot navigation using CQL is
developed. The action space with holonomic kinematics is
quantized along the radial direction and the circumferential
direction following previous work [1], [2], which results in
81 discrete actions.

[vx,vy] ∈{[
e(i+1)

5 −1
e−1

cos(jπ/8),
e(i+1)

5 −1
e−1

sin(jπ/8)]

i ∈ {0,1,2,3,4}; j ∈ {0,1, ...,15};
(4)

A deep neural network with 81 outputs is used to approx-
imate the Q-value of each action and is trained via CQL.

The network is referred to as Deep Q Network (DQN). The
DQN contains an encoder that embeds the joint state in the
latent feature.

ht = fθ (s
jn
t), (5)

where θ denotes the encoder parameters. Two types of
encoder are adopted from previous state-of-the-art research:
Attention-based encoder [1] that transformed the observed
joint state into ego-centric robot coordinates with the x-axis
directly to the target and embedded human states with an
attention layer; Graph Convolutional Network-based encoder
[2]. Then, a multi-layer perceptron (MLP) maps the latent
feature to the Q-values of all the actions (Q(s jn

t ,ar
t)= fφ (ht)),

and the optimal policy π∗ is to choose the action with the
maximum Q-value. Based on the Q-value estimation, the
network is trained using CQL loss.

loss1 = αEs jn∼D[logΣ81
i exp(Q(s jn,ar

i))

−Ear∼π [Q(s jn,ar)]]+ losstd , (6)

where the first term weighted by α is used to address the
overestimation problem on out-of-distribution action, which
enables RL training in offline. The second term is normal
temporal differential (TD)-error.

D. Lyapunov density model-based risk detector

The risk detector learns LDM model G(s,a) from the
offline data to estimate the probability that a navigation
trajectory (sequence of state-action pairs) will remain within
the distribution of the training dataset when following the
navigation policy. The idea of LDM is to set

G(st ,at)=max{− logP(st ,at),minat+1{G(st+1,at+1)}}, (7)

so that if the system executes action at at time t such
that G(st ,at) < δ , the Lyapunov stability guarantees that
for all future time steps t ′ > t, logP(st ′ ,at ′) > ε , where
logP(st ,at) denotes the log-probability of the state-action
data distribution. This means that if navigation starts from
an in-distribution state, G(st ,at) with a certain threshold δ

can be used to decide whether an action will keep the future
trajectory within the area with data support and thus makes
risk detection far-sighted. Unlike the work proposed in [9],
this paper learns LDM from the latent feature vector of the
joint state of the robot. This is because previous researches
[1], [2] have already shown that different representations of
the state result in different generalities. That implies different
distributions of the latent feature and different ranges of
feasible actions that will keep the trajectory inside the data
support. Therefore, the risk detector can be formulated as

G(fθ (s
jn
t),ar

t) = max{
− logP(fθ (s

jn
t),ar

t),

minat+1{G(fθ (s
jn
t+1),a

r
t+1}

},

(8)

ar
t =

{
π(s jn

t) (G(fθ (s
jn
t),ar

t)< δ)

risk-avoiding (G(fθ (s
jn
t),ar

t)>= δ)
, (9)

Note that defining δ is not trivial as it trades off safety
and efficiency. How to decide the threshold is still an open
problem, a research similar to the LDM chose to tune the
threshold online [6].

The LDM can be trained by only offline datasets using a
CQL styled loss function loss2 composed by a modified TD-
error Lldm with CQL term weighted by a constant β (more
detailed proof can be found in [9]).

Lldm = (Gt −B(Gt))
2 (10)

B(Gt) = max{E(fθ (s
jn
t),ar

t),Gt+1}. (11)

A flow-based probability density model [23] is learned to es-
timate the minus log probability density − logP(fθ (s

jn
t),ar

t)
as the label E of latent feature-action pairs in the offline
dataset.

E. Force-based risk-avoiding behavior

Social Force Model (SFM) [3] is adapted for performing
cautious movement when the robot is in risky states. SFM
was known for its high local collision avoidance perfor-
mance, since it generates an artificial repulsive force between
agents and forces them to separate [12]. The adapted SFM
policy consists of the repulsive force between robot and
humans and an attractive force between the robot and its
goal, and the output action (velocity) is proportional to the
sum of these forces. To achieve a cautious movement, the
attractive force is set relatively lower and the repulsive force
is set to be high. Since the upper bound of safety performance
depends on those settings, careful tuning is needed to adapt
to different scenarios, but in this paper, as a proof of the
concept, those parameters are left fixed for all experiments.

F. Implementation detail

The implementation was based on the open source pro-
vided by previous works [1], [2], [23]. The conservative
weights α and β were set to 0.1. The training and evaluation
was using a desktop PC with RTX2080Ti graphic card and
Core i-9 10980EX cpu (this work used cpu only).

V. EXPERIMENTS

The experiments were conducted on a simulator. An offline
dataset was gathered by a rule-based policy (OCRA [24])
at first and the proposed system was trained with this
dataset and tested under different conditions. The details
were described as follows.

A. Simulation environment

A 2D simulation environment was adapted from [1]. In
the simulation, there were always several humans and the
robot moving from random initial positions to their goal. 3
different scenarios were used to simulate the real-world.

• Circle crossing scenario: agents move from a random
initial position on a circle with a radius of 4 meters to
the opposite side of the circle, which simulated open
space.

• Street crossing scenario: agents start from a random
initial position on a line and move to a random position

on a line parallel to the starting line with distant of 8
meters.

• Circle crossing scenario with static human: the robot’s
random initial position and goal was on a 4 meters
circle, but humans’ were on a 2 meters circle in the
middle of the 4 meters circle. Those humans have 50%
probability to stay static.

In all scenarios, random perturbation was added to the x,
y coordinates of the initial and goal positions. For all agents,
holonomic kinematics was assumed. Human movement was
controlled by ORCA, and their movement will be affected
by the robot. The size and preferred speed of all agents
were set at 0.3 m and 1.0 m/s, respectively, and uniform
noise [−0.5,0.5] was added to the preferred speed to increase
randomness.

B. Training and testing setup

All variants of the proposed method and the baseline
methods were learned using simulated demonstration data of
the circle crossing scenario containing 4 pedestrians. ORCA
was used as an expert policy to generate 500 episodes of
demonstration data. To add suboptimalness to the human
data, during the demonstration, the human action was quan-
tized in the same way as that of the robot’s discrete action
space.

As variants of the proposed method, the aforementioned
two types of encoders (Attention-based encoder [1], Graph
Convolutional Network-based encoder [2]) were trained and
tested to investigate the effect of the encoder. For both
encoders, the original hyperparameters proposed in previous
work were used.

As a baseline risk detection method, a novelty estima-
tor proposed in ThrifyDAgger [20] was implemented. An
ensemble of CQL navigation policies (# = 4) was trained
under various random seeds and the novelty was estimated as
the standard deviation of the ensemble’s outputs at runtime.
Since the upstream process was different, the final output
selection rule was modified as the action with the maximum
advantage (Q(s jn

t ,ar
t)−Eπ [Q(s jn

t ,ar
t]) was selected.

Those methods were evaluated under 3 scenarios with
different agent densities (4, 6, 8 humans), and various risk
detection thresholds. 500 episodes with random initials and
goal for each evaluation. The proposed LDM-based risk
detector used threshold ε ∈ [m− 1.5σ ,m+ 1.5σ] where m
denotes the mean value of the minus log-probability of
the training data and σ denotes its standard deviation.
The novelty detector used threshold [0,0.61]. The lower
the threshold, the more restrictive the risk detection was
performed, which invokes more intervention in the risk-
avoiding policy and reduces efficiency.

C. Results and evaluation

1) Quantitative evaluation: Quantitative evaluation re-
sults used metrics that include the success rate (SR), timeout
rate (TR), average robot time (RT), collision rate (CR), and
average calculation time per decision (CT). The results of
the navigation policy using the attention-based encoder were

TABLE I
QUANTITATIVE EVALUATION RESULT ON 4 HUMAN CIRCLE-CROSSING

(δ = m−0.5σ)

Metrics SR ↑ TR↓ CR ↓ RT [s]↓ CT [ms]↓
Att-CQL 0.78 0.02 0.18 13.4 1.3

Att-CQL-ESM 0.85 0.03 0.12 13.17 5.7
Att-CQL-LDM 0.92 0.03 0.05 14.98 1.8

Force-based 1.0 0.0 0.0 18.40 0.2

shown in Table I, in which the up and down arrows in
the table represent the bigger the better and the smaller
the better, respectively. “Att” denoted the attention-based
encoder, and ”LDM” denoted the using risk detector. The
pure ensemble of policy was denoted as “ESM” and referred
to as “ESM-NE” when the novelty estimator was used.
The table suggested pure offline RL was able to achieve
safety and efficiency to some extent and the risk detector-
aided system reduced the collision rate by 72.3%. On the
other hand, since the risk detection will sometimes trigger
the conservative force-based policy, the navigation time
increased. The ensemble of policies improved the system
performance while requiring extra calculation time. However,
the calculation of all variants was lower than 10ms and was
considered capable of running in real-time [10].

2) System performance in novel scenario: The evaluation
results of the proposed methods under all 9 setting (scenarios:
circle crossing, street crossing, circle crossing with static
humans, human number: 4, 6, 8) was shown in Fig. 3. 4
human circle crossing scenario was learned and the rest were
novel to the robot. In all testing settings, the proposed Att-
CQL-LDM substantially reduced the collision rate, while
achieving more efficient navigation compared to the force-
based risk-avoiding policy (0.55s quicker in 6 human circle
crossing with static human scenario and 3.03s quicker in 4
human street crossing scenario). This means the proposed
multipolicy control framework could take advantage from
both the efficient-prior RL-based method and the safety-
prior force-based method by switching the control between
them using the LDM-based risk detector. By comparing
the results across different scenario, the figure suggested
that circle crossing with static humans caused a lot of
time out case. That may be because both CQL and force-
based policy were difficult to handle the situation when
there were several people stand in front and did not move.
Incorporating a proactive policy that can help robot clean
its path may be desired for this situation. By comparing
the results across different numbers of human, the proposed
method was almost always able to achieve the same collision
rate of the force-based policy, though the force-based policy
had degradation when the number of humans increased.

3) Safety-efficiency trade off compared to the previous
method: The circle crossing scenario was picked up to
investigate the safety-efficiency trade off of both the pro-
posed method and the baseline that using novelty estimation
with ensemble of policies. Under 4 human scenario, the
system performance under varying risk detection thresholds

TABLE II
QUANTITATIVE EVALUATION RESULT ON 4 HUMAN CIRCLE-CROSSING

Metrics SR↑ TR↓ CR ↓ RT [s] ↓ CT [ms] ↓
GCN-CQL 0.33 0.0 0.67 8.32 0.3

GCN-CQL-LDM
(δ = m−0.5σ) 0.78 0.01 0.21 19.43 0.7

GCN-CQL-LDM
(δ = m−3.5σ) 0.98 0.01 0.01 18.93 0.7

is shown in Fig. 4. The safety-efficiency trade-off curve
of the proposed risk detector and the novelty estimator
build upon the ensemble of policies were compared. The
figure suggested that though the ensemble novelty estimator
got higher efficiency when CR > 2%, the proposed system
got higher efficiency when higher safety level is required
(CR < 2%). Since safety was the main purpose of the extra
risk detection module, the proposed LDM-based detector was
considered a better choice compared to the previous method.

The proposed system was further tested in scenarios con-
taining 6 and 8 pedestrians. The results in Fig. 5 suggested
that the proposed LDM-based approach outperformed the
state-of-the-art method with large gaps in scenarios where
human density differs from the training data. In the 6-
human scenario, the performance to reduce the collision
rate of both methods was saturated at 2%, but the proposed
method used less navigation time. In the 8-human scenario,
the proposed method got a much lower collision rate at a
similar navigation time compared to the ESM-NE and was
able to achieve a lower collision rate by using more time.
The reason was considered that when navigating in scenarios
largely different from the training data, the performance of all
subpolicies in the ensemble degraded and failed to leverage
the advantage of numbers. On the contrary, detecting out-of-
distribution input basically depended on the training data of
the LDM, and thus the proposed method was more robust
against changes in human density.

4) System performance with different state representation:
To investigate the performance of the system with different
types of encoders, a graph convolutional network (GCN)-
based alternative was implemented. The results in Table
II and I suggested that system performance varied under
different choices of encoders. While the attention-based
encoder led to safety but relatively conservative navigation,
the GCN-based encoder led to aggressive navigation. The
results also suggested that the risk detector could help the
system to reduce the collision rate. However, the time for
multi-policies navigation was longer than simply using force-
based policies, and under more restricted risk detection the
navigation time became closer to the time of the force-
based model. The reason for attention-based encoder getting
a better result was considered as ego-centric representation
reduced the dimensions of the input data and got milder
distributional shift compared to GCN, and thus was more
favored by offline RL.

5) Qualitative evaluation: A collided case of vanilla Att-
CQL was picked up, and the agents’ trajectories and the
corresponding trajectories in the latent space of the policy

Fig. 3. The evaluation results of the proposed methods under all 9 setting (scenarios: circle crossing, street crossing, circle crossing with static humans,
human number: 4, 6, 8). The vanilla Att-CQL, Att-CQL with LDM-based risk detector and the force-based pure risk avoiding policy were compared.
Green: success rate, Yellow: time out rate, Red: collision rate. (The results corresponded to δ = m−0.5σ .)

Fig. 4. The safety-efficiency trade-off curve of the proposed LDM-based
risk detector (blue) and the novelty estimator built upon the ensemble of
policies (orange) were compared. (δ ∈ [m−1.5σ ,m+σ], novelty estimation
threshold ∈ [0.1,0.5])

Fig. 5. The safety-efficiency trade-off curve of the proposed LDM-based
risk detector (blue) and the novelty estimator built upon the ensemble of
policies (orange) compared under scenarios with human density different
from the training data.(δ ∈ [m− 1.5σ ,m], novelty estimation threshold ∈
[0.0,0.08]). Force-based policy: 6-human: CR= 2%, RT = 19.93s; 8-human:
CR = 4%, RT = 21.18s.

plotted in 2D (using t-SNE) were shown in Table III. Circles
denoted trajectories (robot in black and human with other
colors). Star denoted their goal. The intervention of the risk-
avoiding policy was denoted by the gray shadow inside the
robot’s circles. The trajectories in latent space were shown in
green, blue, and red for training data, and with and without
LDM respectively. In this case, the trajectories following
vanilla Att-CQL eventually went out of the data support and
collided with the human at around 12s when it wanted to turn
left to direct to the goal. In the contrast, the LDM detected
the risk and made the intervention at the beginning and 6s
to prevent the robot from going right. Especially around
6s, there was a clear separation of the trajectories in latent
space. There are also long interventions around 8s to 12s.
The trajectories in latent space suggested that this might be
due to less data support in the middle of the scene, and
thus the robot moved cautiously. A recovery policy [25] for
navigation in the crowd that is capable to recover the path
to the area with data support may reduce the frequency of
interventions and improve the efficiency of the navigation.

VI. CONCLUSION

In this paper, a multi-policy control framework based
on offline reinforcement learning for risk-sensitive robot
navigation is proposed. The experiment results showed that
the system was able to learn navigation from offline dataset
and was robust against distributional shift between training
data and input during deployment by detecting the risk of
go-out-of-training data support using the Lyapunov density
model, which substantially reduced the collision rate while
maintaining the navigation efficiency outperformed the state-
of-the-art work. As future work, a seamless co-working
between efficiency-prior and safety-prior policies will be
tackled to further improve navigation efficiency under safety
constraints.

TABLE III
COMPARING TRAJECTORIES UNDER DIFFERENT METHODS.

Att-CQL Att-CQL-LDM

Trajectories in latent space

REFERENCES

[1] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in Proceeding of the 2019 IEEE International Con-
ference on Robotics and Automation (ICRA), 2019, pp. 6015–6022.

[2] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph
learning for crowd navigation,” in Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 10 007–10 013.

[3] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical Review E, vol. 51, no. 5, p. 4282, 1995.

[4] Y. Tamura, T. Fukuzawa, and H. Asama, “Smooth collision avoidance
in human-robot coexisting environment,” in Proceedings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 3887–3892.

[5] C. Mavrogiannis, P. Alves-Oliveira, W. Thomason, and R. A. Knepper,
“Social momentum: Design and evaluation of a framework for socially
competent robot navigation,” ACM Transactions on Human-Robot
Interaction (THRI), vol. 11, no. 2, pp. 1–37, 2022.

[6] H. Bharadhwaj, A. Kumar, N. Rhinehart, S. Levine, F. Shkurti, and
A. Garg, “Conservative safety critics for exploration,” arXiv preprint
arXiv:2010.14497, 2020.

[7] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 807–11 814,
2022.

[8] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” vol. 33, 2020, pp. 1179–
1191.

[9] K. Kang, P. Gradu, J. J. Choi, M. Janner, C. Tomlin, and S. Levine,
“Lyapunov density models: Constraining distribution shift in learning-
based control,” in Proceedings of the 39th International Conference
on Machine Learning, 2022, pp. 10 708–10 733.

[10] H. Nishimura, B. Ivanovic, A. Gaidon, M. Pavone, and M. Schwager,
“Risk-sensitive sequential action control with multi-modal human
trajectory forecasting for safe crowd-robot interaction,” in Proceedings
of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 11 205–11 212.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[12] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How,
“Multi-agent motion planning for dense and dynamic environments via
deep reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3221–3226, 2020.

[13] L. KU+000E4stner, J. Cox, T. Buiyan, and J. Lambrecht, “All-in-one:
A drl-based control switch combining state-of-the-art navigation plan-
ners,” in 2022 International Conference on Robotics and Automation
(ICRA), 2022, pp. 2861–2867.

[14] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in Proceeding of the 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 1343–1350.

[15] T. v. d. Heiden, F. Mirus, and H. v. Hoof, “Social navigation with
human empowerment driven deep reinforcement learning,” in Proceed-
ings of the International Conference on Artificial Neural Networks.
Springer, 2020, pp. 395–407.

[16] Y. Liu, Q. Yan, and A. Alahi, “Social nce: Contrastive learning
of socially-aware motion representations,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 118–15 129.

[17] S. Dhruv, B. Arjun, L. Hrishit, K. Ilya, R. Nicholas, and L. Sergey,
“Offline reinforcement learning for visual navigation,” in Conference
on Robot Learning, 2022.

[18] A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion
planning and control with safety constraints using conditional value-
at-risk,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 490–496.

[19] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” in Proceedings of the European Conference on Computer
Vision. Springer, 2020, pp. 683–700.

[20] R. Hoque, A. Balakrishna, E. R. Novoseller, A. Wilcox, D. S. Brown,
and K. Goldberg, “Thriftydagger: Budget-aware novelty and risk
gating for interactive imitation learning,” in Conference on Robot
Learning, 2021.

[21] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2019, pp. 2052–2062.

[22] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and
C. Finn, “Combo: Conservative offline model-based policy optimiza-
tion,” vol. 34, 2021, pp. 28 954–28 967.

[23] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural
spline flows,” Advances in neural information processing systems,
vol. 32, 2019.

[24] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and
R. Siegwart, “Optimal reciprocal collision avoidance for multiple
non-holonomic robots,” in Distributed Autonomous Robotic Systems.
Springer, 2013, pp. 203–216.

[25] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan,
M. Hwang, J. E. Gonzalez, J. Ibarz, C. Finn, and K. Goldberg, “Re-
covery rl: Safe reinforcement learning with learned recovery zones,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4915–4922,
2021.

