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Abstract— In this study, we proposed a training method using
joint points obtained from physical simulations and real image
data for the action recognition of excavators. The proposed
method classifies the action recognition of excavators into
position detection, skeleton detection, and action recognition
models. The first two models are trained using the real image
data, whereas the action recognition model is trained using the
joint point data obtained from the physical simulation. For the
action recognition model, we proposed a data augmentation
method based on the features of the actions of the excavator.
Experimental results indicate that the proposed method can
achieve better accuracy than the conventional method that uses
real video data, though the proposed method does not use any
real video data for training.

I. INTRODUCTION

The construction industry, which is considered to have
lower productivity compared to other industries, relies on
construction machinery for the majority of its operation [1].
Excavators are a major part of construction machinery.
Therefore, it is important to improve the productivity of
excavators based on evaluation and analyses. The excavators
repeat the following operations: “Dig,” “Swing,” “Load,” and
“Swing” (Fig. 1). This cycle time is considered an important
indicator in evaluating and analyzing the productivity of
excavators [2]. To measure and analyze the cycle time, it
is necessary to record action time. The manual recording
of action time is time-consuming, expensive, and prone to
errors [3]. To reduce time and cost, an automated system
for the action recognition of excavators is highly required.
Automated systems for the action recognition of excavators
can be classified into two categories: internal-sensor- and
external-sensor-based methods. The method with internal
sensors recognizes the action of excavators based on the
information obtained from sensors mounted on the excava-
tors [4], [5], [6], whereas the method with external sensors
recognizes the action of excavators by externally capturing
videos using cameras.
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Fig. 1: Excavators repeat “Dig,” “Swing,” “Load,” and
“Swing.”

The internal-sensor-based method consumes a lot of time
for attaching and detaching sensors, thereby incurring high
cost [1]. Moreover, in several cases, sensors cannot be
installed in rented or traditional excavators [7]. Therefore,
a low-cost automated system is required for the action
recognition of excavators using camera images and does not
involve the attachment or detachment of sensors.

Herein, the images of real environments with bounding
boxes (BBox), keypoints, and labels are referred to as real
image data and the videos of real environments with BBoxes,
keypoints, and labels are referred to as real video data.
The method that uses machine learning to perform action
recognition based on camera videos first detects the positions
of excavators and then recognizes the action of the excava-
tors [8]. However, there is a scarcity of real video data for
training excavators to achieve sufficient action recognition
accuracy, and the system is susceptible to differences in
camera viewpoints [8]. Moreover, the action recognition of
an excavator is different from general action recognition, in
which the same movement is made only once during a single
action event, making action recognition difficult [9]. For in-
stance, when humans walk or run, their arms and legs repeat
the same movements. However, when an excavator swings,
it only rotates once and does not repeat the same movement
during a single action event. In this case, recognizing the
action of an excavator becomes more difficult than that of a
human.

A large volume of the real image data of excavators that
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Fig. 2: Proposed method, where the action recognition of excavators is divided into three models: position detection, skeleton

detection, and action recognition.

can be used to train object detection models are publicly
available [10], [11]. In these datasets, there are variations in
viewpoints, the postures of the excavator, and backgrounds.
Meanwhile, a few hundred real video datasets are available
for training the action recognition model [12], which are
insufficient for varying viewpoints, excavator actions, and
backgrounds. Creating a real video dataset with varying
viewpoints, excavation actions, and backgrounds is time-
consuming and expensive. Therefore, a method that can learn
from other types of data is desirable.

To perform training without using real video data, Kasa-
hara et al. inserted the real images of actual shooting sites
into the background of video data obtained from physical
simulation and made it possible to learn for action recog-
nition [13]. However, the real images in the background
were not used for simulation. To obtain real images for the
background, the location of the camera for action recognition
must be fixed before learning, and the work site must not
be significantly different between the time of training and
time of action recognition. As work progresses, the work
site changes day by day, and the appearance of the work
site during the time of training is different from that during
the time of action recognition. Therefore, a method that can
respond to daily changes in the work site is required.

The development of a method that can address the fol-
lowing two situations is desirable: (a) There are only real
video datasets with few variations in the viewpoint and
the excavating motion itself; (b) it is not possible to use
information specific to particular surrounding environments.
Therefore, this study aims to develop a method that can learn
from data other than real video data and cope with daily
changes in the work site. In particular, the first goal is to
develop a method that can learn from physical simulation and
real image data without using any worksite-specific data, and
the second goal is to demonstrate an approach for efficiently
augmenting data from physical simulation.

II. PROPOSED METHOD
A. Concept

It is important to accurately recognize actions based on
camera images captured from arbitrary directions. There-
fore, to achieve highly accurate action recognition, data
considering different viewpoints are required during training.
In the case of excavators, as it is difficult to obtain real
video datasets viewed from various directions, we consider
collecting data viewed from various directions via physical
simulation and using them as training data.

Only the skeletal data of the excavator are needed to
recognize the action of the excavator. Therefore, we focus on
the movement of the skeleton of the excavator. We extract
the time-series skeletal transition data of the excavator from
the video data for action recognition and perform action
recognition using an action recognition model. The action
recognition model is trained by obtaining the time-series
skeletal data of the excavator from the simulation data.

The range of variation in the way an excavator moves
differs for each movement. Therefore, the accuracy of action
recognition can be effectively improved by expanding the
data based on the characteristics of each action event.

B. Proposed Method

As shown in Fig. 2, the proposed method classifies the
action recognition of excavators into three models: excavator
position detection, skeleton detection, and action recognition.
Each model is explained in detail.

Compared to the real video data, the real image data
of excavators possess more variations in the directions of
shooting and excavation action. Therefore, the position de-
tection model is trained using the real image data. Position
detection is performed prior to excavator skeleton detection
to remove unnecessary information and increase the accuracy
of skeleton detection.

Moreover, the skeleton detection model is trained using
real image data. The skeleton of an excavator is detected,
and it is assumed that the action recognition model can be
trained via physical simulation.
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Fig. 3: Data acquisition. The excavator is moved via phys-
ical simulation, and the skeleton model of the excavator
is projected on multiple 2D planes, as if it were being
photographed from various viewpoints.

Fig. 4: Name of each part of an excavator.

There is a scarcity of real video data in terms of variation
in the viewpoint and excavating motion. Therefore, the action
recognition model is learned based on the time-series skeletal
transition data obtained from physical simulation.

C. Acquiring Training Data for Action Recognition Models

The training data for the action recognition model are
obtained via physical simulation. The simulation process is
shown in Fig. 3. In the simulation process, an excavator is
moved, and the time-series 3D coordinates of the skeleton
are obtained. Next, we estimate the range where a camera
for action recognition can be installed. At arbitrary locations
within the range, the time-series 3D coordinates of the
skeleton are simultaneously projected on multiple 2D planes
as if they were captured using a camera. This process helps
in obtaining time-series skeletal transition data viewed from
various directions at a time. A more detailed explanation is
provided hereafter. To obtain training data, the motion of
the excavator is reproduced Mp;,in times in the simulation
process. The obtained 3D time-series coordinates of the
skeleton are projected on M.y 2D planes, which helps
extend the data to N, Similarly, to obtain validation data,
in the simulation process, the motion is reproduced M,
times and projected on M,ew 2D planes to extend the data
to Nval~ Ntrain = MtrainMvicw and Nval = Mvaleicw~ By
increasing the number of projection directions, it becomes
easier to obtain time-series skeletal transition data viewed
from multiple directions.

D. Data Augmentation

To learn sufficiently, we augment the data based on the
characteristics of the excavator’s movements. In addition,
general data augmentation methods are performed.

Dig Timeline

One Conventional Training Data for Dig

Examples of Training Data for Dig with Proposed Method ADDA

Fig. 5: Data augmentation method (ADDA). Compared to
other actions, each dig exhibits a considerable difference
owing to the influence of changes in the ground surface
and the amount of excavation. Therefore, we propose a data
augmentation method, ADDA, which extracts a random part
of the data of each dig with a random length and uses it as
training data. This method improves robustness.

1) Action-Driven Data Augmentation: Fig. 4 shows the
names of each part of the excavator. Excavators repeatedly
dig, swing, and load. Dig has more diverse movements than
swing and load. In swing, the track frame is fixed, and
the cab, boom, arm, and bucket rotate at an arbitrary angle
in unison. The swing is not affected by differences in the
shape of the ground surface or the amount of excavation,
and there is no significant difference in each swing. Load
is an action in which the track frame and cab are fixed and
the bucket position itself is not moved much, and the boom,
arm, and bucket are moved so that the bucket is inverted.
Load is not affected by differences in the shape of the ground
surface or the amount of excavation, and thus each load does
not differ significantly. Dig, on the other hand, is a large
movement of the boom, arm, and bucket, while the track
frame and cab remain fixed. Each dig differs considerably
due to differences in the shape of the ground surface and the
amount of excavation. Therefore, for data augmentation, a
random portion of each dig of random length was extracted
and used as training data (Fig. 5). The data augmentation
method, i.e., action-driven data augmentation, is hereafter
referred to as “ADDA.”

2) General Data Augmentation: Excavators may be
placed in a tilted position. Therefore, we rotate the obtained
time-series skeletal transition data and perform data augmen-
tation. In addition, to make the data robust to noise, which
is generated when the excavator’s skeleton is detected, we
mix noise with the time-series skeletal transition data and
perform data augmentation.

ITII. EXPERIMENTS

The first objective of this experiment is to confirm that
action recognition models can be trained using time-series
skeletal transition data obtained via physical simulation. The
second objective is to confirm that ADDA improves action
recognition accuracy. The third objective is to provide an
efficient way to collect simulation data optimal for training.

We used the proposed method for the action recognition
of excavators, specifically “Dig,” “Swing,” and “Load,” and
compared its action recognition accuracy with that of the



Fig. 6: Skeleton model of an excavator. Five key points are
connected by straight lines: the tip of the bucket, axis of
rotation of the bucket, axis of rotation of the arm, root of
the boom, and rear of the excavator body to prepare the
framework of the excavator.

conventional method. The proposed method comprised po-
sition detection, skeleton detection, and action recognition
models. Each training model is explained first. Then, con-
ventional methods and experimental results are described and
discussed.

A. Position Detection Model

To detect the position of an excavator and obtain its BBox,
we used Mask R-CNN [14]. ResNet-101 was used as the
backbone to convert the input images into features.

The Moving Objects in Construction Site (MOCS) [15]
dataset was used as the training data for the position detection
model. A total of 23,404 real image data in the MOCS
dataset were annotated with BBox information for 12 types
of construction machinery, including excavators. The real
image data of MOCS included 12,057 excavators.

The Alberta Construction Image Dataset (ACID) [11] was
used as the validation data for the position detection model.
A total of 2850 real image data in ACID were annotated with
BBox information for 3 types of construction machinery,
including excavators. The real image data of the ACID
included 2388 excavators.

Three methods were used to enhance the data. The first
method is left-right inversion. Excavators are not always
flipped upside down; however, they are sometimes flipped
left and right. Left-right flipping was considered with a
probability of 50%. The second method is rotation. As the
ground surface may be tilted where excavators work, the
images were randomly rotated at a maximum rotation angle
of 20°. The third method is cropping. The areas in the image
were randomly cropped while maintaining the width and
height of the image at 70% or more.

The input image size was set to 1333 x 640, and the
number of training epochs was set to 40. Among the results
obtained, the weights of the most recent position detection
model with the highest mAP were used for evaluation.

B. Skeleton Detection Model

As shown in Fig. 6, the excavator’s skeleton was defined
as a straight line connecting five key points: the tip of the
bucket, axis of rotation of the bucket, axis of rotation of
the arm, root of the boom, and rear of the body. A typical
skeleton detection model, HRNet [16], was used as the
skeleton detection model.

Fig. 7: Data augmentation via physical simulation. Data are
extended by moving an excavator in the simulation process,
and skeletal transition data are collected considering multiple
viewpoints.

To train the skeleton detection model, we used the Luo
dataset [17]. The dataset included 1281 real image data of
excavators annotated with skeletal information; 1000 images
were used as training data, and the remaining 281 images
were used as validation data.

For data augmentation, the data were flipped left to
right with a probability of 50% and randomly rotated at a
maximum rotation angle of 20°.

The input image size was set to 256 x 192, and the
number of training epochs was set to 350. Among the results
obtained, the weights of the most recent skeleton detection
model with the lowest loss function were used for evaluation.

C. Action Recognition Model

Pose-SlowOnly [18] was used as the action recognition
model. The action recognition model was trained using
the time-series skeletal transition data obtained from the
simulation process.

To train the action recognition model, we used the physical
simulation process, PyBullet, to obtain the 3D coordinates
of each key point of the excavator during each action. As
shown in Fig. 7, it was assumed that the camera for action
recognition was located at a horizontal distance of 40-80 m
from the excavator and an elevation angle of -5° to 5°, as
viewed from the excavator. The 3D coordinates of each key
point are projected on Myiey, 2D planes within the assumed
range.

The excavator repeated the following actions: “Dig,”
“Swing,” “Load,” and “Swing.” To obtain training data,
“Dig,” “Swing,” and “Load” were repeated Mj,,i, times in
the simulator and projected to M,iew 2D planes, expanding
the data to Niyain. Similarly, to obtain validation data, the
actions were reproduced M, times, projected to Myiew
2d planes, and extended to /Ny, data. The relationships
among Mtrain, Mval, Mvicw’ Ntrain, Nval, and ADDA in
experimental conditions 1-7 are summarized in Table I.
The action cycle comprised “Dig,” “Swing,” “Load,” and
“Swing,” and the number of “Swing” events was larger than
that of “Dig” and “Load” events. Therefore, the ratio of
“Dig,” “Swing,” and “Load” in training data was set to 1:2:1.

We randomly rotated the time-series skeletal transition
data at a maximum rotation angle of 10°. Noise following
a Gaussian distribution was added to each key point of
the excavator to make it robust against errors in skeleton
detection. The number of training epochs was set to 400,



TABLE I: Conditions of the experiment. *1: The dig and load data are maintained as they were, and only swing data are

extracted from random positions of random lengths. *2: The
data are extracted from random positions of random lengths.

dig and swing data are maintained as they are, and only load

Condition 1 | Condition 2 | Condition 3 | Condition 4 | Condition 5 | Condition 6 | Condition 7
Mirain 800 800 800 800 160 800 800
M1 80 80 80 80 16 80 80
Myiew 5 1 5 30 25 5 5
Nirain 4000 800 4000 24000 4000 4000 4000
Nyal 400 80 400 2400 400 400 400
ADDA With Without Without Without Without * 1 * 2
1 1 e 0.83
0.8 0.78 0.8 . 0.75 0.71
y 0.6 Y 0.6
E N
3 0.4 g 0.4
0.2 02
Conventional Condition 1 Condition 2 Condmon 3 Condition 4 Condition 5 0 Condition 1 Condition 3 Condition 6 Condition 7
method M,,;,=800 M, =800 M, =160 M,,;,=800 M,,;,=800
’\/l FXO J\/I‘UFRO M,,~80 M,,~80
M, =5 M, =5 5
Ny =4000 N,yuin=4000
N~ N,,~400 vl N,,~400
Wllh ADDA W||houl ADDA  Without ADDA thoul ADDA  Without ADDA With ADDA W|(h0ul ADDA

(a) Effectiveness of the proposed method. The proposed method represents (b) Effect of ADDA. *1: Only swing data are extracted

Condition 1.

from random positions of random lengths. *2: Only load
data are extracted from random positions of random
lengths.

Fig. 8: Action Recognition Accuracy.

and the weights of the most recent action recognition model
with the highest top-1 accuracy among the results obtained
were used for evaluation.

D. Conventional Methods for Comparison

The conventional method comprised a position detection
model, skeleton detection model, and action recognition
model. The position of the excavator (BBox) in the camera
image was detected using the position detection model,
the skeleton was detected from the RGB image in the
detected BBox using the skeleton detection model, and action
recognition was performed based on the data obtained from
the skeleton model using the action recognition model.

The method described in Section III-A was used as the
position detection model. The method described in Section
III-B was used for the skeleton detection model. Pose-
SlowOnly [18] was used as the action recognition model.
For training the action recognition model, we used a part of
the dataset [12]. We used 222 clips as training data and 47
clips as validation data.

E. Test Data Used to Determine Action Recognition Accu-
racy

We used 179 clips from the Roberts dataset [12], which
were not used in the previous section as test data. This test
dataset contained 47 clips of “Dig,” 90 clips of “Swing,” and
42 clips of “Load.”

F. Results and Discussion

Fig. 8 shows the accuracy of action recognition. Equation
(1) is used to calculate the action recognition accuracy.

N, correct

. 1
Nvideo ( )

r =

Here, r represents the action recognition accuracy, Neorrect
denotes the number of correctly judged real videos, and
Nyideo denotes the total number of judged real videos. The
normalized confusion matrix of each result is shown in
Fig. 9.

Fig. 8(a) shows that the action recognition accuracy of the
conventional method is 78%. The proposed method based on
Condition 1 possesses an action recognition accuracy of 91%.
Although the proposed method does not use real video data
for training, it can achieve a much higher action recognition
accuracy than the conventional method that uses real video
data for training.

Next, we consider the approach for efficiently collecting
training data from simulations. Comparing Conditions 2, 3,
and 4 with different M, ey, Condition 3 exhibits the highest
action recognition accuracy. When M, ey, is extremely small,
as in Condition 2, the total amount of data is extremely
small and the action recognition accuracy does not improve.
Meanwhile, if My, is considerably large, as in Condition 4,
the action recognition accuracy does not improve. In other
words, for proper training, the variation in the 2D plane
on which the dig is projected (Miew) and the variation
in the excavation action (Mirain, Myal) must possess an
appropriate relationship. It was found that large or small
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Fig. 9: Normalized confusion matrix. *1: Only swing data were extracted from random positions of random lengths. *2: Only
load data were extracted from random positions of random lengths.

variations (Nyiew) in the 2D plane on which excavation was
projected (Mirain and My,)) did not influence the reduction
in the action recognition accuracy.

Comparing Conditions 3 and 5, where Nipain and Ny
are the same value, Condition 3 has higher accuracy in
recognizing the actions. Condition 3 projects more exca-
vation movements onto fewer 2D planes than Condition 5.
Therefore, compared to Condition 5, Condition 3 has more
variations of the original action, and the accuracy of action

recognition is higher.

The effect of the data augmentation method ADDA is
described. Fig. 8(b) shows that Condition 1 is more accurate
for action recognition than Condition 3. Figs. 9(b) and 9(d)
show that the rate of correctly recognized dig videos is
particularly increased. Therefore, it is clear that the accuracy
of action recognition was improved by ADDA.

Next, we compare Condition 1, Condition 6, and Con-
dition 7. Compared to the cases in which the time-series



skeletal transition data of swing and load are extracted
from random positions for random lengths (Condition 6 and
Condition 7), Condition 1 is much more accurate in action
recognition. Therefore, it was found that the accuracy of
action recognition can be improved by applying data aug-
mentation to the dig, as in ADDA. In addition, Fig. 9(d), 9(g)
and 9(h) show that applying data augmentation only to
swing and load does not significantly improve the recognition
accuracy, indicating that data augmentation based on the
characteristics of each action is necessary, as in ADDA.

IV. CONCLUSION

Herein, we proposed a method that can learn from sim-
ulated and real image data. Moreover, we demonstrate an
approach to efficiently augment data via physical simulation.
Although the proposed method does not use real video
data for training, it was found to be more accurate than
conventional methods that use real video data for training.
The proposals are as follows:

(1) The proposed method divided the action recognition of
excavators into the following models: position detection,
skeleton detection, and action recognition. We proposed
the method to learn the first two models from real
image data and the action recognition model from time-
series skeleton transition data obtained via physical
simulations.

We proposed an efficient method to collect time-series
skeletal transition data via physical simulation. The
time-series skeletal transition data were obtained by
obtaining the 3D coordinates of an excavator’s skeleton
via physical simulation and projecting them on a 2D
plane as if it were photographed from various directions.
Moreover, we proposed ADDA to augment the data by
extracting only the data of the excavator’s dig from
a random position for a random time length, thereby
taking advantage of the characteristics of the excavator’s
action. We found that this method significantly improves
the accuracy of action recognition.

)

As the proposed method does not require annotated real
video data, it takes less time and is less expensive than
other conventional methods. Therefore, using the proposed
method, it becomes easy to collect training data for “Dig,”
“Swing,” and “Load,” and for new action recognition classes,
e.g., stop and move. In the future, we will try to develop
a method to recognize action classes other than “Dig,”
“Swing,” and “Load.” Moreover, we will aim to realize a
system that can recognize the movements of an excavator
by placing a camera, and can record the movements of
excavators for a day.
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