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Abstract— In this study, we propose a method for detecting
changes on the outer surface of pipes using inspection videos
captured by an inspection robot. It is critical to detect anoma-
lies on the outer surface of pipes during patrol inspections.
Anomalies are defined as deviations from the normal state and
should be detected as areas that have changed from the normal
state. Therefore, for appropriate maintenance of the plants, it
is crucial to perform change detection by comparing videos
that capture the past normal state with those capturing the
current state. The problem with detecting changes from videos
is deciding which frame to compare. We therefore propose
sequential filtering to determine image pairs based on the
position of the images and their similarity. We then apply a
deep learning method to perform change detection. An indoor
simulated plant environment has been constructed to test the
efficacy of the proposed method. Experiments and evaluation
results showed that the proposed method outperformed an
autoencoder. The proposed method also achieved an F1 score
of 0.880 for change detection in the inspection videos by
introducing sequential filtering, which prevented mismatching
of image pairs and reduced computational costs.

I. INTRODUCTION
Petroleum refineries and petrochemical plants process raw

materials such as crude oil, heavy oil, and petroleum gas
to produce a wide range of products, including fuel oil,
petroleum products, and petrochemical products such as
synthetic fibers and plastics [1]. In these plants, pipes are
widely used to transport raw materials and products [2], [3].
These pipes are susceptible to corrosion caused by various
factors, such as components in the raw materials, moisture
from rainwater, and temperature. This can result in various
anomalies, including internal fluid leaks and structural dam-
ages to the pipes [4].

Field operators conduct regular patrol inspections at the
plant all day and night to detect anomalies early and en-
sure proper maintenance. Specifically, visual inspections are
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Fig. 1. An inspection robot in a petroleum refinery (ENEOS Corporation).

important in detecting anomalies such as corrosion, leaks,
and structural damages. However, human-based inspections
often have issues such as a decrease in the number of expert
field operators and difficulty in transferring skills to learners.
Consequently, camera-based inspection methods have been
studied as an alternative to human visual inspections.

There have been studies that used multiple fixed cameras
to detect gas leaks from pipes [5], and an infrared camera
installed in chemical process plants to inspect for pipe
leaks [6]. One of the drawbacks of these studies is the
requirement of installing fixed cameras within the plant.
This means that a substantial number of cameras must be
deployed to cover the entire area of large plants. Therefore,
as shown in Fig. 1, there has been an increasing trend in
recent years to automate patrol inspections using inspection
robots equipped with cameras [7], [8]. This approach offers
extensive coverage, bypassing the need for fixed cameras and
enabling inspections in large plants using just one inspection
robot.

Generally, the patrol inspection of plants is considered an
anomaly detection task aimed at detecting specific phenom-
ena such as corrosion, cracks, and leaks [9], [10]. Anomalies
are defined as deviations from the normal state. From this
definition, a comparison with the normal state, that is, posing
the anomaly detection problem as a change detection method,
is appropriate. Moreover, certain anomalies, such as a sudden
emergence of an anomalous object, are difficult to detect
from a single image [11]. Consequently, the focus during



Fig. 2. Overview of the proposed change detection system in inspection videos.

inspections should be on detecting changes between the past
normal state and the current state.

The difficulty in detecting changes between the past and
current states captured by an inspection robot lies in the
variation in shooting conditions during each inspection. The
inspection robot follows a predetermined path in the plant
and captures videos of the facility. The path taken may
slightly differ during each inspection due to errors in self-
localization by odometry or simultaneous localization and
mapping (SLAM) [12]. Moreover, inspections are conducted
at different times of the day, leading to variations in light
intensity between inspections. Therefore, change detection in
videos captured during robot inspections must be resistant to
changes in the robot’s position and light intensity.

Image subtraction is one of the most fundamental ideas
used in detecting changes [13]. However, this method cannot
fully absorb the effects of camera position and brightness
changes, leading to false positives and negatives in detecting
changes [14]. A more sophisticated method for change de-
tection involves using an autoencoder [15]. Autoencoders are
widely used in change detection because of their robustness
against changes in camera position. Changes between the
past and current images can be obtained by inputting the cur-
rent image into an autoencoder model that has been trained
with past images. However, to conduct change detection
using an autoencoder, it is necessary to train a model for each
past time point. This requires a significant amount of training
data and time, making it impractical for an inspection robot
to acquire sufficient data for a large plant.

Wang et al. [16] proposed a change detection method
that is adaptable for data acquisition by a robot. In this
method, a Siamese network was designed using a pair of
images captured in the same region at different times as
input. The network then outputs the regions where changes
have occurred. However, this method does not address the
problem of determining the input image pairs. Consequently,
it cannot select appropriate image pairs for comparison from
the videos captured during past inspections and the current
inspection, which hinders the detection of changes in the
inspection videos. Therefore, this study aims to achieve
change detection on the outer surface of pipes by identifying
proper image pairs.

II. PROPOSED METHOD

A. Method overview

A schematic diagram of the proposed method is shown
in Fig. 2. We propose sequential filtering for pair determina-
tion based on both positional filtering and image similarity
filtering. This study aims to achieve change detection in
videos captured by an inspection robot. A simple method
to accomplish this is by directly inputting each frame of the
videos into a change detection network. However, because it
involves comparing image pairs that do not capture the same
region, this approach reduces the correct change detection
rate. Therefore, image similarity filtering based on image
features is performed to select image pairs that depict the
same region.

Despite this improvement, computational time remains
an issue due to the need for image similarity calculations
between images acquired at different locations. As images
captured at distant locations do not usually capture a com-
mon area, there is no need to compute image similarity
between these images. Prior to image similarity filtering,
positional filtering based on self-localization of the robot
is performed to reduce the similarity calculations between
images captured at long distances. It is important to note
that a pair determination based solely on positional filtering
is insufficient due to self-localization errors. The image pairs,
determined sequentially using image similarity and positional
filtering, are then input into a deep learning model to detect
the changes. Thus, change detection can be performed in
inspection videos captured during patrol inspections using
this method.

B. Data acquisition by an inspection robot

Patrol inspection robots operate between machinery in
petroleum refineries and petrochemical plants, capturing in-
spection videos of the outer surface of the pipes with a
camera mounted on them. The inspection videos obtained
along the same path at different times are divided into the
following two types:

1) Past videos:
These videos were captured during previous inspec-
tions. They do not contain any anomalies. Each video
frame is referred to as a past image.



2) Target videos:
These videos are captured during the current inspec-
tion. They may include changes in the outer surface
of the pipes, and it is necessary to determine whether
any changes are present. Frames are extracted from
these videos at a specific interval and collected as target
images.

Pair determination is performed on each of these target
images. The pair determination is accomplished by compar-
ing the similarity between a target image and past images
captured in nearby locations, as described in the following
sections.

C. Positional filtering considering the self-localization error
of the robot

When determining image pairs, they must capture the same
region. The closer the locations where the images are cap-
tured, the higher the probability that they capture the same
region. Therefore, we propose a positional filtering approach
based on the location where the images are captured.

We use the results of self-localization by an inspection
robot to obtain the image shooting locations. It is possible
to estimate the shooting position of each frame of the video
by synchronizing the video and the self-localization data.
In the context of plant patrolling using robots, the robot
estimates its position using odometry or SLAM. However,
odometry can be prone to significant errors caused by
crawler slippage. Moreover, SLAM has an estimated self-
position error of approximately 0.1 m due to point cloud
misalignment [17]. Hence, when determining pairs of images
in the neighborhood, it is necessary to consider the self-
localization error. Positional filtering is accomplished by the
following equation:

SC = {P ∈ SP | ∥xT − xP∥ ≤ T}, (1)

where P represents a past image, C represents a candidate
image, and T represents a target image. SC and SP refer
to sets of candidate images and past images, respectively.
xT ∈ R2×1 and xP ∈ R2×1 denote estimated 2D positions
of target and past images, respectively. T ∈ R and represents
a threshold of the distance between the target and past
images. This filtering prevents the selection of pairs of
images captured at clearly different locations.

D. Image similarity filtering for reference image determina-
tion

The positional filtering described in the previous section,
which is based on the shooting distance between images, is
insufficient for pair determination because errors can occur in
estimating the positions of the images. This means that even
if two images are identified as being the closest in distance,
the self-localization error may prevent them from accurately
capturing the same area. Therefore, it is necessary to compare
the images themselves to examine whether they captured the
same region.

In this study, we employ image similarity filtering between
two images based on feature matching to determine whether
the images captured the same region. The image similarity
is determined by evaluating the number of matched feature
points obtained through feature matching. The input image
pair is selected as the candidate image with the highest
similarity to the target image, referred to as the reference
image, along with the target image. As petroleum refiner-
ies and petrochemical plants are often situated outdoors
where lighting conditions vary considerably, robust feature
extraction is achieved by employing the brightness-robust
Accelerated-KAZE (AKAZE) feature descriptor [18]. The
feature point with the smallest Hamming distance among
the feature point sets of the two images is chosen for feature
matching [19]. The reference image is selected as follows:

R = arg max
C∈SC

f(T,C), (2)

where R represents a reference image. f(T,C) denotes the
number of matched feature points between the target image
T and the candidate image C. This method determines the
image pair with the highest similarity based on the number
of matched feature points as the input image pair.

E. Change detection by deep learning

When detecting changes on the outer surfaces of pipes, it
is essential to compare images captured in the past with those
captured currently. However, images captured at different
times have varying camera positions and lighting condi-
tions. Hence, detecting significant changes without being
influenced by varying conditions is crucial. To achieve this,
a Siamese change detection network is introduced. It is
possible to output the changed area between two images by
inputting them as a pair into this network. In this way, change
detection in inspection videos is achieved.

III. EXPERIMENTS

A. Conditions

To evaluate the effectiveness of the proposed method,
experiments were conducted in an indoor environment that
simulated a petroleum refinery and petrochemical plant, as
shown in Figs. 3 and 4. PVC pipes were installed to repro-
duce the plant environment, and changes on the pipe surfaces
were replicated by attaching black vinyl tape. Fluorescent
lamps provided the primary lighting in the room, while
halogen lamps were used to change the brightness of the
environment.

A 5-axis manipulator for S2-P1-F4 and an experimental
rescue robot system S2-P1 module manufactured by Topy
Industries were used as the inspection robot. The robot
moved along the pipes in a straight line for approximately
3 m at a speed of 0.014 m/s, capturing videos of the pipes.
In each trial, the robot’s starting position was visually set
to the same location. The self-localization of the robot was
performed by calculating odometry using the encoder values
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Fig. 4. Validation camera and chessboard used to obtain the true values
of the robot’s movement.

of the crawler. In the proposed method, the threshold T was
set to 0.30 m.

To capture videos of the pipes, the mobile robot was
equipped with a Nikon Z9 camera mounted with a NIKKOR
Z 24-70 mm f/4 S lens (inspection camera). The video resolu-
tion of the inspection camera was set to 3840 × 2160 pixels,
frame rate to 30 fps, and focal length to 24 mm. The distance
between the inspection camera and the surface of the pipe
was approximately 0.6 m.

To acquire the true position of the robot, a chessboard
pattern was attached to the robot, and the coordinates of
the chessboard were obtained using a pre-calibrated Nikon
Z9 camera equipped with a NIKKOR Z 14-24 mm f/2.8 S
lens (validation camera). As the relative position between
the inspection camera and the chessboard was fixed, there
was no need for calibration between the inspection camera
and the chessboard. The video resolution of the validation
camera was set to 3840 × 2160 pixels, frame rate to 30 fps,
and focal length to 24 mm.

We employed AnoDFDNet, a deep learning model pro-
posed by Wang et al. [16], for change detection. This network

is based on convolutional neural networks and vision trans-
formers. By training this network with the features of the
target changes to be detected, it can achieve change detection
that is tolerant to non-target changes such as camera position
and lighting conditions.

An autoencoder model [20] trained on the same past
images as the proposed method was used to evaluate the
performance of the proposed method. The autoencoder was
based on VGG16 architecture [21]. In this approach, the
threshold of the autoencoder was determined based on the re-
construction error of past images. Specifically, kernel density
estimation was performed on the histogram of reconstruction
errors, and the threshold value was set as the reconstruction
error at which the area of the probability distribution function
reached 90%. When the reconstruction error of a target
image exceeded this threshold value, it was interpreted as
indicating a changed image. When comparing the proposed
method with the autoencoder, any image where changes were
detected, even in a single pixel, was classified as an image
with changes. Three evaluation metrics were used to evaluate
model performance: precision, recall, and F1 score.

In addition, to evaluate the effectiveness of sequential
filtering for pair determination, we compared the proposed
method against the following two measures:

Similarity measure:
In this measure, image pair determination relies
solely on image similarity filtering. The reference
image is determined as follows:

R = arg max
P∈SP

f(T,P). (3)

Position measure:
In this measure, image pair determination relies
solely on the estimated self-position of the robot.
The reference image is determined as follows:

R = arg min
P∈SP

∥xT − xP∥. (4)

When comparing the proposed method against these two
measures, the effectiveness of the proposed sequential fil-
tering for pair determination was evaluated in two aspects:
robustness against self-localization errors and computational
cost. To assess robustness, pair determination and change
detection were conducted by programmatically introducing
constant noise to the robot’s estimated self-position. In this
assessment, the true shooting distance of image pairs, F1
score, and area under the curve (AUC) of the precision-recall
(PR) curve were used. The PR curve was utilized due to the
imbalanced nature of the data acquired in this experiment,
which contained few changed areas. The execution time
required for each method to determine a single image pair
was measured to compare the computational cost. In these
evaluations, change detection results were evaluated pixel-
by-pixel.

B. Dataset generation and training
The robot captured three target videos and three past

videos for approximately 200 seconds for testing purposes,
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Fig. 5. Result of pair determination and change detection using the proposed method. Columns from left to right show the target image, reference image,
ground truth for the changed area, and result of change detection by the proposed method, respectively. Row (1) shows an example of a relatively small
change in camera position, row (2) shows an example of different lighting conditions with a halogen lamp irradiating the area, and row (3) shows an
example of no change on the outer surface of the pipes.

TABLE I
EVALUATION OF THE PROPOSED METHOD AND AUTOENCODER.

Autoencoder Proposed method
Precision 1.00 0.994

Recall 0.260 0.983
F1 score 0.413 0.989

resulting in a total of 209 target images by extracting frames
from these target videos every three seconds. Subsequently,
sequential filtering was performed to determine the image
pairs. As a result, these target images were paired with
their corresponding reference images, generating 209 pairs
of testing data.

AnoDFDNet was pre-trained using a self-made dataset
captured in a similar environment. Data for training and
validation were collected such that the ratio of training and
validation data to testing data was about 8:2. A total of 727
pairs of data were obtained and split in an approximately
8:2 ratio for training and validation data, resulting in 559
pairs for training and 168 pairs for validation. The validation
data were used to adjust the hyperparameters of the model.
For the training and validation data, input image pairs were
manually selected to ensure that the past images and the
reference images captured the same region.

AnoDFDNet was trained using an Nvidia GeForce
RTX3070 Ti GPU and Intel core i9-11900K CPU. We used
the Adam optimizer [22] in batches of four, with a learning
rate of 0.01, and completed 20 training epochs. All images
were resized to 256× 256 pixels before being input into the

network.

IV. RESULTS AND DISCUSSION

A. Results

The change detection results using the proposed method
are shown in Fig. 5. For the example shown in the top
row (row(1)), the proposed method appropriately selected the
reference image for the target image and accurately detected
only the changed regions. The example in the middle row
(row(2)) confirmed the robustness of the proposed method to
changes in the brightness of the environment. The example
in the bottom row (row(3)) demonstrated the ability of the
proposed method to accurately determine the absence of
change when there is no change.

Table I lists the values of the three performance metrics
of the proposed model and the autonecoder. The recall of
the autoencoder was lower than that of the proposed method,
while the precision of the autoencoder was 1.00. This implied
that the autoencoder was prone to making false negative and
true negative decisions. In particular, a low recall means that
changes were overlooked, leading to safety risks and failures.

The true shooting distances between the matched pair
of images are shown in Fig. 6. The similarity measure
determined image pairs without being affected by noise
because it does not use the robot’s positional information.
However, there were mismatches with images at distances as
far apart as 0.7 m and 1.2 m. The position measure showed
fewer matches with images at a distance. However, the mean
value in Fig. 6a changed significantly from that in Fig. 6b,
indicating that it was influenced by noise. The proposed
method prevented matching at a distance by performing
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position.

Similarity

measure

Position

measure

Proposed

method

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

Pair determination measure

S
h
o
o
ti
n
g
 d

is
ta

n
c
e

 o
f 
im

a
g
e
s
 [
m

]

mean = -0.0331mean = 0.0301 mean = 0.00664

(b) When noise of 0.050 m was added to the estimated
self-position.
Fig. 6. True shooting distance of paired images with and without noise
in the estimated self-position: (a) no noise and (b) noise of 0.050 m. The
horizontal axis represents each pair determination measure, and the vertical
axis represents the shooting distance between matched images. The true
shooting distances are calculated based on the true values of the robot
acquired by the validation camera. The results of 209 samples are plotted. As
the similarity measure is not affected by noise, the results of the similarity
measure in these figures are the same.

positional filtering and achieved robust matching against
noise through image similarity filtering.

Figs. 7 and 8 show the evaluation results when noise was
added to the estimated self-position. In Fig. 7, F1 scores
are plotted. When no noise was added to the estimated self-
position, the F1 scores of the proposed method, similarity
measure, and position measure were 0.880, 0.861, and 0.892,
respectively. This confirmed that the proposed method was
more robust to errors in robot self-localization than the po-
sition measure and could detect changes with an F1 score of
0.880. Moreover, the proposed method demonstrated a higher
F1 score in change detection compared to the similarity
measure. This can be attributed to the proposed method’s
ability to suppress false matches with images captured at
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Fig. 7. Comparison of F1 score in the presence of noise in self-localization.
The horizontal axis represents the noise added to the estimated self-position
of the robot, and the vertical axis represents the F1 score. The red line
represents the case where the proposed method is performed to determine
pairs, the blue line represents the case where pairs are determined by the
similarity measure, and the green line represents the case where pairs are
determined by the position measure. The average over 3 target videos are
plotted.

distant locations.
In Fig. 8, PR curves are shown when a noise of 0.050 m

was added to the self-localization. The proposed method
had an AUC higher than that of the position measure and
comparable to that of the similarity measure.

In terms of computational time, the time required to deter-
mine a pair is shown in Table II. The position measure was
the fastest in determining pairs, and the proposed method was
the second fastest and could perform pair determination in
approximately one-fifth of the time required by the similarity
measure.

B. Discussion

The proposed method outperformed the autoencoder. This
superior performance of the proposed method could be
attributed to the inadequacy of the data obtained from the
inspection videos captured by the mobile robot for effectively
training the autoencoder. As a result, the proposed method
proved to be better suited for inspection tasks utilizing a
mobile robot than the autoencoder.

The proposed method demonstrated superior change de-
tection capability compared to the position and similarity
measures. Although the position measure had the lowest
computational cost, its change detection performance was
significantly degraded if errors occurred in self-localization.
The similarity measure was not affected by self-localization
errors and demonstrated high change detection capability.
However, the impact of mismatching and high computational
cost indicated that operating the similarity measure in a
large plant could be difficult. The proposed method achieved
high reliability in change detection while addressing self-
localization errors, preventing mismatches, and reducing
computational costs. In other words, positional filtering limits
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the number of images to be processed, regardless of the
inspection video length. Image similarity filtering identifies
pairs that capture the same region.

While applying the proposed method to real plant envi-
ronments, two issues need to be addressed. First, inspection
robots are expected to perform various motions, such as
translations, rotations, and manipulator movements in large
and complex plants, whereas in this experiment, the robot
moved in a straight line with its manipulator fixed. Therefore,
higher degrees of freedom of camera motion need to be
implemented for the inspection robot in real plants. Second,
a broad range of anomaly training data is required to detect
anomalies that occur in real pipes. Collecting such diverse
training data is time-consuming and beyond the scope of this
study. Efficient data collection will be a future work.

The reliability of the proposed method depends on the
accuracy of self-localization. As shown in Fig. 7, when
self-localization was highly accurate, the position measure
exhibited a higher F1 score than the proposed method. In
addition, the accuracy of self-localization affects how thresh-
old T is determined, and T is related to the performance of
the proposed method. As T is determined heuristically in
this paper, self-localization performance should be carefully
checked during real-world operations.

In summary, the similarity measure showed robustness to
self-localization errors, and the position measure had the
lowest computational cost. Although the proposed method
depended on the performance of self-localization, it exhibited
both robustness and low computational cost, rendering it
the most suitable model for determining pairs and detecting

TABLE II
TIME TO DETERMINE A REFERENCE IMAGE FOR ONE TARGET IMAGE FOR

EACH METHOD. THE MEANS AND SDS OVER 10 SAMPLES OF THE TIME

EACH METHOD TOOK TO DETERMINE THE REFERENCE IMAGE ARE

DISPLAYED.

mean [s] SD [s]
Similarity measure 138.494 0.424
Position measure 0.344 0.073
Proposed method 28.231 0.566

changes among the three measures.

V. CONCLUSION
In this study, we proposed a method for detecting changes

on the outer surface of pipes using inspection videos cap-
tured by an inspection robot. To achieve this objective, we
introduced sequential filtering for determining image pairs
that utilizes positional filtering and image similarity filtering.
According to the experimental results, the proposed method
achieved a higher F1 score than that of the autoencoder.
The comparison of the proposed method with the two
measures revealed that the similarity measure demonstrated
robustness to self-localization errors, whereas the position
measure required the least computational time. In contrast,
the proposed method achieved both robustness against self-
localization errors and time efficiency in determining image
pairs.

Future works include conducting outdoor experiments in
actual petroleum refineries and petrochemical plants. It is
necessary to carefully consider the self-localization error that
can occur in a real plant and the computational time for real-
world operations. In addition, addressing the wide range of
changes that can occur in a plant environment is essential.
This can be accomplished by efficient data collection, such
as data generation using a 3D model or by employing a pre-
trained model. Pair determination methods that correspond
more effectively to various camera motions should be consid-
ered. It is also important to consider other pair determination
methods, such as deep learning, to overcome the dependence
on the self-localization performance.
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