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Abstract— Texting while walking is a common behavior
exhibited by pedestrians. While several studies explored the
detection of texting while walking, the influence of occlusions
were neglected. In this paper, we propose an image-based
method which utilizes a pre-trained Variational Autoencoder.
The proposed method takes sequence of 2D coordinates of
upper body key points of the pedestrians as input, encodes
the data into a 2D latent space, and uses the encoded data to
distinguish text walkers from normal pedestrians. The proposed
architecture enables the model to extract meaningful features
from occluded data. Results of ablation test and comparison
with a previous method revealed that the proposed architecture
is successful in identifying text walkers even under heavy
occlusion, outperforming a previously proposed method.

I. INTRODUCTION

Mobile robots have become ubiquitous across various
domains, and their presence in our daily lives is steadily
growing. From restaurants and shopping centers to streets
and beyond, mobile robots are becoming a common sight
in public spaces. With the increasing likelihood of human-
robot interaction, it is imperative for mobile robots to comply
with safety requirements, such as avoiding collisions between
mobile robots and pedestrians.

One concerning behavior observed among pedestrians is
texting while walking, herein referred to as ”text walkers”,
as depicted in Fig. 1. Over 7% of pedestrians are observed to
be engaged in texting while walking [1], coinciding with the
escalation in pedestrian injuries associated with the use of
mobile phones [2]. Text walkers exhibit distinct behaviors
such as fixating on their phone screens and paying less
attention to their surroundings, resulting in an elevated risk of
collisions with other pedestrians or obstacles [3]. Moreover,
text walkers inadvertently cause slowdowns in pedestrian
flow and compel nearby pedestrians to make sudden turns
to avoid collisions [4], introducing an additional risk of
collision due to unexpected behaviors. Thus, it is crucial
for a mobile robot to identify text walkers ahead of time
to minimize the risk of collisions with pedestrians.

Existing studies delved into the identification of text walk-
ers using sensors on mobile robots [5]–[7]. However, none
of these studies explicitly tackled the challenge of detecting
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Fig. 1. Example of Normal Pedestrian (left) and Text Walker (right).

text walkers in occluded scenarios. Occlusion, wherein a
pedestrian’s body is partially or entirely concealed from
view, manifests over 70% of pedestrian situations [8] and its
effect cannot be undermined. Some unique features of text
walkers may be undetectable under occlusion and previously
proposed methods may not function in real-world situations.
Consequently, it is imperative to develop an approach capable
of detecting text walkers even amidst occluded scenarios.

This paper introduces a novel image-based machine learn-
ing approach for identifying text walkers. The proposed
method utilizes a pre-trained Variational Autoencoder (VAE)
[9] to supervise the feature extraction, enabling a meaningful
feature extraction from input data even with substantial
occlusions. The resulting features are then used to classify
the pedestrian into either normal pedestrian or text walker.

The subsequent sections of the paper are organized as
follows: Section II describes the related works, followed by
Section III which illustrate the proposed method, detailing
its mechanism. Section IV presents the data collection and
experiment of the proposed method, and the results are
presented and analyzed in Section V. Finally, the conclusion
and future works are given in Section VI.

II. RELATED WORKS

A. Detection of Text Walkers

Several existing works have addressed the detection of
text walkers by using images [5], [6] or point cloud data
of pedestrians [7]. For instance, Kumamoto et al. [5] ana-
lyzed the body pose of pedestrians from an RGB image to
categorize their actions into normal walking, texting while
walking, or talking on a phone while walking. Their method
achieved a classification accuracy of 89.6% for pedestrians
in real-world environments. However, images of occluded
pedestrians were ignored in their research.



Fig. 2. Overview of the Proposed Method.

In contrast to using an image, Wu et al. [7] proposed
an approach of using a LiDAR sensor and analyzed the
point cloud pattern of a pedestrian to distinguish between
normal pedestrians and text walkers. A maximum F1 score of
0.44 is reported for their approach, suggesting challenges in
classifying text walkers compared to image-based methods.

One common aspect among these methods is the reliance
on a single frame of data to discern the pedestrian’s activities.
Although their method may function in ideal situations where
all necessary pedestrian information is captured in a single
frame of data, the limitation becomes pronounced when the
data is occluded causing data insufficiency, as the extraction
of features might be unsuccessful.

Another study leveraged data obtained from pedestrian’s
smartphone and a body-worn accelerometer to detect text
walkers [10]. While this approach offers potential robustness
against occlusion, its real-world viability is questionable, as it
necessitates pedestrians to provide their smartphone data and
wear additional sensor. Hence, the detection of text walkers
in occluded scenarios remains unresolved in practical terms.

B. Perception in Occluded Scenarios

A study by Dollar et al. [8] revealed the prevalence of
occlusions among pedestrians on streets. A video taken with
an RGB camera mounted on a vehicle was analyzed, and
it was discovered that 71% of pedestrians are occluded in
at least one frame, and 79% of them are heavily occluded,
indicating over 40% of their body were hidden. Occlusions
pose a challenge, as the performance of pedestrian detection
substantially decreases in the presence of occlusions [11].

One approach explored the use of image inpainting [12]
to detect the pose of a bus driver partially occluded by a
steering wheel [13]. Images of the occluded body parts of the
bus driver such as the arms were reconstructed with image
inpainting. The reconstructed image was used to detect the
body key points of the bus driver, which demonstrated im-
provements in body key points detection. While this method

appears to be effective for mutually occluded person where
an occlusion is caused by other objects or people, it may
exhibit limited performance in the case of self-occlusion.
Self-occlusion is the case in which the occlusion is caused
by the person themselves, such as the person’s hand being
hidden by their body. In such situation, image inpainting
will attempt to reconstruct the background instead of the
concealed body parts, limiting the application of this method.

Instead of focusing on one pedestrian, another approach
paid attention to observing all pedestrians in the scene [14].
This approach is grounded in the concept that one can
anticipate the presence of a pedestrian or an obstacle by
observing the behaviors of other pedestrians. For instance,
if a pedestrian suddenly decelerates, it may suggest the
existence of a hidden obstacle in their path. Several studies
have demonstrated the effectiveness of this approach in
predicting the presence of fully occluded pedestrians or
obstacles [14]–[16]. However, this approach is limited to
detecting the presence of a potential pedestrian, and not
specifically identifying their activities.

III. PROPOSED METHOD

A. Problem Setting

We consider a scenario in which a pedestrian’s body
is only partially visible to a mobile robot. Our approach
involves capturing pedestrian images using an RGB camera
positioned at a height of 1 meter from the ground, replicating
a view from a mobile robot, and using the image to detect
and classify pedestrians into normal pedestrian or text walker.
The choice of an RGB camera is driven by the human’s
ability to identify text walkers even amidst partial occlusions,
just through visual observation.

B. System Overview

To address the challenge of detecting text walkers under
occluded scenarios, we propose a machine learning-based
approach outlined in Fig. 2. In contrast to the previous



image-based methods [5], [6], our approach takes a sequence
of pedestrian body key points as input. It is hypothesized
that the sequential data-based approach imparts an increased
robustness against temporary occlusions, as the missing
information may be inferred from adjacent frames of data.

We define temporary occlusion as the case when all body
key points of a pedestrian is observed at least once during
the input sequence. Oppositely, persistent occlusion denotes
the case where at least one key point remains unobservable
throughout the entire input sequence.

To fortify our model against persistent occlusion, we
employ an architecture introduced in [16]. This architecture
incorporates a VAE pre-trained with unoccluded pedestrian
data, using it as a supervisor to train the feature extrac-
tion process of occluded data which we call the occlusion
inference module (OIM). The OIM takes a sequence of
potentially occluded body key points and outputs a latent
representation of the pedestrian pose. In other words, the
OIM extracts pedestrian features while robustly accommo-
dating occlusions.

Finally, the activity classification module (ACM) takes the
features from the OIM to classify the pedestrian into normal
pedestrian or text walker.

C. Supervisor Variational Autoencoder
The role of the supervisor VAE is to oversee the training

phase of the feature extraction by the OIM. Its involvement is
exclusive to the training phase and does not extend to testing,
as it requires ground truth data of body key points which are
unavailable during testing. Furthermore, only the encoder
of the VAE is used for supervising the training phase, as
the encoder is responsible for extracting the features of the
input data into a latent space. The VAE is pre-trained with
unoccluded data of pedestrian body key points, encoding
it into a latent representation and decoding it back to the
original data.

We follow the standard procedure of training a VAE,
employing the ELBO loss [9] encompassing L2 reconstruc-
tion loss and Kullback-Leibler divergence (KL loss). The
reconstruction loss monitors how close the coordinates of
the reconstructed pedestrian body key points Rt is to that of
the original key points Pt, and is calculated as:

Lrecon = ||Pt −Rt||22. (1)

The KL loss represents how close the probabilistic dis-
tribution of the latent vector generated by the encoder is
to that of Gaussian distribution. Its role is to control how
distributed the latent vectors are, and is calculated by the
following equation:

Lkl = −β(1 + log σ2 − µ2 − σ2), (2)

where µ and σ are the mean and standard deviation of the
distribution of the latent representations, respectively. β is
the KL coefficient [17], a hyperparameter for adjusting the
balance between Lrecon and Lkl.

Finally, the ELBO loss is computed as the sum of the two
losses: Lrecon and Lkl.

Fig. 3. Experimental Setup.

D. Feature Extraction with Occlusion Inference Module

The role of the OIM is to take a sequence of occluded
pedestrian body key points Ot−T :t with the aim of deriving
robust features that remain resilient to occlusions. The feature
extraction is overseen by the supervisor VAE by employing
encoding loss Lencoding computed as:

Lencoding = ||zvae − zoim||22, (3)

where zvae is the latent representation of Pt outputted by
the supervisor VAE, and zoim is the latent representation of
Ot−T :t by the OIM.

This enables the OIM to extract features from observed
key points, encompassing information of the occluded key
points, as it would do for fully observable data.

E. Text Walker Detection with Activity Classification Module

The activity classification module processes the input zoim
and performs the task of classifying pedestrians into two
categories: normal pedestrians or text walkers. This module
is trained by utilizing categorical cross-entropy loss Lcat

which quantifies the discrepancy between the predicted and
actual labels assigned to the pedestrians.

Importantly, the OIM and the activity classification module
undergo simultaneous training within a unified stage. This
approach ensures that the model’s optimization is intricately
aligned with the accurate determination of pedestrian activ-
ities. The loss is calculated as shown below:

L = wencoding · Lencoding + (1− wencoding) · Lcat, (4)

where wencoding is a coefficient applied to take a balance
between the encoding loss and cross-entropy loss.

IV. EXPERIMENT

A. Data Collection and Preprocessing

The experimental setup is represented in Fig. 3 Three
individuals, each having experience of texting while walk-
ing, participated in the data collection. Their task involved
traversing a room under two conditions: walking in a regular
manner and by walking while using their mobile phones.
For texting while walking, the participants were instructed
to engage in familiar activities such as checking the social
media and messaging their friends.



Fig. 4. Replicated Camera Perspectives.

The participants were recorded with 6 cameras arranged
in the room, capturing a video from various angles. Sub-
sequently, the videos were analyzed by Theia Markerless
[18], a markerless motion capture system. The 3D world
coordinates of the body key points (head, neck, shoulders,
elbows, hands, pelvis, hip joints, knees, heels, and toes) of
the participant were extracted from the videos.

One camera was located at a height of 1 meter from the
floor to replicate the view akin to that of a camera mounted
on a mobile robot. To facilitate the training and testing of
the proposed method, the world coordinates of the body key
points were translated into 2D camera coordinates. Pedes-
trian height was computed by taking the difference between
the maximum and minimum y-coordinates of the body key
points. The coordinates were normalized by adding a 15%
margin above and below the body, creating a bounding box
with a 1:2 width-height ratio, centered around the body key
points’ midpoint. The bounding box dimensions were then
normalized to have a width and height of 1. Consequently,
the normalized coordinates of the key points of pedestrian’s
body key points are obtained. As reported in [5], [6], it is
deemed that the upper body of pedestrians contains features
for identifying text walkers such as the position of the hands,
angle of the elbows, and angle of the head. For this reason,
the coordinates of the pedestrian’s upper body key points
(head, neck, shoulders, elbows, and hands) served as inputs
during both training and testing phase,

Finally, to replicate the data viewed from cameras at dif-
ferent position and angles, the transfer and rotation matrices
from world to camera coordinates were manipulated, such
that the dataset contained data viewed from 360 degrees
angle with an increment of 45 degrees, depicted in Fig. 4.

One trial of data is defined as the 2D coordinates of
pedestrian upper body key points over 4 seconds taken at
50 FPS. The dataset comprises a total of 1,824 trials of
data, representing 228 instances of texting while walking and
normal walking viewed from 8 different angles.

Fig. 5. Examples of Occlusion Patterns. Red box represents pedestrian’s
bounding box, and green box represents visible region.

For testing occluded pedestrians, the preprocessed data
were further processed to replicate the data under occlusion.
According to Dollar et al. [8], the majority of pedestrians
are occluded from either below or the side, and 79% of
occluded pedestrians are under heavy or full occlusions,
meaning at least 40% of their body are occluded. To replicate
such situation, four occlusion patterns were applied: top-
visible, left-visible, right-visible, and fully-visible. Examples
are shown in Fig. 5, where the red box depicts the bounding
box and the green box depicts the visible region for the
occlusion pattern. Top-visible is the case where only the
top quarter of the normalized data is visible. Left-visible
and right-visible are the cases where only the left and right
half of the normalized data is visible, respectively. Finally,
fully-visible is the case where all upper body key points
remain visible. In addition, in all occlusion patterns, each
body key point was randomly occluded with a probability of
10% following the report in [8].

B. Implementation of Supervisor Variational Autoencoder

The supervisor VAE is structured with a total of seven
fully connected (FC) layers and a 2D latent space. The
encoder network comprises two FC layers with 1024 units
and rectified linear unit (ReLU). This is followed by two
FC layers with 2 units with a linear activation function,
generating µ and σ which are used to create a 2D latent
vector zvae via the reparametrization trick. The decoder
network is consisted of two FC layers with 1024 units and
ReLU, and another FC layer with 16 units and sigmoid
activation function to reconstruct the input data from zvae.

For training data, 70% of the data were randomly selected
and the remaining were used as the test data. The model was
trained for 50 epochs with Adam [19] as the optimizer. A KL
coefficient β of 0.001 was chosen through experimentation,
as it yielded the optimal result of having a low reconstruction
loss while encoding the data of normal pedestrians and text
walkers in distinct regions of the latent space.

C. Implementation of Text Walker Detection

The OIM consists of an LSTM layer with 16 units, an
FC layer with 8 units and ReLU activation function, and an
FC layer with 2 units with linear activation for generation
zoim. This is followed by the activity classification module
which is an FC layer with 2 units with softmax activation



function. The hyperparameters were chosen via trial and
error. A larger number of neurons may result in a better
classification accuracy at an expense of computation cost,
while too small number of neurons can lead to the opposite
result.

The input to the OIM Ot−T :t is 6 frames of body key
points making up 1 second of observation of the pedestrian.
This was done by downsampling the data collected, as
sampling the data at any higher rate were considered to
not provide much useful information since the movement
of the body key points will be very small in between the
adjacent frames. Furthermore, 1 second was chosen as it was
considered that requiring a mobile robot to collect data for
any longer time could increase the risk of collision with the
pedestrian of interest.

Same as the implementation of supervisor VAE, 70% of
data were used for training and the remaining were used for
testing the model. The model was trained for 100 epochs
with Adam as the optimizer. In our experiments, wencoding

of 0.3 gave the optimal balance between Lencoding and Lcat.

D. Ablation Test
The characteristic of the proposed method compared to

that of previous research is that our method uses sequence
of data and uses a pre-trained VAE to supervise the feature
extraction process. To evaluate the contribution of the two
factors, ablation test was conducted by training models that
uses only single frame of data, and models trained without
supervisor VAE. Our proposed model is named ”6F with
VAE” and the model trained with the same input but without
the supervisor VAE is called ”6F without VAE”. Similarly,
the model trained with single frame input and supervisor
VAE is called ”1F with VAE”, and the single-input model
trained without supervisor VAE is called ”1F without VAE”.

In addition, a CNN-based text-walker classification
method proposed by Kumamoto et al. [5] was implemented
to evaluate how our method performs in comparison to their
method. We refer to this method as ”Kumamoto et al.”

V. RESULT
Figure 6 shows a plot of Receiver Operating Characteristic

(ROC) of each model, showing the true and false positive
rates at different threshold values of the classifier. The area
under the ROC curve (AUC) was also calculated for each
method to quantify their performance.

Our proposed method had the highest AUC of 0.945,
followed by ”6F without VAE” having an AUC of 0.943.
In comparison, Kumamoto et al.’s method achieved an AUC
of 0.908, ”1F with VAE” had an AUC of 0.880, and ”1F
without VAE” had an AUC of 0.879.

The results underscore the impact of using sequential
data as input, elevating the AUC by approximately 0.065.
Furthermore, the incorporation of VAE contributed to a
modest increase of 0.002, as evidenced by the comparison
between models with and without VAE.

The F1 score was also calculated for each model as

F1 = 2
precision · recall
precision+ recall

. (5)

Fig. 6. ROC Curves of Different Methods.

TABLE I
CLASSIFICATION ACCURACY FOR DIFFERENT OCCLUSION PATTERNS.

Model Occlusion Pattern
Top-Visible Left-Visible Right-Visible Fully-Visible

6F with VAE 57.0 91.6 90.4 94.4
6F without VAE 49.3 90.6 89.7 94.3
1F with VAE 54.6 82.0 79.1 89.5
1F without VAE 51.7 76.9 77.0 90.1
Kumamoto et al. 76.7 76.8 82.6 92.2

The F1 score of the proposed method was 0.847, while
that of the previous method was 0.817. The proposed method
outperformed the previous method by 3%. The F1 scores of
”6F without VAE”, ”1F without VAE”, and ”1F with VAE”
were calculated to be 0.818, 0.798, and 0.757, respectively.

A. Occlusion Patterns

Table I summarizes the classification accuracy of each
model across the four distinct occlusion patterns. The classi-
fication accuracy is calculated as the number of true positives
and true negatives divided by the total number of data.

Leveraging multiple frames of data resulted in approx-
imately 10% improvement for both left-visible and right-
visible occlusion patterns. This enhancement can be at-
tributed to the model’s ability to predict body parts locations
based on the movement of observed key points, even when
only a portion of the pedestrian is visible. For example, if
a pedestrian’s hands are obscured, the model can infer their
location by analyzing the movements of the elbows.

Integrating a supervisor VAE into the model contributes
to a 6.7% and 2.9% increase in classification accuracy for
top-visible data in multiple frames and single frame inputs,
respectively. This outcome aligns with the hypothesis that a
pre-trained VAE facilitates the extraction of meaningful data,
even when dealing with limited data points.



Overall, the proposed method gave the best classification
accuracy for three out of the four occlusion patterns. This
underscores the pivotal role of utilizing sequential input data
and a supervisor VAE in achieving robust results.

B. Pedestrian Behaviors

It was found that misclassifications are also caused by
certain pedestrian behaviors resulting in a body pose similar
to that of text walkers such as hands in front of the chest,
bent elbows, and head facing downwards. For example, it
was observed that the proposed model often misclassified
a normal pedestrian as text walker when the pedestrian was
touching their hair, or when the pedestrian was looking at the
floor. The model was analyzed with SHapley Additive exPla-
nations [20] for these misclassified data to understand which
features the model signified when making the classifications.
It was found that the model often signified the coordinates of
the hands, head, or neck, implying that one way the model
distinguished between normal pedestrians and text walkers
was based on if their hands were above their chests, or by
checking if the pedestrian was facing downwards.

The findings suggest the proposed method’s vulnerability
against pedestrians with similar body pose as text walkers
such as a person holding a cup of coffee.

VI. CONCLUSION

In this paper, we proposed an image-based machine learn-
ing method to discern text walkers from normal pedestrians,
specifically focusing on scenarios involving occlusions. Un-
like previous studies that relied on a single frame of data for
text walker detection, our method addressed the challenge
posed by occlusions: situations where feature extraction may
falter due to limited data.

The proposed solution hinged on two key strategies:
firstly, employing a pre-trained VAE to supervise the feature
extraction process and secondly, leveraging a sequence of
data as input. The model was trained and tested with body
key points data obtained using Theia Markerless.

Results from the ablation test underscored the significance
of the combined use of a supervisor VAE and sequential
input data, showcasing an increased classification accuracy
for three out of four occlusion patterns tested. Furthermore,
the proposed method outperformed the previous state-of-the-
art in terms of both AUC and F1 score. However, analysis
revealed a potential area for improvements regarding the
proposed method’s susceptibility to pedestrians exhibiting a
body pose similar to that of text walkers.

Future endeavors will involve real-life testing, employing
a pose detector to extract body key points, instead of using
an artificially occluded ground truth data. This approach
may unveil new challenges such as instances where the pose
detector misidentifies body parts of overlapping pedestrians.
Additionally, an exploration of using the entire body’s key
points instead of just the upper body could open avenues to
evaluate factors like pedestrian step sizes in classifying their
activities.
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