
Performance-Based Earthmoving Team Organization Algorithm
Enabling Task Completion under Changing Conditions

Wakana Endo1, Shota Chikushi2, Yuichiro Sueoka3, Yuki Kato3, Kaito Kimura3, Yusuke Ikemoto4,
Ren Komatsu1, Keiji Nagatani1, Atsushi Yamashita5 and Hajime Asama1

Abstract— In this study, we propose a methodology for
automating earthmoving tasks using autonomous excavators
and dump trucks, with an aim to enhance adaptability in
response to environmental changes. Our methodology involves a
general architecture that fosters self-organized swarm behavior
among the robots. Furthermore, we present an illustrative
algorithm that evaluates the performance of a team of robots
and adjusts the team composition based on this performance
evaluation. This algorithm was implemented in a simulation
test in a dynamic environment. The results demonstrate that
our methodology enables the coordination of excavators and
dump trucks in environmental changes.

I. INTRODUCTION

The use of automated robots in earthwork tasks, where
they must adapt to changing situations, is highly antici-
pated [1]. In addition, earthmoving operations where ma-
chines flexibly respond to unexpected situations are needed
both on construction sites and in emergency recovery from
natural disasters, highlighting the importance to automate by
introducing robots [2]. However, the full implementation of
robots in these tasks has not yet been achieved due to the
need for multiple robots to cooperate with each other and
the dynamic nature of the environment, such as ground con-
ditions, buried obstacles, and robot failures. Therefore, the
objective of this research is to develop cooperative behaviors
that allow swarms of construction robots to move the soil
while adapting to dynamic changes in the environment.

This research focuses on self-organization in multirobot
cooperation. It is defined as, “the mechanism or the process
that enables a system to change its organization without an
explicit external command during its execution time”, and
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the key features for a system to be self-organized are the
realization of decentralized control and dynamic organiza-
tional change [3]. As these characteristics are essential for
earthmoving work to be robust to environmental changes, it
is necessary to develop a robot control method that enables
dynamic team organization through decentralized control.

As for studies on the coordination of dump trucks and
excavators, Schmidt et al. address the task of loading and
transporting soil by an excavator [4]. They proposed a
method for accurate dump truck path planning based on
binary grid maps and pathfinding using an extended A*
search algorithm. While their method has proven useful
in guiding dump trucks to their destinations even in the
presence of noisy localization, it only considered a pair of
robots. Therefore, there is a need for further exploration of
larger-scale robot coordination techniques in this area.

There have been several previous studies on distributed
control, including one that determines robot teams based on
threshold values [5] and another that performs distributed
task assignment by voting while sharing task assignment
status among robots [6]. However, in our study, the ob-
jective is robot coordination at a large-scale construction
site. Therefore, it is desirable to share less information
among robots, and a distributed decision-making method that
can cope with dynamic organizational and environmental
changes is necessary. Palmieri et al. proposed a swarm-
robot coordination system that selected two tasks, field ex-
ploration and hazardous material removal, by stochastic state
transitions using the concept of pheromones. However, the
task selection weighting must be adjusted for each different
environment and is not effective for dynamically changing
environments [7].

Regarding adaptation to dynamic environmental changes,
Zhang et al. automated a real excavator in a volatile en-
vironment using task planning algorithms that combined
inverse reinforcement learning, data-driven imitation learning
and optimization-based methods [8]. However, it is unclear
whether these methods can scale to a large group of robots,
such as dump trucks, while keeping computational costs
feasible. Notomista et al. presented a task allocation method
with multirobot navigation experiments that shared state
equations among robots, monitored errors in motion predic-
tion and actual motion, and recalculated task assignments
to respond to environmental changes [9]. Moreover, Seraj et
al. present a hierarchical framework for coordinating com-
plementary robots in dynamic environments. Their frame-
work demonstrated its efficacy through a wildfire-fighting



case study, uses multi-agent reinforcement learning for area
surveillance, and a coordinated control and planning module
for action decisions [10]. However, these two methods are not
suitable for distributed control, which limits the information
shared among robots, because each robot needs state models
or detailed state information of other robots for coordination.

As introduced so far, there have been various studies
on distributed coordination algorithms for robots and their
adaptation to changes in the environment, but it has not yet
been possible to achieve both of these goals. Therefore, the
purpose of this study is to propose a distributed performance-
based coordination algorithm for the self-organization of
construction robots. To this end, we first propose an architec-
ture for evaluating robot groups based on an internal model,
and more specifically, we define a single team evaluation
index called performance. We then construct an algorithm to
determine the number of robots required for a team based
on its predicted and measured values. The self-organizing
effect of this algorithm is verified in a dynamic simulation
environment where the velocity of dump trucks changes. The
contributions of this paper are as follows:

1) An algorithm architecture that enables self-
organization of heterogeneous robot groups has
been proposed.

2) For teams of construction robots performing earth-
moving work, a single index called performance has
been defined. Using this metric, an algorithm has
been constructed to incorporate the necessary robots in
response to environmental changes and achieve tasks
by changing the team’s organization in a distributed
manner.

II. DISTRIBUTED COORDINATION ALGORITHM
BASED ON A PERFORMANCE PREDICTION

MODEL

A. Scenario

In this study, we use earthmoving tasks with construction
robots as a specific example to test whether self-organizing
movements can be achieved with our proposed cooperation
architecture. The task involves transporting earth from a
loading site to a dumping site by a deadline using an exca-
vator and a dump truck. To enable decentralized cooperation
between different types of robots and adapt to environmental
changes, we propose dividing the robots into teams and
controlling them accordingly.

As shown in Fig. 1, we consider two roles of robots
and assume a team consists of a Coordinator and several
Cooperators. Here, the coordinator is defined as the robot that
can decide the organization of the team, and the excavator
plays that role, in this paper. The coordinator is the robot
that the coordinator calls to join the team, and in this paper,
the dump truck plays the role of the coordinator. It should
be noted here that any type of robot, including excavators,
can also join the team as Coordinators. There may also be
idle excavators and dump trucks, which the Coordinator can
add to the team to improve its performance. The Coordinator

Fig. 1. Schematic of the earthmoving task as a case study for simulation
experiments and the proposed team organization algorithm.

communicates with the necessary robots to organize the team
and accomplish the task. The Coordinator has access to a
virtual blackboard to view information such as each robot’s
assignment status and the number of idle robots. This allows
the Coordinator to make changes to the team organization
with minimal communication.

The goal of the task is for a team, consisting of one Co-
ordinator and multiple Cooperators, to secure the necessary
number of Cooperators to complete the task. Cooperators
are assigned to a team and sometimes transferred to another
according to the performance prediction model described
below.

In this problem setup, each robot has limited information.
Specifically, a Cooperator only observes information from its
own sensors, while Coordinators observe information shared
by robots in their team. However, to enable cooperation
among teams, Coordinators share each team’s performance
and information on the Coordinator to whom the robot is
assigned, which is stored in Blackboard.

B. Self-Organization Architechture

Based on the above scenario, we propose a self-organizing
architecture that can respond to changes in the environment,
as shown in Fig. 2. This architecture is used by multiple
Coordinators to form their respective teams. We believe that
a swarm of robots can respond to unexpected changes in
the environment by transitioning between centralized and
decentralized structures, depending on the situation. For this
purpose, we define two behavior modes, Cooperator and
Coordinator, and propose the formation of multiple teams
(see Figure 1) with an internal hierarchical structure. It
is worth noting that while the teams have a centralized
hierarchical structure, they cooperate with each other in a
decentralized manner. We expect to be able to change the
degree of dispersion of the entire flock by changing the
number and size of the teams. In this paper, we conduct
experiments in which the number of teams is fixed, but the



Fig. 2. Schematic of the proposed self-organizing collaborative architecture.
Algorithm implementations for the simulation experiment were performed
for the red frame part and are explained in the corresponding annotated
sections.

size of the teams varies.
The Coordinator uses onboard sensors and communication

with other machines to grasp the status of the team and
the surrounding environment, evaluates the team’s functions
based on this information, and controls the team formation
to accomplish the task. When the environment changes,
the evaluation based on the internal model may become
inaccurate; therefore, it is important to correct errors by
modifying the internal model as necessary.

C. Performance Prediction Model

Here, we consider a performance-based algorithm as a
method to evaluate a group of robots using an internal model.
We define team performance as the weight of soil that a
team can carry per unit of time, and construct a model
that calculates performance-based on pre-defined parameters.
Then, to achieve our goal of cooperative behavior that can
adapt to changes in the environment, we calculate the appro-
priate number of Cooperators to accomplish the task using
two indices: Predicted Performance and Real Performance.
A flowchart of the team formation algorithm based on this
model is shown in Fig. 3. Considering two situations: one in
which the number of dump trucks is small and the excavators
have to wait for the dump trucks to return, and the other in
which the number of dump trucks is large and there is a wait
for the dump trucks to load, the Predicted Performance can
be expressed as follows:

ripred =


w̄i

tld
if ni ≥

( 2Di

v̄i
+ tld + tdp)

nitld
nw̄i

2Di

v̄i
+ tld + tdp

otherwise.

(1)
Each variable is defined in Table I. This performance can be
calculated using the performance of the construction robot
and the parameters given by the task, but each parame-
ter must be updated when the environment changes. As
described below, this parameter update is the role of the
Coordinator and is assumed to be performed by the excavator
in this paper.

Fig. 3. Flowchart of the implemented team organization algorithm for
excavators as Coordinator

TABLE I
DEFINITION OF VARIABLES

Symbol Description
ni # of Cooperators in team i
i ID of team
k ID of dump truck
Si Set of dump trucks belong to the team i
w̄i Initial average loading amount [kg]
Di Distance between load / dump sites [m]
v̄i Velocity of Cooperator [m/s]

TDL Deadline [s]
t time [s]
tld Average loading time [s]
tdp Average dumping time [s]

wk
last(t) Weight of loaded soil on dump truck k
tklast Time of the last loading of dump truck k

ripred, r
i
real Predicted/Real Performance [kg/s]

Real Performance, on the other hand, is performance
calculated using the amount of soil actually transported by
the robot. It is assumed that the excavators and dump trucks
are each equipped with appropriate sensors to measure the
amount of material excavated and the amount of material
loaded. Real Performance is calculated using the most re-
cently dug soil volumes by all dump trucks in the team and
the time taken to haul them, as follows:

rireal =
1

t−min tklast

∑
k∈Si

wk
load(t

k
last). (2)

Because Real Performance requires the actual amount of
soil transported, it cannot be measured until the dump truck
has made one round trip and returned. Therefore, only the
Predicted Performance can be used to calculate the end time
of the work, but the Real Performance can be used after the
first round trip is made. If the team composition changes, it
is necessary to use the Predicted Performance again until the
Real Performance is known.

The proposed method uses the Predicted Performance to



Fig. 4. Schematic of the communications between the Coordinator and
Cooperator

calculate the time required to complete the task when the
amount of soil remaining in the loading site to be excavated
by the team is set to X(t), and compares it with the delivery
date to determine whether the team composition needs to be
changed or not. The conditions that necessitate a change in
team composition are as follows:

t+
X(t)

rreal
> TDL if rreal available

t+
X(t)

rpred
> TDL otherwise.

(3)

In the proposed method, the number of Cooperators that
can accomplish the task by the deadline is calculated for each
team based on the above two performances and the expected
time of work completion, and then the Coordinator organizes
the team.

D. Local communication between Robots

As shown in Fig. 1, the proposed cooperative algorithm
organizes multiple construction robot teams when there are
multiple loading sites, and the Coordinator shares informa-
tion among the teams. In the simulations,a virtual blackboard
was used to identify idle dump trucks and to invite them to
different teams. The blackboard can only be accessed by
the Coordinator, who records the team assignments of all
available dump trucks in the field. When adding a dump truck
to a team, the Coordinator first retrieves a list of idle dump
trucks from the blackboard, determines which one to add, and
updates the assignment information on the blackboard. In this
paper, we only manage IDs because all dump trucks have
homogeneous performance. However, when dealing with a
group of heterogeneous robots with different payloads or
other performance characteristics, the performance of each
dump truck as well as its assignment information should be
written on the blackboard. This allows the Coordinator to
select dump trucks according to the performance required
by each team.

Regarding the communication between the Coordinator
and the Cooperator, Fig. 4 shows all implemented inter-
actions for the cooperative earth moving. Following the

assumption that the robots do not have any global informa-
tion of the scenario, inter-robot communications are limited
to short distances. We also assume that the Coordinators
can detect obstacles ahead, which eliminates the need for
communication between them to avoid collisions.

E. Error Correction and Team Formation Change Using
Performance

As shown in Eq. (1), the model used to calculate the
Predicted Performance of the Coordinator is based on
changeable parameters, which are the average velocity of
the dump trucks, the amount of soil loaded and the average
loading/dumping time. Since these parameters may change as
the work environment changes, the method used in this study
is to check individual parameters and update the parameters
that have changed beyond the threshold when the Real
Performance exceeds the threshold value (set at 10 percent of
the previous value). Among the parameters used in Eq. (1),
the amount of soil loaded and the loading time are numbers
that can be measured by the Coordinator, so the Coordinator
can determine changes by himself. The average velocity of
the dump truck can be calculated from the round-trip time
of the dump truck, tcirc, under the assumption that the soil
discharge time and hauling distance remain unchanged.

v̄i =
2Di

tcirc − tld − tdp
. (4)

When Real Performance changes beyond a threshold
value, the actual values for each parameter are checked to
determine which parameters should be overridden.

Here, in the performance prediction model, w̄, tld are the
parameters affected by the excavator loading operation and v
is the parameter affected by the travel of a dump truck, and
if the Real Performance changes according to changes in the
environment and the work end time is later than the delivery
date, which robot should be added by the parameter to be
updated is the one that is updated. If the Real Performance
changes according to changes in the environment and the
job completion time is later than the deadline, the updated
parameters can determine which robot should be added.

III. SIMULATION EXPERIMENT

To validate our proposed dynamic collaborative architec-
ture and performance-based team formation algorithm, we
conducted simulations using two different platforms: ROS 2
and Vortex Studio. Vortex Studio is a high-fidelity simulation
platform from CM Labs Simulation Inc, which can simulate
the operation of mechanical systems and earthworks in real-
time [11]. It was used to model the physical components of
the robot, such as its sensors and actuators, as well as its
work environment. On the other hand, ROS 2 was used to
simulate robot path planning, excavation, loading, and other
control functions. These simulators were run on separate
computers as shown in Table II and communicated with each
other using UDP (User Datagram Protocol) communication.

Each team had only one excavator as a Coordinator.
The number of dump trucks assigned to a team could be



TABLE II
COMPUTER SPECIFICATIONS

Robot Control Physics Simulation
OS Ubuntu 20.04 Windows 11
CPU Intel Core i7-10710U Intel Core i7-11700K
GPU Intel UHD Graphics NVIDIA GeForce RTX 3070
Memory 16GB (16GB×1) 32GB (16GB×2)
Application ROS 2 Foxy Vortex Studio 2022.10

Fig. 5. Simulated environment for two teams of construction robots. At
the beginning of the simulation, all robots are aligned in the waiting area
on the lower side of the figure.

changed based on the estimated task completion time. For
this purpose, an Idling Cooperator that did not belong to any
team was available in a waiting area.

As shown in Fig. 5, we assigned earthmoving tasks to
two loading sites and two sand dumping sites. As an initial
condition, there were 12 000 kg and 8000 kg of soil in the
loading sites. We initially placed 10 dump trucks and two
excavators in the waiting area. We started the scenario by
giving the following task information to the excavators, and
they first headed for the loading sites to assess the situation.

• Coordinates of the loading site for each excavator
• Coordinates of the two dumping sites
• Number of available dump trucks in the field
• Deadline
For simplicity, only one excavation per load is assumed

in the simulations in this paper. It is also assumed that the
two excavators and the 10 dump trucks all have the same
performance, with the velocity of the dump trucks for each
team. However, it should be noted that the excavation volume
of the excavators varied each time due to the characteristics
of the earthwork simulator.

The actual travel velocity of the Cooperator was set slower
than the specification to simulate environmental conditions
where the Predicted Performance is not available. Other
specific parameters are shown in Table III. The initial average
loading amount, the distance between the loading site and
dump site, and the average velocity of the Cooperator are
identical between the two teams.

TABLE III
NUMERICAL VALUES FOR SIMULATION

Symbol Value
w̄1, w̄2 950 kg
D1, D2 150m
v̄1, v̄2 4.0m/s
TDL 900 s
tld 35 s
tdp 30 s

The simulation was set to end when the remaining soil
in both loading sites was emptied or when the deadline had
been reached. When one team finishes moving all the soil, all
robots in the team are to return to the waiting area and stand
by in case the other team calls an additional cooperator.

IV. RESULT

Using the simulation environment described in the previ-
ous section and the parameters listed in Table III, a single
robot team performed the earthmoving task. Since Real
Performance can only be calculated after all dump trucks
have completed one round trip, the value remains zero for
a certain period of time (about 200 seconds in this case)
after the start of the task and after changing the number of
teams. However, if only some of the dump trucks return,
team performance can be estimated by assuming that all
dump trucks contribute equally to the team performance. This
estimated Real Performance is shown with a dashed line as
a reference value.

The graph shows that the Predicted Performance increases
or decreases around t = 200, indicating that the performance
prediction model has been modified. This modification is due
to inaccuracies in the pre-defined parameters (Table I) and
is a phase in which the prediction model was adjusted to be
closer to reality. The excavation volume of the excavator and
the round-trip route and time of the dump truck can change
due to slight differences in simulation results. The reason
why measured performance values are not constant is due to
variations in the excavation volume of excavators.

Since the velocity of the dump truck changed at t =
400, the error correction algorithm reflected this event in
the performance prediction model, leading to a decrease in
Predicted and Real Performance around t = 600. Later, the
number of dump trucks in Team 2 was increased to avoid
missing the deadline due to the lower performance of the
dump trucks.

It can also be seen that the number of dump trucks was
increased for Team 1 before the model was modified. This
occurred when the estimated task completion time exceeded
the deadline before the Real Performance was updated,
triggered by the fact that it was taking longer for the dump
trucks to return due to their reduced velocity. This can be
explained with Eq. (3) because it shows that the left-hand
side with t may exceed the deadline at the end of the work,
even if performance remains the same.

As a result, we were able to confirm that team evaluation
based on internal models and model modification based on



Fig. 6. The performance transition for each team (Coordinator) during
the simulation experiment. The number of dump trucks in the team is also
indicated. Since the velocity of the dump trucks changed at t = 400, it
can be seen that both Predicted and Real Performance decreased around
t = 600. Later, the number of dump trucks in team 2 was increased in
order to avoid breaking the deadline due to the lower performance of the
dump trucks.

local sensing, which are part of our proposed architecture,
are functional. The distributed coordination algorithm imple-
mented as a case study was shown to be able to use only
the necessary number of dump trucks from a pool of 10
for organizing each team and completing the task within the
deadline.

V. CONCLUSION

In this study, a performance-based distributed cooperative
architecture was proposed, capable of making self-organized
action decisions to perform automatic earthmoving tasks in
a variable environment. A concrete algorithm, in line with
the architecture, was also proposed and implemented. This
algorithm uses Predicted and Real Performance to adjust the
organization of the robot team. The key elements of this
algorithm are dynamic team formation using performance as
a single metric and model modification with cause identifica-
tion when the performance changes. To verify whether these
elements work in a self-organized manner, we conducted an
experiment using the Vortex Simulator and ROS 2, which
confirmed that when the velocity of dump trucks decreased,

the performance prediction model was modified and the
number of dump trucks in the team increased to compensate
for the decrease in performance.

Thus, under the conditions of the experiment, it was
found that the Coordinator Algorithm could autonomously
recruit necessary Cooperators and adaptively organize the
team according to the situation, without needing to contact
any centralized supervisor. Although only the case in which
dump trucks were added was tested in this experiment,
further various situations such as adding excavators to the
team should also be validated in future studies. Additionally,
proposing an algorithm that can determine which robots are
most deficient in each type of robot that constitutes the team
based on performance will be an important future direction.
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