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for Enhanced Discrimination in UAV Hammering Inspection
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Abstract—In this paper, we propose an ego-noise predic-
tion method applicable to Unmanned Aerial Vehicles (UAVs).
Sensing sound using UAV has a significantly reduced Signal-to-
Noise Ratio due to the strong ego-noise from the propellers and
motors. Template-based ego-noise prediction for robots with
pre-set movements, such as humanoid robots, has previously
been studied. However, that approach is not applicable to UAVs
which continuously adjust the propeller’s rotation speed based
on the situational requirements. Here, we propose a novel
framework for ego-noise prediction by focusing on propellers,
which are the main ego-noise source, and translating the
modality of propeller vibrations into the modality of ego-
noise sound. Assuming a strong relation between the vibration
frequency of a propeller and the ego-noise it generates, we
propose using a Recurrent Neural Network to predict the ego-
noise spectrogram, using vibration frequency as a feature. The
prediction accuracy of ego-noise spectrograms was at a level
that suggests the potential for effective ego-noise reduction, and
the results are promising for applications in UAV hammering
inspection.

I. INTRODUCTION

In recent years, many concrete social infrastructures have
been aging, and their inspection has become an important
issue [1]. The hammering inspection, consisting of hitting
the surface and using the impact sound for inspection,
has the advantages of being economical, simple, and non-
destructive for internal detection of defects. Automation of
hammering will reduce inspection costs and enable early
defects detection [2]. Unmanned Aerial Vehicles (UAVs) are
expected to be used as a means of automation, because
they can shorten inspection time and enable inspections of
difficult-to-access locations such as bridges [3]. However,
sensing sound of hammering using UAV has a significantly
reduced Signal-to-Noise Ratio (SNR) due to the strong ego-
noise from the propellers and motors [4], interfering with
discrimination of healthy or defective sounds [5].

Nishimura et al. [5] developed a hammering inspection
system with a robot that runs stably with wheels on walls
by thrust power from propellers. In that study, a Deep
Neural Network (DNN) was trained to discriminate between
healthy and defective sounds by inputting hammering sounds
contaminated with steady ego-noise. However, such noise
countermeasures do not work for typical UAVs because of
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Fig. 1. Hammering sound and reverberating ego-noise coming from the
same direction.

the unsteady ego-noise generated by movement and attitude
stabilization of UAVs. A robot that runs with wheels on walls
can only move on flat surfaces and cannot inspect all parts
of complex structures such as bridges. Therefore, the UAVs
with fewer constraints on inspection locations are expected
to be deployed for such tasks.

Another approach to enhance discrimination between
healthy and defective sounds is ego-noise reduction during
hammering inspection. In the single-channel microphone
ego-noise reduction approach, Mukhutdinov et al. [6] trained
a DNN to obtain clean speech by inputting noisy speech.
However, when using UAVs for hammering inspection, ego-
noise reverberation and environmental noise are different
for each inspection location. Therefore, frequent retraining
is expected to be necessary. Obtaining a large number of
hammering sounds for retraining at each inspection point
would exceedingly prolong the inspection time.

In the microphone array ego-noise reduction approach,
Wang et al. [7] reduced ego-noise by directing space-filtering
in the direction of a localized target sound source. Ego-noise
reverberates against the wall and enters the microphone in
the same way as hammering sound, as shown in Fig. 1. Since
the UAV inspects against a surface, reverberating ego-noise
reduction by space-filtering is not possible.

In the study of ego-noise reduction by predicted ego-noise
subtraction, Ince et al. [8] pre-created a template database of
ego-noise and predicted ego-noise from motor states using
nearest neighbor search. However, this approach is specifi-
cally effective for robots with pre-set motion patterns, such
as humanoid robots, and is not applicable to UAVs due to
their dynamic nature, where the propeller’s rotation speed is
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Fig. 2. Ego-noise spectrogram and its average power. The pink vertical
bands represent the moments of hammering.

continuously adjusted based on the situational requirements.

The objective of this study is to predict the diverse and
unsteady ego-noise of UAVs. Here, we propose an ego-noise
prediction framework applicable to UAVs by focusing on
propellers as the main ego-noise source and translating the
modality of propeller vibrations into the modality of ego-
noise sound.

II. PROPOSED METHOD
A. Concept

If accurate ego-noise prediction during hammering is
achieved, it becomes possible to reduce noise by employ-
ing spectral subtraction [8]. Furthermore, by evaluating the
noise power at each time and frequency, it is possible to
assess the confidence level of discrimination results between
healthy and defective sounds. Figure 2 illustrates the ego-
noise and the average power spectrum values at different
time points. Notably, inspections conducted during periods
of minimal noise levels can be considered as high confi-
dence inspections. Thus, by performing ego-noise prediction
during hammering, it is possible to achieve noise reduction
and assess the reliability of discrimination results between
healthy and defective sounds. Based on the aforementioned
considerations, ego-noise prediction during hammering holds
significant potential for enhancing inspection discrimination
accuracy. Consequently, this study aims to develop ego-
noise prediction method for enhanced discrimination in UAV
hammering inspection.

In the use of UAVs for hammering inspection, the sources
of ego-noise are the exhaust system for cooling, propeller,
and motor [9]. The sound emitted by the exhaust system
maintains a steady pattern, enabling predictions based on the
sound preceding the prediction. In contrast, the motor and
propeller sounds exhibit variability, making them difficult to
predict accurately. In this study, we aim to predict unsteady
ego-noise by monitoring either the propeller or the motor,
which are connected and operated as one unit.

Potential approaches to monitor the propeller or the motor
involve utilizing the Rotations Per Minute (RPM) command,
or RPM data obtained from the motor encoder. In practical
scenarios, predicting the ego-noise generated by propellers
presents challenges since the RPM command does not always
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Fig. 3. Concept of proposed ego-noise prediction. Ego-noise prediction
is performed by translating the modality of propeller vibrations into the
modality of ego-noise sound.

precisely correspond to the actual motor operation. Conse-
quently, it is difficult to accurately predict ego-noise in a real-
world environment through RPM commands. Furthermore,
commercial UAVs are often not equipped with encoders or
do not have access to their RPM data obtained from the
motor encoder. In this study, we do not use RPM data, instead
we explore a simple and economical method for ego-noise
prediction.

Another potential approach to monitor either the propeller
or the motor involves capturing sound through a microphone
installed on the propeller. To ensure that microphones do
not inadvertently capture the target sound, proper isolation
measures must be implemented. Wind pressure is extremely
strong around the propellers of large drones, such as those
used for hammering inspection, making propeller sound
monitoring with microphones unsuitable [10].

Due to its resilience to external factors such as hammering
sound and wind, we identified the vibration of the propeller
as a suitable method for monitoring ego-noise sources in a
simple and cost-effective manner. We propose an ego-noise
prediction method by translating the modality of propeller
vibrations into the modality of ego-noise sound, as shown
in Fig. 3. For ease of measurement, we utilize propeller
acceleration as a representation of propeller vibration.

B. Overview of ego-noise prediction

The overview of the proposed method is shown in Fig. 4.
We assume that ego-noise is strongly related to the vibration
frequencies of the propeller. Furthermore, the acceleration
spectrogram represents the temporal evolution of the pro-
peller’s vibration frequencies. We utilize Recurrent Neural
Network (RNN) [11] to predict the ego-noise spectrogram
using the acceleration spectrogram as input. During the
training phase, the RNN is trained using the Mean Absolute
Error (MAE) between the actual and predicted ego-noise
spectrograms. During the prediction phase, the acceleration
representing propeller vibration is used as input, and the
RNN predicts the ego-noise spectrogram.

First, time-synchronized ego-noise amplitude e[m] and ac-
celetion matrix A [n] with different sampling frequencies are
obtained from the microphone and accelerometer installed on
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Fig. 4. Overview of ego-noise prediction. During the training phase, the
RNN is trained using the MAE between the actual and predicted ego-noise
spectrograms. During the prediction phase, the acceleration spectrogram
representing propeller vibration is used as input, and the RNN predicts the
ego-noise spectrogram.

the propeller.
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where ap [n] represents the acceleration of the Nth ac-
celerometer along the x-axis at time n.

In the use of UAV for hammering inspection, hammering
recoil, shaking due to wind, and the UAV’s motions interfere
with ego-noise prediction. A hammering machine known as
the snap motor [12] is used for a hammering inspection
robot [5]. The snap motor’s hammer head and the body are
connected by a flexible steel band. Thus, the hammering
recoil is transmitted to the UAV only at low frequencies.
The frequency of shaking due to wind and UAV’s motion
is less than 10 Hz [13]. By employing a high-pass filter to
eliminate the low-frequency components, it becomes possible
to predict ego-noise based on the acceleration data during
hammering, as well as the pre-hammering period.

The ego-noise generated from the propellers is consid-
ered to be strongly related to its RPM. Additionally, it is
assumed that the RPM has a strong relation with the vibration
frequency of the propellers. To use this RPM-related infor-
mation as a feature, Short Time Fourier Transform (STFT)
is performed. To ensure that the time resolutions of the
ego-noise and acceleration spectrograms match as closely
as possible, we need to adjust the overlap rate of the STFT.
The overlap rate refers to the amount of overlap between
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Fig. 5. RNN Predictor Architecture. k¢ is the number of acceleration
spectra to be shifted, ~, is the number of the acceleration spectra input to
the RNN predictor, and h,, is the number of output dimensions of GRU.

consecutive time segments when computing the spectrogram.
Interpolation and resampling are performed to perfectly
match their time resolutions.

RNN has a recursive structure, making them particularly
suitable for processing time-series data. RNN predicts the
ego-noise spectrum by translating the acceleration spectra.

C. Architecture of RNN predictor

The specific architecture of RNN predictor is shown in
Fig. 5. Variable x is the number of acceleration frames to be
shifted. Variable «,, is the number of the acceleration spec-
trum input to the RNN predictor. Variable h,, is the number
of output dimensions of Gated Recurrent Unit (GRU) [14].

Generally, GRU is used for tasks such as natural language
processing and signal classification. However, in this study,
we propose its use for memorizing the time-series features of
acceleration spectra. GRU encodes the acceleration spectrum
of k,, along the time series. The number of output dimensions
of the GRU is set to h,, to prevent overfitting by bottleneck-
ing the middle part of the RNN predictor. Equation (2) shows
the input-output mapping for a general fully connected neural
network. The fully connected neural Network decodes to the
ego-noise spectrum at time k£ from the h,, dimension vari-
ables compressed by time series encoding and bottlenecking
with GRU.

Y = fo (z wizd + bJ) | o

where f,. is an activation function. The output value y? of
the jth neuron is obtained by passing the weighted sum of
the input values z and the bias b’ through the activation
function.



A Simple RNN is prone to gradient loss and is poor at
memory retention because output recursion is multiplica-
tive [15]. Equations (3)-(6) show latent state update steps
in GRU.

R, = 0 (Wgrxy + Ughi—1 + br), 3)
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where o is the sigmoid function, ® is hadamard product
(element-wise multiplication), h; is output of hidden layer
at time ¢, W is the weight matrix, and b is the bias term. R; is
the reset gate and controls how much of the old information
is forgotten. Z, is the update gate and controls the ratio
of old information mixed with new information. Memory
is updated through the Hadamard product of the previous
hidden state h;_; and the R;. This operation helps to retain
important information and forget unnecessary elements from
the previous memory state. Additionally, new information
is incorporated using the weighted x;. In this way, h; is
created with short-term memory. Finally, h,_; and h; are
mixed according to the ratio of Z,.

D. Evaluation of ego-noise prediction performance

To evaluate the accuracy of predictions, we utilize the
Percentage Error (PE). PE[k,w]| represents the error rate at
time k£ and angular frequency w.

_ |B| [k, w] — |E| [k, ]
PE [k, w] = 100 ( E[TF o] ) ; (7N

where |E\ [k,w] and |E|[k,w] are the predicted and actual
ego-noise spectra at time k£ angular frequency w, respectively.

We compute Normalized Noise Prediction Error
(NNPE) [16] to evaluate the overall prediction errors.
NNPE computes the error of the ego-noise prediction
normalized by the energy of the actual ego-noise, as
follows:

1 &E S B k@] — || [k, w]?
? 1010g10 Q B}
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where K is number of time steps in the spectrogram, and
Q is number of angular frequency bins in the spectrogram.
NNPE is a metric that calculates the difference between
the predicted and actual energies of ego-noise for each
angular frequency bin, normalized by the actual energy
of ego-noise. Therefore, NNPE represents the ratio of the
maximum residual ego-noise energy that may remain after
ego-noise reduction through spectral subtraction to the ego-
noise energy before ego-noise reduction.

, (8)

III. EXPERIMENTS
A. Experimental equipment

The effectiveness of the proposed method was verified us-
ing data with varying ego-noise and propeller acceleration. A

Micropho.r{e

Accelerometer

{

Cargo Stand
# i
Audio Amplifier
Raspberry Pi

Fig. 6. Mounted UAV for ego-noise and acceleration measurement.

Top View
3.1m+ Side View
0.6 m 0.6 m
0.8 m+
>
0.75m som
3.1 m+ 14m
85m
Fig. 7. Schematic of the experimental environment.

UAV (DJI M300 RTK) with a microphone (Audio-Technica
AT875) and an accelerometer (SparkFun ADXL345) was
mounted on a cargo stand, as shown in Fig. 6.

To verify the effectiveness of the proposed method against
reverberating ego-noise, an experiment was conducted by
placing the UAV indoors. The UAV was mounted facing a
wall on a 1.4 m cargo stand, as shown in Fig. 7.

In a typical hammering inspection scenario, a single-
directional microphone is used to effectively capture the
hammering sound from the wall. Accordingly, this study
uses a single-directional microphone to primarily capture the
reverberating ego-noise. The microphone was placed at a
distance of 6 cm from the wall. The sampling frequency
of the microphone was 44.1 kHz.

In this study, all four propellers of the UAV were manually
assigned the same time-varying rotational speed command
by the UAV controller. Thus, only one accelerometer was
sufficient for monitoring the propeller vibrations. The sam-
pling frequency of the accelerometer was 2.5 kHz, and the
measurement range was +39.2 m/s?.
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Fig. 8. Training and prediction overview. The first 10 s were used for
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B. Processing parameters

Data was recorded for 20 s. The first 10 s were used for
training, and the last 10 s were used to test the prediction
performance, as shown in Fig. 8. The time resolution of
both the acceleration and ego-noise spectrograms were syn-
chronized at 25 ms. For this study, the training and testing
spectrograms consisted of 400 samples since the duration of
both the training and testing periods was set to 10 s.

The cutoff frequency of the acceleration high-pass fil-
ter was set to 20 Hz. The frequency resolution of the
acceleration was 19.53 Hz and that of the ego-noise was
21.53 Hz. In this study, the ego-noise frequencies at which
the predictions were performed were up to 20 kHz. The
number of acceleration spectrum dimensions was 195 (65
dimensions x 3 axes) and the number of ego-noise spectrum
dimensions was 950.

The RNN predictor was trained for 250 epochs and
optimized with a MAE-based loss function and ADAM
optimizer. Grid search was used to set x, to 15, kf to 2,
and h,, to 95.

IV. RESULTS

Twelve datasets, where the timing, intensity, and rate of
increase in propeller rotation speed varied, were evaluated
using NNPE. The distribution of NNPE, with a median
NNPE of -11.46 dB, is shown in Fig. 9. The predicted
accuracy of ego-noise obtained through the proposed method
was at a level that suggests the potential for effective
ego-noise reduction, because NNPE represents the ratio of
the maximum residual ego-noise energy that may remain
after ego-noise reduction through spectral subtraction to the
ego-noise energy before ego-noise reduction. Moreover, a
study focused on template-based ego-noise prediction and
demonstrated an improvement in the SNR from -3 dB to
approximately 3 dB within the NNPE range of -12 to -6
situations [16].

Prediction errors due to blurring is shown in Fig. 10.
Overpredictions and underpredictions are shown by shades
of blue and red, respectively. When the spectrum power in-
creases, there is a tendency of transition from underprediction
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Fig. 10.  Spectrograms of actual ego-noise (left), predicted ego-noise
(middle), and PE (right).

to overprediction. This is primarily due to the fact that the
predictions are blurred in the time direction. There are two
types of blurring: time-directional blurring and frequency-
directional blurring. Generally, there is a trade-off between
stability and the ability to follow rapid changes, and a
trade-off between model expressiveness and generalization
performance. Time-directional blurring is considered to be
a result of the acquisition of stability in the training phase,
while the frequency-directional blurring is attributed to the
bottleneck part of the RNN predictor. Moreover, we consider
the blurring can be suppressed by improving the time and
frequency resolution through increasing the sampling fre-
quency of the accelerometer, and adjusting the overlap rate
and window width of the STFT.

Figure 11(a) shows the actual ego-noise, and Fig. 11(b)
shows our trained RNN successfully predicts the unsteady
ego-noise spectrogram. A stripe-like pattern can be seen on
the spectrogram. The power increases when the propeller
rotates strongly and generates large ego-noise.

Figure 11(c) shows the predicted spectrogram of ego-noise
for the initial training phase. In the early training phase, a
steady spectrogram is predicted. The bias terms b’ (Eq. (2))
of the fully connected layers are learned first. By training
the RNN just before prediction, such steady ego-noise can
be predicted. This allows the prediction of both the steady
ego-noise and the steady environmental noise.

V. DISCUSSION

In this study, we achieved the prediction of diverse and
unsteady ego-noise of UAVs by implementing a framework
that translates vibrations into ego-noise. This suggests that
it enables the reduction of reverberating ego-noise, which
cannot be achieved through space-filtering. We believe this
study expanding the potential applications of acoustic sens-
ing using UAVs.
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In this study, each of the four propellers of the UAV
was manually given the same time-varying rotational speed
command. Therefore, effective prediction was achievable
with only 10 s of ego-noise and acceleration data for training.
In reality, a longer duration of data is expected to be required
for training due to the independent movement of the four
propellers. Furthermore, there is a possibility of resonance
when all four propellers are rotated simultaneously. It is
essential to investigate to what extent this resonance occurs
in real-flight scenarios and how it impacts the prediction of
ego-noise.

VI. CONCLUSION

In this paper, we propose a novel ego-noise prediction
framework by focusing on propellers as the main ego-noise
source, and translating the modality of propeller vibrations
into the modality of ego-noise sound. The prediction accu-
racy of ego-noise spectrograms was at a level that suggests
the potential for effective ego-noise reduction. Therefore, the
proposed method represents a significant step towards the
effective reduction of reverberating ego-noise, and the results
are promising for applications in UAV hammering inspection.
As UAV technology advances and finds a wider range of
applications, enhancing the auditory analysis on which UAVs
rely becomes essential. Therefore, this research represents
a crucial step towards ensuring clearer and more accurate
sound sensing in UAV operations.

In the future works, we will verify that the proposed
method actually improves the accuracy of hammering in-

spection based on the ego-noise reduction and the confidence
evaluation of each discrimination result. Moreover, we will
investigate ego-noise prediction techniques using RPM com-
mand, which do not necessitate the addition of extra sensors.
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