距離画像によるヒューマノイドの位置姿勢計測

磯貝 拓哉[†] 小林 祐一[†] 金子 透[†] 山下 淳[‡]

*静岡大学大学院工学研究科(〒432-8561 静岡県浜松市中区城北 3-5-1)
*東京大学大学院工学系研究科(〒113-8656 東京都文京区本郷 7-3-1)

E-mail: † {f0230007, tykobay, tmtkane}@ipc.shizuoka.ac.jp, ‡ yamashita@robot.t.u-tokyo.ac.jp

あらまし本研究では、距離センサでヒューマノイドと周辺状況を観測し、取得した3次元距離画像から作業 対象物とヒューマノイドの位置関係を抽出してヒューマノイドに動作指示する方法を提案する.センサで環境 を観測するロボットが作業を行う場合の問題点として、作業対象物によってセンサの視界がふさがれるなど、 作業中に周囲状況の認識が困難になる場合が挙げられる.そこで、別視点のセンサにより、作業を行うヒュー マノイドと環境との位置関係を観測する方法を提案する.ヒューマノイドの3次元テンプレートとのマッチン グにより、3次元空間内でのヒューマノイドの位置姿勢を計測し、計測実験により、提案手法の有効性を検証し た.

キーワード 位置姿勢計測,距離画像,ヒューマノイド

1. 序論

近年、ロボット技術の発展に伴い、身近な環境下 におけるヒューマノイドの導入が期待されている. ヒューマノイドが行動するためには環境の認識と、 環境内でのヒューマノイドの位置・姿勢の認識が必 要である.より詳しく環境を認識するために3次元 計測を行うことが多く、計測方法として距離センサ を用いた3次元計測が多く用いられている.

ヒューマノイドに3次元計測センサを搭載して作 業を行わせる研究が活発に行われており、その例と して [1]が挙げられる. この研究では距離センサ搭 載ヒューマノイドによる動的な3次元環境でのリア ルタイムナビゲーションが行われている.しかし, 計測センサをロボットに搭載する場合,手先や足元, 物陰などセンサの死角によって周囲状況の認識が困 難になる. そこで、本研究では、ヒューマノイドか ら離れた視点からヒューマノイド周囲の状況を把握 することでヒューマノイドが作業を行うために有効 な環境認識を実現する.距離センサを利用した位置 姿勢計測法として ICP (Iterative Closest Point) アル ゴリズム[2]を利用した研究がある[3][4].しかし, ICP アルゴリズムでは計測対象の位置が完全に未知 の場合には正しい対応点が取れないため, 初期位置 の把握が必須となる.また,距離画像データに過不 足があったり, ノイズが乗った場合では, これらの 影響で局所解に陥ってしまい、位置姿勢計測が正し くできていない可能性がある.

この問題を解決するために,初期位置を用いない 位置姿勢計測法が必要となる.本研究では距離画像 データに予め作成したヒューマノイドのテンプレー トを重ね合わせ,位置姿勢変換し候補を探索,評価 することで、ロバストで初期位置を用いない位置姿 勢計測を実現する.

2. 問題設定

本研究では3次元距離センサとヒューマノイドを 用いる.距離センサはヒューマノイドから離れた場 所に位置するものとする.実験環境の様子を図1に 示す.図1に示すように,ヒューマノイド以外の物 体が存在する.ヒューマノイドの動作環境は物体の 置かれた段差の無い平面とする.距離センサとヒュ ーマノイドの相対的な位置関係は未知とする.距離 センサによりヒューマノイドの形状を事前に取得し 3次元のテンプレートを作成する.

物体とヒューマノイドが存在する環境を距離セン サにより計測し,得られた3次元像からヒューマノ イドを同定し,さらにその位置・姿勢を推定するこ とを目的とする.

図1 実験環境

3. ヒューマノイドの位置姿勢計測 3.1 提案手法の概略

位置姿勢計測の手順として、初めに距離センサで環 境を計測し距離画像データを取得する.得られた距 離画像データにクラスタリングを行い、3次元空間 中の物体またはヒューマノイドに相当するまとまり に分割する.物体ごとの各クラスタデータに,予め 作成したヒューマノイドのテンプレートを回転・平 行移動しマッチングの評価を行う.テンプレートと 計測されたクラスタデータのマッチング計算には八 分木[5]を用いる.クラスタデータ点群の内,重なる 点の割合を評価値とする.

3.2 ヒューマノイド識別

ヒューマノイドの位置・姿勢を計測するためには ヒューマノイドの識別が必要となる.そのために本 研究では、距離画像を取得し、物体が一定のまとま りを形成しているという想定のもとで、計測された 点群をクラスタリングし、予め作成したヒューマノ イドのテンプレート(図 2)とそれぞれのクラスタ との形状の一致率を評価することでヒューマノイド の識別を行う.

図2 ヒューマノイドの3次元テンプレート

3.3 位置姿勢探索

位置姿勢探索は、予め作成したヒューマノイドの テンプレートを回転・平行移動させ、クラスタリン グして分割した各クラスタデータと重ね合わせて評 価し、探索する.本研究では、テンプレートを図 3 に示す X,Y 方向に x,y 平行移動、Z 軸周りにθ回 転移動させてクラスタデータとマッチングを行う.

位置姿勢探索では回転・平行移動の範囲を決め, 範囲内を一定間隔の回転角度と平行移動距離でテン プレートの位置・姿勢を変換し,探索を行う.しか し,一定間隔で探索すると処理回数が多くなり,探 索時間が膨大になる.処理量の低減のために階層的 に探索を行う.階層処理では,第1段階では回転角 度・平行移動距離を広い間隔で大まかに探索を行う. 探索結果を元に,回転角度・平行移動距離の範囲と 間隔を狭めて探索を行い,これを繰り返す.

図3 回転·平行移動方向

4.2 マッチングの評価方法

探索は、テンプレートの各位置・姿勢に対して、 テンプレートと計測された点群とのマッチングを評価することで行う.マッチングの評価をする際には 3次元空間を再帰的に8等分しながら細かく分割し ていく方法である八分木を用いる.与えられた3次 元空間が決められた条件に従う場合、X軸、Y軸、Z 軸に垂直な平面でそれぞれを2等分し、3次元空間 を計8等分する.そして、8等分されたそれぞれの3 次元空間に同様の処理を行い、3次元空間の大きさ が設定された閾値以下になるまで繰り返す.最小分 割単位の3次元空間をボクセルとする.八分木の例 を図4に示す.赤点の計測データを含む3次元空間 を八分木で分割する.

本研究では八分木での分割条件を,3次元空間内 にテンプレートとクラスタデータの点の双方を含む 場合とする.クラスタデータとテンプレートを重ね 合わせた際に,クラスタデータを含むボクセルのう ち,重なるボクセルの割合を評価値とする.評価値 の計算式を式(1)に示す.評価値が最大になる変換 候補をヒューマノイドの位置・姿勢として扱う.

図4 八分木

評価値= テンプレートと重なるクラスタのボクセル数 クラスタのボクセル総数 ×100

4. 実験

4.1 実験装置

本研究では、3 次元距離センサとして Microsoft 社 製の Kinect を用いる.このセンサは、赤外線パター ンを照射し、反射したパターンの形状から距離を計 測する.計測範囲は 0.8~4m,解像度は 320×240pixel で、垂直 43deg、水平 57deg の 3 次元距離画像を得 ることができる.ヒューマノイドは Aldebaran 社製 の Nao を用いる.マッチングによる位置姿勢計測を 行う計算機の仕様は、CPU が Intel Core i7 2.0GHz、 メモリが 8.0GB である.使用機器を図 5 に示す.

(1)

Kinect(Microsoft 社製) 図 5

Nao (Aldebaran 社製)

図5 使用機器

4.2 実験条件

本実験では、ヒューマノイドを様々な方向・距離 から計測を行い、各位置について位置姿勢(x,y,θ) をもとめ、評価実験を行う.距離センサは地面から 約340mmの高さに水平に搭載する.位置姿勢探索を 行う回転・平行移動候補を表1に示す.八分木での 分割する領域の閾値を16mmとする.

ヒューマノイド形状と計測方向の評価実験として、 複数のテンプレートを用い、それぞれを多方向から 距離センサで計測し、位置姿勢計測を行う.ヒュー マノイドのテンプレートは図6に示す直立形状と片 腕上げ形状を用いる.左右を区別するために片腕上 げさせて特徴を持たせ、それらを比較する.実験条 件として計測位置は、ヒューマノイド中心から x=0mm、y=-1000mm とし、ヒューマノイドを区間 [-180,180]degの間を30deg間隔で回転させ位置姿勢 計測を行う.ここで、直立形状は区間[-180,0]degの 間を30deg間隔で回転させる.

計測距離の評価実験として、計測する距離を変化 させ位置姿勢計測を行う.計測する位置はヒューマ ノイド中心から x=0mm, $\theta=0$ deg で固定し、計測距離 を y=(-1000, -2000, -3000)[mm]とする. テンプレー トは直立形状を利用する. 評価実験の概略図を図 7 に示す.

表 1 回転·平行移動候補

	回転範囲	回転間隔	移動範囲	移動間隔
	[deg]	[deg]	[mm]	[mm]
1 回目	± 180	5	± 128	16
2 回目	± 4	2	±32	8

(b) 片腕上げ形状

(a) 直立形状

図6 テンプレート

4.3 実験結果

距離センサから得た距離画像からヒューマノイド の位置姿勢計測を行った.距離画像,クラスタリン グ,位置姿勢計測の結果の例をそれぞれ図 8~10 に 示す.図9において,クラスタデータは単色で示し たものである.また,図10においてテンプレートの マッチング例を示す.テンプレートは直立形状,計 測位置は(x,y,θ)=(0mm,-1000mm,0deg),テンプレート を赤色,ヒューマノイドのクラスタデータを青色で 示す.

直立形状の計測方向評価実験の結果を表 2 に示す. ヒューマノイドの位置姿勢真値は x=0mm, y=1000mm, θ は各計測方向である.実験結果から, 回転誤差は-3~6deg,平行方向誤差は X 方向が-30 ~-14mm,Y 方向が-7~19mm となった. 片腕上げ 形状の計測方向評価実験の結果を表 3 に示す. 位置 姿勢真値は直立形状の真値と同じである.実験結果 から,回転誤差は-10~0deg,平行方向誤差は X 方向 が-57~-22mm,Y 方向が-68~18mm となった.X 方 向には全姿勢に共通して負の方向に一定の偏りが出 た.また,各テンプレートにおいて位置姿勢計測が できていることからテンプレートに大きな特徴がな くても位置姿勢計測が可能であることが分かった.

計測位置評価実験の結果を表4に示す.ヒューマ ノイドの位置姿勢真値はx=0mm,yは各計測距離, θ=0degである.実験結果から,計測位置が遠くなる につれて誤差が大きくなっており,3000mm 地点で は真値と大きくずれている.図11に各位置で計測し たヒューマノイドのクラスタデータを示す.距離が 遠くなるにつれて計測した点群にばらつきが生じて いる.これは,距離センサの計測距離が遠くなるほ ど分解能が落ちているためと考えられる.これらの 結果と距離センサの計測範囲を踏まえ,ヒューマノ イドの姿勢を±10degの範囲内の誤差で計測するた めには,距離センサとヒューマノイドとの距離を1 ~2m の範囲に収めることが必要であると考えられる.

図8 距離画像

図9 クラスタリング

(a) マッチング(b) ヒューマノイド詳細図 10 テンプレートマッチング例

表 2 計測方向実験結果(直立形状)

計測方向 [deg]	θ [deg]	<i>x</i> [mm]	y [mm]	評価値
0	0	-15	1003	60
-30	-31	-14	993	52
-60	-64	-20	1000	49
-90	-92	-21	1001	111
-120	-120	-29	1004	62
-150	-156	-30	1017	48
-180(180)	177	-24	1019	59

表3 計測方向実験結果(片腕上げ形状)

計測方向 [deg]	θ [deg]	<i>x</i> [mm]	y [mm]	評価値
0	0	-22	932	58
-30	-29	-27	992	62
-60	-55	-29	986	71
-90	-89	-47	1002	70
-120	-120	-51	1006	64
-150	-145	-46	1012	53
-180(180)	-179	-41	1018	69
150	148	-35	1010	69
120	125	-39	1013	76
90	80	-22	994	81
60	55	-30	1013	50
30	30	-36	1005	49

表 4 計測位置実験結果

計測位置 [mm]	θ [deg]	<i>x</i> [mm]	y [mm]	評価値
1000	0	-19	995	55
2000	-7	12	1979	57
3000	136	-48	3064	33

5. 結論

本手法では、ヒューマノイドの3次元テンプレー トを利用することで、距離センサで取得した距離画 像から、ロバストで初期位置を用いないヒューマノ イドの位置姿勢計測を行う手法を提案した.実験結 果より、ヒューマノイドを識別し、その位置・姿勢 を計測することができ、本手法の有効性を確認した. 今後の課題として、評価値に閾値を設定すること による位置姿勢計測精度などを考慮した計測位置決めが 挙げられる.

文 献

- D. Maier, A. Hornung and M. Bennewitz : "Real-Time Navigation in 3D Environments Based on Depth Camera Data", Proc. of the IEEE RAS Int. Conf. on Humanoid Robots(Humanoids), 2012.
- [2] P. J. Besl and N. D. Mckay : "A Method for Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Inteligence, Vol.14, No.2, pp.239-256, 1992.
- [3] 河合克哉, 中澤篤志, 清川清, 竹村治雄: "移 動ロボットによる災害地の三次元再構築のた めのポテンシャル場を用いた経路計画", 電子 情報通信学会技術研究報告, PRMU, パターン メディア理解, Vol.105, No.614, pp.85-90, 2006.
- [4] 大野和則,竹内英二朗,坪内孝司:"投光型距 離センサを用いた三次元 SLAM",日本ロボッ ト学会誌, Vol.26, No.4, pp.306-309,2008.
- [5] 登尾啓史,福田尚三,有本卓:"複数枚の画像 を用いて3次元物体を近似したオクトツリーを 生成する一手法",情報処理学会論文誌,Vol.29, No.2, pp.178-189, 1988.