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Mobile robots with wireless capabilities can enable network connectivity over large areas by relaying wireless signals
from a ground station. Our goal is, for such robotic networks, to enhance current teleoperated robots’ ability to perform
reconnaissance or assist human first responders on victims’ search and rescue operations. On these missions, uninter-
rupted communications between teleoperated robots and their human operators are essential. In order to maximize the
teleoperated robots’ working area, the robotic network has to deploy itself, in an unknown and potentially hazardous envi-
ronment, spreading as much as possible without losing network connectivity. Therefore becoming an area coverage prob-
lem. In this paper, we present a distributed algorithm that enables simple mobile robots with no advanced self-localization
capabilities to create a robotic network and self deploy. The proposed method employs a behavior-based distributed algo-
rithm mainly based on wireless received signal strength measurements and relative locations between neighboring robots -
which are obtained from particle filters. Real wireless signal strength and odometry sensors’ data were collected and used
to validate our approach.

1. Introduction

Robots can be used to access unsafe locations and support vic-
tim search or aid first responders on victim rescue operations; un-
fortunately, limited range/unreliable communications between de-
ployed robots and base stations prevent rescue robotic system from
potentially performing adequately on real scenarios4). Further-
more, is on these disaster-stricken scenarios that communications
are notably challenging, as wired networks most likely malfunc-
tion and collapsed walls and debris hinder wireless signals. The
work herein presented intends to solve this problematic situation
by developing a multiagent system composed by several mobile
robots with wireless capabilities, which can expand wireless cov-
erage at harsh communication environments or large areas.

We employ a distributed algorithm that, opposed to central-
ized ones5), efficiently scales with respect to the number of robots
and requires no explicit communications (differing from work like
Ludwig and Gini2)). In essence, our method utilizes a behavior-
based approach3) that employs wireless strength signal measure-
ments, odometry and bearings to closest neighbors - estimated by
particle filters.

2. Deployment of network nodes

We assumed robots have 802.11-compliant wireless network in-
terfaces, basic obstacle avoidance and odometry sensors; and un-
der this assumptions developed a behavior-based system that can
effectively spread this robots across a delimited area, without los-
ing connectivity. Even though our approach considers that each
robot executes the same program using only information sensed or
inferred by itself, at the system-level the desired global behavior
emerges. This software is ruled by two basic behaviors: Collision
avoidance and Aggregation-dispersion.

Collision avoidance is straight forward: If an obstacle is de-
tected too close, get away from it. It is in charge of safe naviga-
tion, therefore taking top priority. Aggregation-dispersion’s basic
idea is: Spread away from neighboring robotic routers, but not too

much that you can lose connectivity. This is attained by generating
virtual forces based on the robot’s 4 closest neighbors. For each of
these neighbors, if the received signal strength indicators (RSSI) is
higher than a pre-established dispersion threshold (neighbor is too
close) a virtual force opposite to the neighbor’s direction is cre-
ated; contrary, if the RSSI is lower than the aggregation threshold
(neighbor is too far) the virtual force points towards the neigh-
bor. At each time step all generated forces are added and the robot
moves towards the resultant’s direction. It’s important to notice
that in order to generate these forces bearing to neighbors are re-
quired; not possessing sophisticated localization sensors, bearing
estimation can pose a challenge. To solve this, our method uses
particle filters, which work by estimating the posteriori density of
neighbors’ positions using odometry and RSSI measurements.

The filter works by generating a fixed amount of samples, each
with a random possible location of one neighbor. At each time
step, after the robot has moved, odometry is calculated and the
samples are virtually moved. At their new positions virtual RSSI
values are calculated and compared with the actual RSSI values
sensed. How closely related both measurements are, establishes
the probability each sample has of being at the correct position.
This probability is used to generate a new set of samples; and
the process is repeated indefinitely. Although convergence can-
not be guaranteed, simulations show that after certain amount of
time convergence is achieved - bearing errors after 50 iterations
were 0.0421 +/- 0.0484 rad.

For clarity’s sake, Alg. 1 shows the deployment of network
nodes algorithm’s pseudo-code.

3. Experimental validation

For the experimental setup, a roomba 500 series and a laptop
running Ubuntu OS, as shown at Fig. 1 were used as platform. We
used Roomba’s incremental encoders placed one at each wheel for
odometry, and the RSSI obtained from the laptop’s wireless card
(in monitor mode and using the libpcap library) as sensors.



Algorithm 1 Deployment of network nodes algorithm
Calculate Odometry and acquire RSSI signals from neighbors
Update particle filters and calculate bearing estimates
If no obstacles near:

For 4 closest neighbors calculate virtual forces
Add virtual forces and move robot towards resulting force

Else: Avoid obstacle

Laptop

Roomba 

500 series

Fig. 1: Experimental setup

For odometry error estimation, acquired data from encoders
were compared with data from a calibrated motion capture system.
The test consisted on making the roomba robot drive generating
different polygons such as squares or octagons. After processing
the data, a forward movement error of 4% and an angle rotation
error of 0.8% were estimated. Figure 2 shows data obtained from
one of these tests.
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Fig. 2: Roomba’s odometry

For Signal strength measurements error estimation data was
taken along an standard hallway with plenty of interferences from
walls, as well as several unrelated wireless networks operating at
the same time. Readings were noisy even after filtering; therefore,
a sensing error of 10 m was considered. Figure 3 shows data from
one of the experiments.

In order to assess the effect of odometry and RSSI errors, parti-
cle filter algorithm simulations were performed. Setting odometry
errors of 4% forward movement and 1% angle rotation, and RSSI
errors equivalent to 10 m, the bearing error after 50 iterations, in-
creased from 0.0421 +/- 0.0484 to 0.0984 +/- 0.0744 rad. Even
though these errors drastically increased, as it is illustrated by Fig.
4, for bearing errors as high as 0.75 rad (value significantly higher
than 0.2474 rad - two standard deviation over the before mentioned
expected bearing error) the system still has a high probability of re-
tained an adequate connectivity.

4. Conclusions and future work

In this paper we have demonstrated the feasibility of using
robotic routers to deployed and maintain a wireless ad-hoc net-
works. By using local behaviors, deployment of networks was
achieved. The use of particle filters for bearing estimation using
odometry and RSSI data was proposed, and its applicability to this
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Fig. 3: Sampled RSSI data from an specific source, obtained by se-
lecting only beacon sources with the desired source MAC address
from all read packages.
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(d) Not fully connected networks with respect to bearing angle errors.
Total number of simulations 100.

Fig. 4: Network connectivity after deployment of 10 robotic
routers with different bearing errors and 10 m distance error.

specific problem was demonstrated through simulations. Finally,
we collected real sensors’ data using our platform and once er-
rors were quantified, they were used to enhance the system’s sim-
ulations, finding a recommended bearing error maximum value of
0.75 rad under which deployment without connectivity loss is quite
successful; however, physical testing of the whole system remains
as future work. It also remains as future work to develop a more
explicit mechanism to guarantee network connectivity when mo-
bile users go beyond the networks original coverage, when such
event occurs, the network should re-arrange itself (position and
topology) as to provide area coverage to section on the workspace
that the mobile users intend to explore. Additionally, coverage un-
der robotic routers’ failure needs to be explored, for which ideas
related to graph bi-connectivity 1) are being evaluated.
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