テンプレートマッチングを用いた形状変化を考慮した オーロラの魚眼ステレオ計測

Fisheye Stereo Measurement of Aurora in Consideration of Shape Change Using Template Matching

竹内 彰*, 藤井 浩光[†], 山下 淳[†], 田中 正行[‡], 片岡 龍峰^{**}, 三好 由純[§], 奥富 正敏[‡], 淺間 一[†]

Akira TAKEUCHI*, Hiromitsu FUJII[†], Atsushi YAMASHITA[†], Masayuki TANAKA[‡], Ryuho KATAOKA^{**}, Yoshizumi MIYOSHI § , Masatoshi OKUTOMI[‡] and Hajime ASAMA[†]

*: 東京大学工学部精密工学科, takeuchi@robot.t.u-tokyo.ac.jp

↑: 東京大学大学院工学系研究科精密工学専攻,

‡: 東京工業大学大学院理工学研究科機械制御システム専攻,

**: 国立極地研究所, §: 名古屋大学太陽地球環境研究所

概要: オーロラの発生・形成は太陽風や地磁気と密接に関係しているため,太陽嵐や磁気嵐と いった現象を詳しく知るためにオーロラの形状を正確に計測することは非常に重要である.本研究 では、地上に設置された2台の魚眼ステレオカメラから得られる画像を用いてオーロラの3次元形 状を計測する手法を提案する.背景差分とテンプレートマッチングを用いてオーロラ画像中から特 徴点を抽出し、特徴点を時間方向にトラッキングすることで正確性を向上させる.更に得られた特 徴点の3次元座標を求めることでオーロラの可視化を行う.実験結果により提案手法の有効性が 確認できた.

1. 序論

オーロラとは、太陽より放出されたプラズマ粒子が 地球の磁力線に沿って極地付近に流入し、大気中 の原子と衝突することによって起きる発光現象である。 オーロラの形状や色、分布する高度は太陽由来のプ ラズマのエネルギー分布や、世界的に地磁気が減少 する磁気嵐などの現象と大きく関係している。そのた め、これらの現象について詳しく知るためにはオーロ ラの形状を正確に計測することが重要である。

オーロラを計測しようとする試みはこれまでにも行われてきたが、オーロラの発生場所や発生時刻、不規則で連続的な変化を正確に知ることは容易ではなく、正確な計測を行うことは非常に困難である。そこで、人工衛星を用いた計測がなされているが、計算量や費用的な問題から大量のオーロラデータを処理することが困難である[1][2].

これらの問題に対して、地上に設置された2台の魚

眼カメラによってオーロラの3次元形状を測定する研究がなされている[3]. 定常的に空を撮影し続けることで連続的にオーロラ画像対を取得している.得られた画像対に対してSIFTマッチングを用いて特徴点を検出することにより,オーロラの3次元形状を復元している.しかしこの研究では、復元されたオーロラの3次元形状が連続するフレーム間で大きく異なる.実際のオーロラは連続する時間の形状には連続性があるため、この研究では正確に形状を計測出来ているとは言い難い.

この問題を解決するため本研究では、より精度の 高いオーロラの3次元形状の測定を目的とする.そ のために背景差分を用いて画像からオーロラ領域を 抽出すること、テンプレートマッチングを用いて特徴 点を検出すること、時間方向へ特徴点の追跡を行う ことの3つのアプローチから、正確な特徴点検出の実 現に取り組む.

図1 提案手法のフロー図

(a) 原画像(b) 差分画像図 2 背景差分

2. 提案手法

本研究における提案手法のフロー図を図1に示す. 以下詳細に提案手法を説明する.

2.1. 背景差分によるオーロラ領域の抽出

オーロラは特徴点が少なく検出することが困難な 被写体である.そのため,探索範囲付近に星などの 特徴的な点がある場合,検出結果は星の位置から大 きく影響を受け誤検出を招いてしまう.これは正確な 形状測定を目指すにあたり大きな障害となる.

このことから本研究では特徴点を検出するための 前処理として背景差分の手法を用いて,特徴点を探 索する画像と,同地点から撮影されオーロラが写って いない画像との差分から前景としてオーロラの領域 のみを抽出する.図2に差分処理を行った結果を示 す.図2(a)が処理前の画像,図2(b)が処理後の画像 である.背景差索の手法としては Benezeth らの手法 [4]を用いる.

ここで,探索する画像とオーロラが写っていない画 像は,同時刻にとられた画像ではないために星の位

置がわずかに違う. そのため, この処理により, オー ロラと星が前景として抽出される. しかし星はオーロラ 画像に対して非常に小さいため, テンプレートマッチ ングを行う際に, 前景がテンプレートの面積のある程 度以上を占める場合のみ探索を行う, という条件を付 加することによって離散的に分布する星の影響を排 除することができる. これらの処理から, オーロラ以外 の外的な影響を受けずに特徴点検出を行える. また, 画像対において前景の共通部分のみを探索すること で, 探索領域が減少し処理時間の削減を図ることが 可能である.

2.2. テンプレートマッチングによる対応点検出

本手法では特徴点を検出するための方法としてテ ンプレートマッチングを用いる.テンプレートマッチン グとは、一方の画像からある範囲を抽出し、それをテ ンプレートとし、もう一方の画像の中からテンプレート に類似した箇所を探索するという方法である.点同士 ではなく、ある範囲同士の総合的な類似性で判断す るため、オーロラ画像のように特徴点の抽出が困難な 画像間であっても対応を取りやすくオーロラ画像間の マッチングに対して有効な手段である.本手法では、 対応付けが決定された場合のテンプレートとその対 応する箇所の中心の点を特徴点と定義した.テンプ レートマッチングを行うための手法として画像の輝度 値の変化に強いという特徴を持つ ZNCC(正規化相 互相関)を用いる.

2 台のカメラから得た画像からステレオ計測を行う ためには、2 つのカメラで共通した座標系を設ける必 要がある. そこで本研究では図3の黒線に示すような 座標系を設定した. 図3中の赤線が設置されたカメラ の光軸を表している. 得られた画像を変換することに よりカメラの光軸を平行にし、平行ステレオペアとする. そのため得られた画像間でエピポーラ拘束が成り立 つ. エピポーラ拘束を利用してテンプレートマッチン

図4 特徵点追跡手法

グの探索範囲を限定し, 効率的に特徴点を検出する.

また図 3 において左側にあるカメラを左カメラ,右 側にあるカメラを右カメラと定義し,以下この名称を用 いて説明することとする.

2.3. 特徴点の追跡

時間経過によるオーロラの形状変化には連続性が あることから,連続するフレーム間のオーロラ画像に は類似性があると考えられる.

そこで本研究では同時刻の画像間の類似性のみで 特徴点を対応付けるのではなく、時間経過によるオ ーロラの形状変化とその類似性も利用することで、よ り正確な3次元形状の復元を狙う.特徴点の追跡に もテンプレートマッチングを用いる.

オーロラは常に動きのある現象であるが、フレーム 間で変化の少ない部分がある場合、その部分は類似 した形状として時間方向に追跡可能であり、逆に変 化の大きな部分は追跡できない部分であると判断で きる.本研究では追跡可能性を ZNCC による類似性 の評価によって判断している.時刻 tにおける特徴点 が時刻 t+1 において追跡可能であった場合、時刻 t+1 においてもその点は特徴点であるため、時刻 t+1 の特徴点群に加える.この処理により、時間変化によ る形状変化も考慮されたオーロラの三次元形状を求 めることができる.

特徴点追跡手法を図 4 に示す. 図 4 のうち, (a), (b)は時刻 t, (c), (d)は時刻 t+1 に撮られた画像を表 している. また(a), (c)は左に設置されたカメラを, (b), (d)は右に設置されたカメラを表している. 特徴点の 追跡方法は以下のように図 4 に示された番号順に行 う.

 時刻 t における空間方向の特徴点検出 同時刻 t に撮影された画像間で特徴点を検出

(a) 左カメラ入力

(c) 左カメラ出力

(b) 右カメラ入力

(d) 左カメラ出力

図5 同時刻画像間の特徴点検出結果

する. 対応する特徴点を At, Btとする.

- 時間方向の特徴点検出 特徴点 A_t, B_t に対応する特徴点をそれぞれ 時刻 t+1 の画像から検出する. A_t, B_t に対応 する特徴点を A_{t+1}, B_{t+1}とする.
- 時刻 t+1 における空間方向の特徴点検出
 時刻 t+1 で特徴点 A_{t+1} に対応する特徴点
 B'_{t+1}を探索する.
- 追跡可能性の判断
 特徴点B_{t+1}とB'_{t+1}の画像中のピクセル距離を
 比較する.テンプレートマッチングに使用した
 テンプレートの大きさよりも画像中の距離が小
 さい場合,時空間で検出された特徴点はほぼ
 同じ部分を表しているとし追跡できたと判断す
 る.反対に画像中の距離が大きい場合,形状
 が大きく変わったと判断し,追跡しない.

以降1~4を各時刻で繰り返し,特徴点の検出,追 跡を続ける.

2.4. 3次元可視化

得られた特徴点対から各特徴点の3次元座標を求め, Fujiiら[3]と同様にZoltanらの手法[5]に基づき三角形メッシュを作成する.

3. 実験

本研究では 2 台の魚眼カメラを地上より天頂方向 にむけて 2 台設置し,撮影された画像対データを用

(a) 左カメラ追跡前

(b) 右カメラ追跡後

- (c) 左カメラ追跡後
- (d) 右カメラ追跡前

図6 追跡結果

いた.カメラはアラスカ州のフェアバンクスに設置され ており、カメラ間隔は8.1km で撮影は同時に10秒間 隔で行われた.得られた画像の座標系を変換し、魚 眼レンズによる歪みを補正した画像を本実験に使用 した.

3.1. 同時刻画像間の特徴点検出

同時刻画像間における特徴点検出の結果を図 5 に示す.図 5(a),図 5(b)はそれぞれ特徴点検出を行 う前の画像であり,図 5(c)と図 5(d)は特徴点が検出さ れた後の画像である.同時刻画像対の入力画像図 5(a),図 5(b)に対してテンプレートマッチングを行い 特徴点を検出したところ,図 5(c)と図 5(d)のような特 徴点を得た.検出された特徴点を赤い点で表現して いる.入力画像と出力画像を比較すると,図 5(a)と図 5(b)において類似している部分が出力として赤くなっ ており,正確な検出がなされていることが確認でき た.

3.2. 連続する時刻の画像間の特徴点追跡

特徴点追跡を行った結果を図 6 に示す. 図 6(a), 図 6(b)はそれぞれ追跡を行う前の特徴点の分布であ り,図 6(c), 6(d)は図 6(a)と図 6(b)の全ての特徴点に 関して, 10 秒後の画像対に対して追跡を行った結果 を示している. 図 6 の画像においても特徴点を赤い 点によって表している.

3.3. 特徴点追跡結果の評価

特徴点が追跡された場合の画像内の特徴的な部

(a) 追跡前

(b) 追跡後

(d) 追跡後拡大図

(e) 追跡前拡大背景(f) 追跡後拡大背景図7 追跡する場合の特徴

分を図7に示す. 図7(a)は追跡を行う前の画像であり, 図7(b)は追跡が行われた後の画像である. 黄色い四 角で囲まれた部分は追跡できた部分であり, それぞ れを拡大したものを図7(c), 図7(d)に示した. また, 図7(c), 図7(d)から赤い点を除いたものが図7(e), 図 7(f)である. これらの図から, オーロラの動きの少ない 部分や模様の類似する部分に点が残り, 追跡されて いることが確認された.

特徴点を追跡しない場合の画像内の特徴的な部 分を図8に示す.図8(a)は追跡を行う前の画像であり, 図8(b)は追跡が行われた後の画像である.黄色い四 角で囲まれた部分は追跡しなかった部分であり,そ れぞれを拡大したものから赤い点を除いたものを図 8(c),図8(d)に示す.これらから,オーロラ画像の模 様が変化した部分は追跡を行わなかったことが確認 できた.これはオーロラ形状が変化したという判定が できていることを表している.

(a) 追跡前

(c) 追跡前拡大背景

(d) 追跡後拡大背景

図8 追跡しない場合の特徴

3.4. オーロラの3次元可視化

入力画像図 5(a),図 5(b)から得られた特徴点の 3 次元座標を計算し、3 次元形状を可視化した結果を 図 9 に示す.時刻 t+1 のオーロラの 3 次元形状を図 10 に示す.またどちらの図もオーロラをオーロラよりも 上空から見下ろした時の図となっている.

この結果,連続するフレーム間でオーロラの形状 が連続的に変化していることから,より正確に形状を 測定できたことが確認された.

4. 結論

本研究では背景差分とテンプレートマッチングを 異なるカメラで取得した画像間と異なる時刻における 画像間に対して行うことによる,特徴点検出,追跡の 手法を提案した.本手法を用いることで時間経過に よる形状の変化も考慮された,高精度なオーロラの 特徴点検出が可能となった.それにより,正確なオー ロラの3次元形状を測定できた.

手法の効率化,大量のデータを扱うための処理の 効率化は今後の課題である.

謝辞 本研究の一部は,科研費挑戦的萌芽研究 25540114 および財団法人旭硝子財団の援助を受けた.

図9 時刻tの3次元形状

図 10 時刻 t+1 の 3 次元形状

参考文献

- [1] Yoshimasa Tanaka, Takahiko Aso, Bjorn Gustavsson, Kunio Tanabe, Yasunobu Ogawa, Akira Kadokura, Hiroshi Miyaoka, Tima Sergienko, Urban Brandstrom and Ingrid Sandahl: "Feasibility study on Generalized-Aurora Computed Tomography", Annales Geophysicae, Vol. 29, pp. 551-562, 2011.
- [2] Yukioshi Nishimura, Jacob Bortnik, Wen Li, Richard Thome, Larry Lyons, Vassilis Angelopoulos, Stephen Mende, John Bonnell, Olivier Le Contel, Christopher Cully, Robert Ergun and Hans-Ulrich Auster: "Identifying the Driver of Paulsating Aurora", Science, Vol. 330, pp. 81-84, 2010.
- [3] Hiromitsu Fujii, Takayuki Kubo, Atsushi Yamashita, Akira Takeuchi, Masayuki Tanaka, Ryuho Kataoka, Yoshizumi Miyoshi, Masatoshi Okutomi, Hajime Asama: "Aurora 3D-Measurement and Visualization Using Fish-Eye Stereo Camera", Proceedings of ACM SIGGRAPH Asia 2014, 2014.
- [4] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, C. Rosenberger: "Review and Evaluation of

Commonly-Implemented Background Subtraction Algorithms", Proceedings of the 17th International Conference on Pattern Recognition, pp. 1-4, 2008.

[5] Zoltan Csaba Marton, Radu Bogdan Rusu and Michael Beetz: "On Fast Surface Reconstruction Methods for Large and Noisy Datasets", Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 3218-3223, 2009.