測域センサと魚眼カメラの統合による 油圧ショベルの俯瞰映像内における ダンプトラックの3次元モデルの提示

○菅沢 佑太(東京大学),筑紫 彰太(東京大学),小松 廉(東京大学),
ルイ笠原 純ユネス(東京大学),Sarthak Pathak(東京大学),谷島 諒丞(東京大学),
濱崎 峻資(東京大学),永谷 圭司(東京大学),千葉 拓史(株式会社フジタ),
茶山 和博(株式会社フジタ),山下 淳(東京大学),淺間 一(東京大学)

1. 序論

自然災害が発生した場合、迅速な災害復旧が必要で ある.しかし、2次災害の危険から人の立ち入りが困難 な災害現場も存在する. そのような災害現場において は、災害現場に建設機械を設置し、遠隔地のオペレー タが遠隔操作をして災害復旧を行う無人化施工が有効 である[1]. 無人化施工において、最もよく行われる作 業の1つに、油圧ショベルとダンプトラックによる土 砂積載作業がある.土砂積載作業は、遠隔地の油圧ショ ベルのオペレータが、油圧ショベルに搭載した車載カ メラと施工現場に設置された外部カメラの映像を見な がら実施される [2]. このとき、外部カメラの映像は、 遠隔操作をする油圧ショベルと土砂を積載するダンプ トラックを第3者視点で確認できる.土砂掘削時には、 油圧ショベルのバケットと土砂の相対位置, 旋回時に は、油圧ショベルとダンプトラックの相対位置、土砂 積載時には,油圧ショベルのバケットとダンプトラッ クのベッセルの相対位置を把握することが可能である. そのため、第3者視点の映像は、遠隔操作の土砂積載 作業に欠かすことができない映像である.しかし、外 部カメラの設置には、時間を要する問題や、施工現場 の環境によっては外部カメラを設置できない問題があ る. そこで本研究は、油圧ショベルとダンプトラック の土砂積載作業を対象とし、外部カメラを使用しない 第3者視点映像の提示に焦点を当てた.

先行研究として,永谷ら [3] は油圧ショベルに有線給 電ドローンを接続し,施工現場の空撮映像を遠隔地の オペレータに提示して無人化施工を行った.しかし,永 谷らの研究では風が強い状況下ではドローンの飛行安 定性が低下し,ドローンの使用が難しくなり,映像が 提示できない.

Sun ら [4] は4台の魚眼カメラをクローラ型移動ロ ボットに搭載し,各カメラの映像を統合することで,ク ローラ型移動ロボットを中心とした半球のドーム状の 俯瞰映像を生成した.しかし,ドーム状の壁面と底面 を仮定して魚眼カメラの映像を投影しているため,ク ローラ型移動ロボット周辺の高さのある物体の位置・姿 勢・形状を正しく提示できない.

Komatsu ら [5] は4台の魚眼カメラを搭載した移動 ロボットに測域センサを搭載し,室内環境における壁 の位置を検出し,壁が床面に対して垂直であるという 仮定の下,俯瞰映像に壁の位置・形状を提示する手法 を提示した.しかし, Komatsu らの研究は壁が床面に 対して垂直であるという仮定の下に俯瞰映像内に壁の 位置・形状を提示しているため,その仮定に当てはま らない建設機械の位置・姿勢・形状の提示はできない. また,長野ら[6]は油圧ショベルに4台の魚眼カメラを 搭載して俯瞰映像を生成し,油圧ショベルのアームに 搭載した測域センサを使用して,掘削する土砂の形状 を俯瞰映像内に提示した.しかし,長野らの研究では, 油圧ショベルのアームに搭載した測域センサではダン プトラックの3次元形状を一部しか計測できないため, ダンプトラックの位置・姿勢・形状を推定することは できない.

以上の背景から,いずれの先行研究も遠隔操作での 土砂積載作業には対応できないと考える.そこで本研 究では,油圧ショベルとダンプトラックによる土砂積 載作業の遠隔操作を対象として,外部カメラを使用せ ず,油圧ショベルに搭載した車載カメラから第3者視 点映像を生成し,その映像内に油圧ショベルとダンプ トラックの位置・姿勢・形状を提示することを目的と する.

2. 手法

2.1 概要

本研究のオリジナリティは、油圧ショベルに搭載し た測域センサを使用してダンプトラックの位置・姿勢 を推定し、油圧ショベルに搭載された魚眼カメラから 生成した俯瞰映像内に油圧ショベルとダンプトラック の位置・姿勢・形状を提示するための手法を新規に提 案する点である.

本研究では、俯瞰映像内に油圧ショベルとダンプト ラックの位置・姿勢・形状を提示する際、油圧ショベル とダンプトラックの3次元モデルを使用する.3次元 モデルは、油圧ショベルとダンプトラックの形状を実 測し、事前に制作する.これにより、油圧ショベルと ダンプトラックの位置・姿勢の推定を行い、位置・姿 勢の推定を基にそれぞれの3次元モデルを俯瞰映像内 に提示する.

本研究の提案手法は2つに分かれる.1つ目は,油 Eショベルとダンプトラックの位置・姿勢を推定する ことである.2つ目は,Komatsuら[5]の手法に基づい て油圧ショベルに搭載された魚眼カメラから俯瞰映像 を生成し,位置・姿勢の推定を基に油圧ショベルとダ ンプトラックの3次元モデルを俯瞰映像内に提示する ことである.

2.2 油圧ショベルとダンプトラックの位置・姿勢の 推定

俯瞰映像内に油圧ショベルとダンプトラックの位置・ 姿勢・形状を提示する場合,油圧ショベルとダンプト ラックの位置・姿勢を推定する必要がある. Komatsu ら [5] の手法に基づいて4台の魚眼カメラから俯瞰映像 を生成する場合, AprilTag [7][8] を用いたキャリブレー ションで油圧ショベルに搭載された4台の魚眼カメラ の位置を求め,魚眼カメラの位置から油圧ショベルの 位置を推定する.また,油圧ショベルのアーム・ブー ム・バケットの各関節に角度計測センサを搭載するこ とで,各関節の角度情報を取得する.これにより,油 圧ショベルの姿勢を推定する.

続いて、ダンプトラックの位置・姿勢は、油圧ショベ ルに搭載した測域センサを使用して推定する. 事前に 用意したダンプトラックの3次元モデルの点群が、測 域センサで計測したダンプトラックの点群に一致する ように、Iterative Closest Point (ICP) [9]を使用して、 マッチングを行う. ICP とは、異なる2つの点群が重 なり合うように、繰り返し計算を行って点群のマッチ ングを行うアルゴリズムである.

異なる 2 つの 3 次元点群 A, B が, xyz 空間に位置し ており, A が B に一致するように ICP を適用する.本 研究では,土砂積載作業時には油圧ショベルとダンプ トラックは同一平面上に位置している.そのため,点 群 A, B の z 座標は一致しているものとする.その場 合,点群 A が点群 B に一致する際には,以下の変換 T が適用される.

$$T = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & t_x \\ \sin\theta & \cos\theta & 0 & t_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

ここで、 t_x , t_y はそれぞれ x, y 軸方向への並進移動 量である. θ は z 軸に対する回転角である.

本手法では,事前に用意したダンプトラックの3次 元モデルの点群が,測域センサで計測したダンプトラッ クの点群に一致するように ICP を適用し,変換*T*を 参照することで,ダンプトラックの位置・姿勢を推定 する.

2.3 俯瞰映像内における 3 次元モデルの提示

油圧ショベルとダンプトラックの位置・姿勢の推定に基づいて,俯瞰映像内に油圧ショベルとダンプトラックの3次元モデルを提示する.俯瞰映像の生成にはKomatsuら[5]の手法を用いる.油圧ショベルに搭載した4台の 魚眼カメラは,図1に示すように,油圧ショベルの周辺360度の視野を確保するように配置する.

俯瞰映像は油圧ショベルの4台の魚眼カメラから生成され,俯瞰映像座標系 Σ_V が図1のように設定される.油圧ショベルは俯瞰映像座標系 Σ_V 内に,第2.2節で求めた位置・姿勢に基づいて3次元モデルを提示す

図1 提案手法における座標系

る.

一方,測域センサで推定したダンプトラックの位置・ 姿勢は,測域センサの位置を原点とする,測域センサ 座標系 Σ_S で表現されている.ダンプトラックの位置・ 姿勢を俯瞰映像座標系 Σ_V で表現し直すことによって, ダンプトラックの 3 次元モデルを俯瞰映像内で提示す ることが可能になる.

図1を参考に手順を示す.図1には,俯瞰映像座標 系 Σ_V ,測域センサ座標系 Σ_S ,ダンプトラック座標系 Σ_D が示されている.俯瞰映像座標系 Σ_V が測域センサ 座標系 Σ_S に一致するための変換を T_{sensor} ,測域セン サ座標系 Σ_S に一致するための変換を T_{sensor} ,測域セン サ座標系 Σ_S がダンプトラック座標系 Σ_D に一致するた めの変換を T_{dump} で表す.ここで, T_{sensor} は俯瞰映像 座標系 Σ_V と測域センサ座標系 Σ_S の原点同士の相対位 置・角度を計測することで,算出する, T_{dump} は第2.2 節で説明した ICP により取得する.このとき,俯瞰映 像座標系 Σ_V に対するダンプトラックの位置・姿勢は, 変換 $S = T_{sensor}T_{dump}$ で表現することができる.Sに 基づいて俯瞰映像内にダンプトラックに3次元モデル を提示することで、ダンプトラックの位置・姿勢・形 状を提示することができる.

3. 実験

3.1 実験の手順

屋内実験を行った.実験の外観を図2に示す.クロー ラ型移動ロボットを油圧ショベルの代わりに、車輪型 移動ロボットをダンプトラックの代わりに使用した.以 降はクローラ型移動ロボットを油圧ショベル、車輪型 移動ロボットをダンプトラックと呼ぶ.ダンプトラッ クは、リバスト社の PIONEER-3AT の上部にアルミ フレームの骨格を設置した.アルミフレームには黄色 の板を設置し、これがダンプトラックのベッセルを表 している.ダンプトラックのサイズは縦 646 [mm]、横 382 [mm] である.なお、油圧ショベルとダンプトラッ クの3次元モデルは、事前に実測に基づいて用意した.

図2中の青枠で囲まれているものは魚眼カメラであ り、魚眼カメラは油圧ショベル上部の各辺の中点に1 台ずつ搭載されており、油圧ショベルの周辺360度の 視野を確保している.各魚眼カメラで静止画を撮影し、 4台の魚眼カメラで撮影された4枚の画像を使用して、 Komatsuら[5]の手法に基づき俯瞰映像を生成した.各

図2 実験の外観

画像の解像度は縦 1600 [pixel],横 1600 [pixel] である. 魚眼カメラの本体には FLIR 社の GS3-U3-41C6C-C, レンズには富士フィルム社の FE185C086HA-1 を使用 した.魚眼カメラの本体のセンサーサイズは 1 インチ であり、レンズの画角は 185.0 度× 185.0 度である.

油圧ショベルには測域センサとして Laser Range Finder (LRF)を搭載し、ダンプトラックの 2 次元点 群を取得した. LRF には HOKUYO 社の UTM-30LX を使用した. LRF のスキャン範囲は前方 270 度であり、 角度解像度は 0.25 度である. 今回の実験では、油圧ショ ベルは静止している前提とし、油圧ショベルの姿勢は 変化せず、計測していない. また、油圧ショベルの位 置は第 2.2 節で述べた魚眼カメラのキャリブレーショ ンにより推定した. そのため、ダンプトラックの位置・ 姿勢の計測のみを行った.

ここで、図1の測域センサ座標系 $\Sigma_{\rm S}$ の y 軸と、ダン プトラック座標系 $\Sigma_{\rm D}$ の y 軸がなす角を $\theta_{\rm D}$ とおく. 実 験は $\theta_{\rm D}$ を 30 度、45 度、60 度に変更して 3 回行った. 実験を 3 回行った理由は、ダンプトラックの姿勢を変 化させた場合でも、ダンプトラックの位置・姿勢を推 定し、その情報を基に俯瞰映像内にダンプトラックの 位置・姿勢・形状を提示できるかを確認する為である. ダンプトラックの下には A0 用紙を設置し、ダンプト ラックの位置・姿勢を用紙に印刷された枠に従って手 動で変更した. LRF は 2 次元点群を取得するため 2 次 元座標で考えてよい. LRF の位置が xy座標系の原点 であるとすると、ダンプトラックの中心座標は 3 回の 実験とも全て (x, y) = (0, 1000) [mm] の位置にある.

また、ダンプトラックの位置・姿勢を俯瞰映像座標系 $\Sigma_{\rm V}$ に変換する際、変換 $T_{\rm sensor}$ は油圧ショベルの中心 と LRF までの距離・角度を実測し、算出した. $T_{\rm dump}$ は ICP により取得した.

3.2 実験結果

3.2.1 ダンプトラックの位置・姿勢の推定

LRF でダンプトラックの 2 次元点群を取得した.事 前に用意したダンプトラックの点群が,LRF で取得し た点群に一致するように ICP を適用させ,ダンプト ラックの位置・姿勢の推定を行った. $\theta_{\rm D} = 30$ [deg] の ときの点群の比較を図 3 に示す.図 3 は LRF が位置し ている xy 平面上での各点群を表している.LRF は原 点 (x,y) = (0,0) [mm] に位置している.黒色の点群は $\theta_{\rm D} = 30$ [deg] の実験条件通りにダンプトラックを設置し たときの真値の点群を表している.すなわち,黒色の点 群が表すダンプトラックの中心座標は (x,y) = (0,1000)

図3 点群の比較 ($\theta_D = 30$ [deg])

[mm],角度は 30 度である.

青色の点群は LRF で取得した点群である.赤色の 点群は、事前に用意していたダンプトラックの点群に、 ICP で得られた変換 T_{dump} を適用した点群である.す なわち、赤色の点群は ICP のマッチングの結果を表し ており、赤色の点群が LRF で計測した青色の点群に一 致していれば一致しているほど、ダンプトラックの中心 座標と角度が、実験条件通りに求まる. $\theta_{\rm D} = 30$ [deg] のときの赤色の点群から計算すると、ダンプトラック の中心位置は (x, y) = (18, 1005) [mm]、角度は 31.3 度 と推定される.

3回の実験において、それぞれ ICP を使用して推定 したダンプトラックの位置・姿勢と真値との誤差を表 1 に示す.3回の実験とも、計測した x, y 座標の真値 との誤差は最大で18 [mm] 程度であり、計測した角度 と真値との誤差は最大で3度程度である.この誤差は、 実験条件通りにダンプトラックの位置・姿勢を手動で 設置した際の誤差であると考えられる.

3.3 俯瞰映像内におけるダンプトラックの提示

ダンプトラックの位置・姿勢の推定を基に、俯瞰映像内 にダンプトラックの3次元モデルを提示した。 $\theta_D = 30$ [deg] のときの結果を図4に示す.(a),(d)の半球のドー ム状の空間は俯瞰映像を表しており、中心には油圧ショ ベルの3次元モデルが提示されている.また、油圧ショ ベルの前方にはダンプトラックの3次元モデルが、位

表1 ICP によるダンプトラックの位置・姿勢の推定値 と真値との誤差

$\theta_{\rm D} \ [\rm deg]$	<i>x</i> 座標 [mm]	y 座標 [mm]	角度 [deg]
30	18	5	1.3
45	13	16	1.4
60	1	14	3.1

(a)提案手法で生成した 俯瞰映像全体(視点1)

(d) 提案手法で生成した 俯瞰映像全体(視点2)

(b) 提案手法で生成した俯瞰映像(視点1)

(e) 提案手法で生成した 俯瞰映像(視点2)

図4 俯瞰映像の比較 ($\theta_D = 30$ [deg])

(c) Komatsuら[5]の手法で生成した 俯瞰映像(視点1)

(f) Komatsuら[5]の手法で生成した 俯瞰映像(視点2)

置・姿勢の推定に基づいて提示されている.

(a), (d) の黄色の枠をそれぞれ拡大したものが, (b), (e) である.また, Komatsu ら [5] の手法で生成した同 じ画角の俯瞰映像をそれぞれ (c), (f) に示す.(b) と (c), (e) と (f) を比較したとき, Komatsu ら [5] の手法 で生成した俯瞰映像では,ダンプトラックがドームの 底面と壁面に張り付いて表示されており,ダンプトラッ クの位置・姿勢・形状を正しく提示できていない.対 して,提案手法で生成した俯瞰映像では,3次元モデ ルを使用してダンプトラックの位置・姿勢・形状を提 示している.

4. 結論

本研究では、油圧ショベルとダンプトラックの位置・ 姿勢の推定を基に、俯瞰映像内にそれぞれの3次元モ デルを提示する手法を提案した.今回の実験結果では、 油圧ショベルとダンプトラックを俯瞰映像内に3次元 モデルで提示できており、提案手法が有用であること が確認できた.提案手法を使用することにより、外部 カメラが使用できない環境下でも、油圧ショベルに搭 載した魚眼カメラから俯瞰映像を生成し、俯瞰映像内 に油圧ショベルとダンプトラックの位置・姿勢・形状 を提示することが可能になる.これにより、油圧ショ ベルのオペレータは提示された映像を確認することで、 油Eショベルとダンプトラックの位置・姿勢・形状を 確認することができ、土砂積載作業を遠隔操作で実施 できるようになると期待される.

今後の課題として,提案手法はまだリアルタイムで 動作することができない.そのため,リアルタイムで を考慮したダンプトラックの位置・姿勢の推定手法を 考えていく必要がある.また,俯瞰映像内に油圧ショ ベルとダンプトラックの位置・姿勢・形状を提示した際 に,実際の油圧ショベルとダンプトラックの位置・姿 勢・形状をどれほど忠実に表せているかを定量的に比 較する手法を検討する必要がある.上記の問題を克服 した後は,リアルタイムで動作するプログラムを実際 の油圧ショベルとダンプトラックに適用し,油圧ショ ベルのオペレータに提案手法による俯瞰映像を提示して,土砂積載作業の遠隔操作に対して俯瞰映像が有用 であるかどうかを検討する.

参考文献

- 茂木 正晴,山元 弘: "無人化施工による災害への迅速・ 安全な復旧活動",計測と制御,55 巻,6 号,pp. 495-500, 2016.
- [2] 吉田 貴: "無人化施工におけるテレロボティクス", 日本 ロボット学会誌 2012, 30 巻, 6 号, pp. 585-587, 2012.
- [3] 永谷 圭司, 薬師川 楓, 桐林 星河, 渡辺 敦志: "土砂災害の 初動対応を目指した無人建設機械の状態提示技術の研究 開発", ロボティクス・メカトロニクス講演会論文集 2016, 1P1-10a6, pp. 1-3, 2016.
- [4] Wei Sun, Alessandro Moro, Soichiro Iwataki, Ren Komatsu, Hiromitsu Fujii, Atsushi Yamashita and Hajime Asama: "Simultaneous Tele-visualization of Robot and Surrounding Environment Using Bodymounted Fisheye Cameras", 第 23 回ロボティクスシン ポジア講演予稿集, pp. 346-347, 2018.
- [5] Ren Komatsu, Hiromitsu Fujii, Yusuke Tamura, Atsushi Yamashita and Hajime Asama: "Free Viewpoint Image Generation System Using Fisheye Cameras and a Laser Rangefinder for Indoor Robot Teleoperation", ROBOMECH Journal, Vol. 7, 15, pp. 1-10, 2020.
- [6] 長野 樹, 淵田 正隆, 筑紫 彰太, モロ アレッサンドロ, 小松 廉, 藤井 浩光, 山下 淳, 淺間 一: "ロボット遠隔操作のための任意視点映像上での遮蔽物除去", ロボティクス・メカトロニクス講演会講演論文集 2019, 2P1-D10, pp. 1-3, 2019.
- [7] Edwin Olson: "AprilTag: A robust and flexible visual fiducial system", Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 3400-3407, 2011.
- [8] John Wang and Edwin Olson: "AprilTag 2: Efficient and robust fiducial detection", Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4193-4198, 2016.
- [9] Szymon Rusinkiewicz and Marc Levoy: "Efficient Variants of the ICP Algorithm", Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, pp. 145-152, 2001.