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I. INTRODUCTION

To accomplish autonomous navigation and the completion
of tasks, the ability to accurately map and perceive the
environment in three dimensions is crucial, as highlighted
by studies such as Maddern’s analysis of 3D perception in
autonomous systems [1] and O’Mahony’s exploration of the
role of 3D perception in Robotics [2]. Underwater robotics is
no exception. Only the initial conditions differ significantly,
including distortion, reduced visibility, acoustic interference,
and pressure-related challenges. This prevents a flawless
transfer of reconstruction and following completion methods
from above-water to underwater environments.
Sonar images are intensity maps that colourise the images
depending on the backscattered intensity of an object [3].
Here, speckle noise is a granular disturbance or interference
that commonly affects the quality of images acquired by
radar and sonar systems. Therefore, one of the primary
challenges in this domain is the generation of accurate 3D
models from 2D imaging sources. This work focuses on
refining and completing incomplete and noisy point clouds
that are 3D reconstructed out of 2D sonar images using a
method of elevation angle estimation by [4], which generates
3D point clouds out of 2D sonar images by training a model
to estimate the elevation angle. Nevertheless, even if this
method is very effective, the resulting point clouds still need
to be more accurate to provide a useful representation of the
environment for autonomous systems.
To achieve effective refinement and completion of point
clouds, we employ the PCTMA-Net for dense point clouds,

as proposed by [5]. Initially developed for noise-free environ-
ments, this trained network is notably capable of completing
single-point clouds since even small correlations are suffi-
cient to recognise and complete a shape [5].
Adapting PCTMA-Net to handle the nuances of sonar data,
notably its noise and irregularities, forms the crux of our
research. This study aims to rigorously evaluate the adapt-
ability and effectiveness of PCTMA-Net in processing sonar-
derived point clouds. Specifically, it seeks to answer how
well PCTMA-Net can interpolate missing regions, handle
varying levels of sonar noise, and enhance the accuracy of
3D reconstructions from sonar data.

II. PROPOSED METHOD

A. Problem Setting

A first output of the elevation-net [4] for real sonar image
data can be seen in Fig. 2. The sharp edges of the ground
truth cannot be appropriately reconstructed, and the point
cloud becomes more noisy as the distance from the sensor
increases. In contrast to incomplete but noise-free single
point clouds, with which the PCTMA-Net is evaluated, our
input will be noisy, with multiple objects in the scene. The
Elevation-Net, evaluated using a dataset with 18 objects
and the floor deactivated, showed these noisy results. The
Hausdorff distance reached a low of 3,8. The fscore was
52.6% for less than 1mm and increased to 80.0% for less than
3mm. The Chamfer distance (multiplied by 104) is recorded
at 134.5. The values are calculated using the reconstructed
point cloud and the ground truth to measure the method’s
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Fig. 1. Pipeline showing dataset generation in Blender, transformation of 2D sonar images into 3D point clouds, denoising of point clouds, and their
completion and refinement using PCTMA-Net
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Fig. 2. Comparing the ground truth and the point cloud, transformed by the
Elevation-Net, with the generated point cloud by the PCTMA-Model. The
scene, captured by the sonar sensor, contains 18 objects but has a deactivated
floor.

effectiveness. Both can be seen in Fig. 2. A first test of the
PCTMA-Net also archived unsatisfactory results, as shown
in Fig. 2. We can define three main problems:
1. The model focuses on only two out of the five objects in
the point cloud, limiting completion.
2. The completion itself is not satisfactory since the sharp
nodes of the ground truth model are not hit. The noise adds
a high level of uncertainty.
3. The available sonar image-generated datasets are too small
(3230 samples) in comparison to the 28,000 samples [6] the
original PCTMA-Net used to train with [5].

B. Methodology

To reduce the noise at objects’ edges and due to general
outliers, density-based spatial clustering of applications with
noise (DBSCAN) is used (see Fig. 1) [7]. In addition to the
existing two datasets (with and without floor, 18 objects),
seven datasets are added. Six datasets with three to five
objects, with and without floor and one with real captured
data [4]. In total, nine datasets with various objects and,
therefore, noise levels will have 14,535 samples. The target is
to test the PCTMA-Net under these changing conditions and
fine-tune the network to handle a larger number of objects
and different levels of noise using two distinct methods:
The first is to pre-train with Completion3D from the
ShapeNet dataset (28,000 samples) [6] and afterwards train
with all nine datasets. The Completion3D contains incom-
plete but noise-free samples of single object point clouds.
The idea is to use these pre-trained weights to train the noisy
data of our datasets.
The second is to address the challenges of noise and multiple
objects in point clouds. Several modifications of the hyperpa-
rameter are tested and compared with the pre-trained model’s
results. To enhance the model’s capability for complex data,
we increase the encoder layers and the number of attention
heads, improving focus on relevant features. Expanding
the layer dimension is crucial to managing complexity.
With more intricate point clouds, more decoder points are
needed for detailed completions. More encoder channels
will broaden the model’s data-handling capacity. Shifting
the loss calculation from Chamfer distance to Earth Movers
distance (EMD) is advised, as EMD offers greater sensitivity
to delicate structures. Lastly, adding more primitives will
enable the model to represent diverse and complex shapes
accurately.

III. EXPERIMENT

The datasets are generated as [4] described it. Blender is
used to generate the synthetic datasets (Fig. 1). The number
of objects in the Blender scene changes between datasets.
Afterwards, the Elevation-Net generates the point clouds
with the method [4] stated (Fig. 1). The PCTMA-Net is
then trained with all nine datasets to ensure an evaluation
of the influence of noise and the number of objects. In order
to establish the comparability of the method, the Chamfer
distance and of the Elevation-Net is compared with those of
the PCTMA-Net. All results are measured after 300 epochs,
multiplied by 104, and the mesh grid is set to 0.05. Since
the noise points in the point clouds are not deleted, the
fscore is not changing too much. In a comparative evaluation,
the pre-trained weights as the starting point of PCTMA-
Net demonstrated significant enhancement in point cloud
completion. A Chamfer distance of 33.8 and an fscore of
64.58% under 1mm, surpassing Elevation-Net’s Chamfer
distance of 134.5 and an fscore of 52.6%. In PCTMA-Net
with tuned hyperparameter, the Chamfer distance was 31.2
and fscore was 70.56%, showing a marked improvement even
over the pre-trained weights.

IV. CONCLUSION

Our study highlights the PCTMA-Net’s adaptability in
completing point clouds with diverse noise levels and object
counts. Key enhancements in its architecture and training,
including pre-training on noise-free datasets and adjustments
for complexity, have notably boosted its performance. Re-
sults from varied datasets confirm PCTMA-Net’s improved
handling of complex sonar data, significantly advancing
3D reconstruction for underwater autonomous navigation.
However, while the model refines point clouds effectively,
eliminating noise is an aspect that requires further develop-
ment.
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