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Abstract. Mobile robots with wireless capabilities can enable network
connectivity over large areas by retransmitting wireless signals from a
ground station. Our goal is, for such robotic networks, to enhance current
teleoperated robots’ ability to perform reconnaissance or assist human
first responders on victims’ search and rescue operations. On these mis-
sions, uninterrupted communications between teleoperated robots and
their human operators are essential. In order to maximize the teleoper-
ated robots’ working area, the robotic network has to deploy itself, in an
unknown and potentially hazardous environment, spreading as much as
possible without losing network connectivity. In this paper, we consider
an urban search and rescue setting; and present a distributed algorithm
that allows simple mobile robots to self-deploy and create robotic net-
works, without the need of advanced self-localization capabilities nor
prior knowledge of the environment.

Keywords: Multi-agent systems, Networked robotics, Wireless signal
strength

1 Introduction

The fathomable Tohoku earthquake and tsunami on 2011 caused (other than
3 reactors’ meltdowns at Fukushima nuclear power plant) almost 130 thousand
buildings to collapse, over 250 thousand to semi-collapse, and partially damaged
almost 700 thousand; moreover, it claimed almost 16 thousand lives. After such
natural disaster, survivors may be trapped inside damaged buildings. Search
and rescue operations play a crucial role in saving these lives; unfortunately, hu-
man first responders are often impeded from effectively searching throughout all
building areas due to crumbling walls, poor visibility, narrow passages or simply
lack of man power. An important application of robotic systems would be the as-
sistance at urban search and rescue operations in such disaster-stricken scenarios
as robots can access unsafe locations, support victim search and aid on victim
rescue operations. Although its importance, current rescue robotic systems fall
short to accomplish such tasks, being limited range/unreliable communications
a mayor current drawback [16]. Maintaining such communications would be a
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trivial matter if fair wireless signals were available at any point within the af-
fected area; however, this hardly ever holds true on real applications, especially
on disaster-stricken scenarios where wired networks most likely malfunction and
collapsed walls, obstacles and debris may hinder wireless signals. Notably, these
collapsed walls, obstacles and debris can substantially modify the environment,
making available maps or blue prints inaccurate enough as to render map-based
localization not a viable option; therefore it’s fair to assume these collapsed,
semi-collapsed or damaged buildings as unknown environments, even if previous
maps or blueprints are available.

The work herein presented intends to solve this problematic situation by
developing a multi-agent system composed by several mobile robots with wire-
less capabilities - robotic routers. Each of these robots can expand wireless area
coverage by associating with an ad-hoc network and retransmitting its signals;
enabling communications between a ground station and any mobile user (tele-
operated or autonomous robot) within the area. In order to make the system
robust, the robots should place themselves as to create a bi-connected graph
(robots as nodes and available communication links as graph edges); if this is
achieved, in case of single-robot failure, no matter which robot fails, the entire
network would not collapse. Figure 1 illustrates our intended system, and its
optimal topology; with robotic routers R1 to R6 self-deploying in a bi-connected
graph that expands the network’s area coverage.

Fig. 1: Robotic routers 1 to 6 (R1 to R6) expand Base station’s network coverage
by relaying the messages transmitted from Base station to the Mobile User.

To attain a scalable system we pay attention to algorithm complexity with
respect to the number of robots. Additionally, as uninterrupted communications
are prioritized, we prefer algorithms with minimum to none inter-robot commu-
nications as to save main communication bandwidth for commands and/or video
streaming. Regarding system inputs, we limit robots to use only locally available
data, relaying on robot’s previous states, wireless signal strength measurements,
odometry and basic proximity sensors. Given these considerations, we chose a
behavior-based approach which efficiently allows them to self-deploy maximiz-
ing network coverage, without compromising network connectivity. However,
although efficient and scalable, our algorithm does not provide connectivity
guarantees with mobile users (rescue robots), nor explicitly guarantees graph
bi-connectivity, both issues remaining for future work.
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2 Related Work

Network deployment and maintenance is a topic of great interest given its vast
amount of applications: search and rescue [5], target detection [12, 14], hazardous
contamination [13], large area search [1], among others. In [15] fixed network
wireless repeaters are placed, moved and even repaired by a mobile robot, as
to establish and maintain a wireless sensor network; this approach, although
interesting, is not applicable to our current problem, as having a dynamic en-
vironment with continuously varying requirements due to mobile users’ actions,
makes the use of fixed nodes not feasible. Another approach is to have a group
of robots traveling behind the user and becoming repeaters when required [11],
having mobile robots gives flexibility to the network, the ability to easily fall
back after mission is completed, and, more importantly, it guarantees the net-
work to be fully connected at any point of time. A similar approach is taken in
[7], but considering the use of an hybrid (wired/wireless) system, where when
feasible robots transport a wired connection, and up to a certain distance, they
start relaying on wireless repeaters. However, as both approaches en up creating
a single chain of robots, it makes the system quite vulnerable to single-robot
failure, as it would cause the whole network to collapse.

Another well studied field is robot dispersion in indoor environments. Stud-
ies like [3, 10, 8] present several distributed algorithms for dispersion of groups
of autonomous mobile robots in indoor environments; all of which present core
ideas and behaviors similar to ours. However, they all keep line of sight between
robots, as they use infrared sensors, sonar arrays or laser range finders to obtain
distance and bearing information from its neighbors - some also use prior knowl-
edge of the map or explicit inter-robot communication. Our approach widely
differs from these studies as we do not require keeping line of sight. Each of
our robots employs its neighbors’ wireless signal strength information as main
measurements for estimating their relative positions.

Our approach utilizes signal strength as main sensory input. Therefore, it
is important to point out that there is debate whether signal strength mea-
surements are a reliable distance estimator, works like [4] and [6] consider it
as a poor estimator, with [6] placing distance estimation errors between 3 and
9 m. However, both works consider static access points, while ours are mobile;
this mobility can be exploited to decrease estimation errors. Furthermore, our
algorithms are based on signal strength measurements and bearing estimation
to closest neighboring robots, not distance estimation. Bearing estimations can
be derived from Particle Filters using noisy, inaccurate signal strength measure-
ments (as the ones mentioned at [6]) and simple odometry information, as shown
in our previous work [9].

3 Network Deployment

It is assumed that robotic routers are equipped with proximity sensors for ob-
stacle avoidance, as well as basic odometry sensors. It is also assumed they
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have 802.11-compliant wireless network interfaces. Standard 802.11 cards have a
built-in received signal strength indicator (RSSI) that will be used by the robots
to acquire signal intensities. Using odometry and these RSSI values, we assume
bearings to closest neighboring robots can be estimated. Under these assump-
tions, we develop a behavior-based system that can effectively spread robotic
routers across a delimited area, without losing connectivity.

This swarm-like approach considers simple robots, all executing the same
software program that only states local decisions; however at the system-level all
these decisions will produce the intended emergent behavior. The algorithm uses
simple local rules, called behaviors; which are elements of a behavior-based ar-
chitecture. This architecture decides which behavior should command the agent
at any given moment, given the current inputs and robot’s past state.

3.1 Behaviors

In our approach, the behaviors we employ are: collision-avoidance, random-walk,

dispersion, aggregation and wall-following-exploration.

Collision-avoidance behavior is straight forward: If an obstacle is detected too

close, get away from it. This obstacle can be a wall, debris or malfunctioning
robots. Inputs for the collision-avoidance behavior are proximity sensors, such
as sonars or infra-red sensors. This behavior has the highest priority and can
over-rule any other primitive.

Random-walk behavior is another quite intuitive behavior: If neighbors are

too close, choose a random direction and move away towards that direction. The
algorithms employs signal strength measurements as inputs; and its purpose is
twofold: to try regaining connectivity if the robot completely loses connection
to all its neighbors; and to have an effective way to spread the network if robots
are so close together that estimation errors in distance and bearing make other
behaviors unreliable.

Dispersion behavior’s goal is to spread the network; the basic idea being If

close, spread away from neighboring robotic routers. There are many approaches
as how to compute this behavior. In our case, our main interest is not spa-
tial separation of robots, but rather wireless network coverage; therefore, signal
strength is used rather than distance. The behavior takes as an input a desired
signal strength value, which is used as a threshold - dispersion threshold Sd.
When a neighboring robotic router’s signal strength is higher than Sd, meaning
it is too close, the dispersion behavior calculates a virtual force Fd that moves
the robot towards its neighbor’s opposite direction. Equation (1) shows how this
virtual force is calculated:

Fd = −md(S − Sd)û, (1)
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where S is the signal strength, md is a positive constant and û is the robotic
router’s bearing to its neighbor. These forces are generated considering only the
c closest neighbors that comply with the condition; and the final output of the
behavior is the sum of all these forces. This c parameter is set by the designer
and its effects over the network are addressed in section 4.

Aggregation behavior acts oppositely to the dispersion behavior, in the sense
that its goal is for the network not to spread too much. Its main principle is If a
neighboring robotic router is so far that you could lose connectivity, move towards

it, this as to avoid loss of connectivity. Like the dispersion behavior it computes
virtual forces. If the signal strength measured from a neighboring robot is lower
than a second threshold (aggregation threshold Sa), the aggregation behavior
calculates a virtual force Fa that moves the robot towards its neighbor. Equation
(2) shows how this virtual force is calculated:

Fa = ma(Sa − S)û, (2)

where ma is a positive constant. Like the previous behavior, these forces are
generated only with the c closest neighbors that comply with the condition; and
the output is the sum of the forces generated.

Wall-following-exploration behavior is used to explore the map by following
the first wall the robots bumps into. The robot follows the wall by turning a
random angle and moving forward with a small curvature until it bumps/detects
the wall; once it does, it turns away a small angle and starts moving forward
with the same small curvature again until it bumps/detects the wall once more;
this behavior is repeated several times. This behavior is crucial for dispersion
on structured environments like offices, where robots only ruled by the previous
behaviors often get stuck and are not able to leave the room they are in and
expand the network.

3.2 System Architecture

We employ an architecture similar to ALLIANCE [13]; our approach differs in
not considering inter-robot communications, as the algorithm doesn’t require
them, and in only using a slight modification of acquiescence as internal moti-
vation, instead of acquiescence and impatience. Under this framework we group
behaviors in three sets (BS0, BS1 and BS2). Each behavior set has a different
emergent (high-level) behavior and a goal; these different goals may contradict
each other, so only one of the behavior sets can be active at any point in time.
The behavior sets’ outputs are activated by their respective motivational behav-
iors, which cross-inhibit each other - as to guarantee only one of them is active.
One of our behavior sets’ activation is directly inhibited by the other two, as
they may have higher priority; while the other two inhibit each other by means of
the internal motivation acquiescence. Figure 2 shows a diagram of our system’s
architecture.
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Fig. 2: System Architecture implemented on each robot. The system has three
behavior sets that have different goals and perform different emergent behaviors.

Behavior Set 0 has the collision-avoidance and the random-walk behaviors.
It is activated when the robot does not detect any neighboring robot; and its
emergent behavior is safe wandering. BS0’s purpose is to allow the robot to
wander around the map until it finds other robots with which establish a network.
This is an emergency behavior set, which should usually remain inactive as
ideally the robots do not lose complete connectivity from their neighbors at any
given point in time. The activation of either BS1 or BS2, inhibits BS0.

Behavior Set 1 has the collision-avoidance, random-walk, aggregation and dis-
persion behaviors. Only one of these internal behaviors is active at any point of
time, and the selection is based on hierarchy, with the collision-avoidance behav-
ior having the highest priority and the dispersion behavior the lowest. Collision-
avoidance is used for safe navigation; following in priority, is the random-walk
behavior which activates if the robots are so close together that errors in measure-
ments and/or bearing estimations make the aggregation and dispersion behaviors
unreliable. The aggregation behavior advocates for network connectivity while
dispersion behavior for area coverage; as connectivity is more important than
area coverage, we set aggregation with priority over dispersion. BS1’s emergent
behavior is safe network dispersion, allowing the system to efficiently self-deploy
on obstacle free environments. However, on highly structured environments, such
as offices, this behavior set alone is insufficient for an adequate deployment - as it
will be shown on section 4.2. The behavior set is activated by default (if neither
BS0 nor BS2 are active) or if the number of available neighbors is low, in which
case the set is activated so the aggregation behavior can maintain connectivity.

Behavior Set 2 has the collision-avoidance and wall-following-exploration be-
haviors. Its emergent behavior is safe environment exploration. The set’s purpose
is to free robots that get stuck trying to move when it is physically impossible
for them to do so - like moving forward when there is a wall in front; BS2 allows
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such robots to break free from this impossible task, and expand the network
by exploring another area. BS2 is activated when internal motivation acquies-

cence goes over a fixed threshold, and remains active until it “runs out”; this
acquiescence builds up when it encounters this impossible tasks.

Acquiescence is the only internal motivation used in our approach. Figure
3 illustrates our proposed acquiescence motivation; like ALLIANCE’s acquies-

cence [13], we consider ours as a value that increases as the robot tries to per-
form a task, but sensory feedback indicates it is not succeeding in doing so -
essentially trying to position itself somewhere but failing (Fig. 3a). Once ac-

quiescence’s value reaches a threshold it inhibits BS1 and activates BS2 - and
its wall-following-exploration behavior. While BS2 is activated acquiescence’s
value starts dropping with time (Fig. 3b). Once it reaches zero, BS1 is activated
and BS2 inhibited (Fig. 3c); importantly, not to neglect network connectivity,
acquiescence’s value can also be forced to 0 if the number of available neigh-
bors becomes low - so the aggregation behavior in BS1 is activated and network
connectivity can be maintained.

BS1

(a) Acquiescence↑

BS2

(b) Acquiescence↓

BS1

(c) Acquiescence = 0

Fig. 3: Internal motivation: Acquiescence

4 Simulations and Results

We analyze our system in two types of indoor environments: an open, obstacle-
free; and a structured, office-like, environment. The obstacle-free environment is
unlikely to be found in practical applications; however it is useful to study some
of the algorithm’s properties.

4.1 Obstacle-free Environment

When self-deploying in an obstacle-free environment, BS2 is never activated, as
nothing hinders robots’ movements. Therefore, on normal operation, only BS1
becomes active. Figure 4 shows different examples of BS1 when deploying 21
agents (gray circles), 20 acting as robotic routers and one, being anchored at
(0,0), acting as a ground station. For simulations on obstacle-free environments
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we consider a maximum signal radius for communications equivalent to 100 m
- over this distance communications are considered unreliable and connectivity
is broken, Sa of 80 m and Sd of 75 m. At starting configuration all routers are
clustered together and have an effective wireless coverage area of 31416 m2; Fig.
4a shows the final configuration with parameter c =2, which has an area coverage
of 204846.75 m2 (6.5X initial area).

This before mentioned parameter c - number of closest neighbors consid-
ered for forces computation affects how interconnected each agent remains with
respect to its neighbors, effectively increasing the systems redundancy to com-
munication link lose but decreasing the area coverage. Some examples of con-
figurations with different c values are shown at Fig. 4. Interestingly from the
network configuration (with parameters c = 2, 3 and 4) it can be seen that even
though no explicit behavior regarding the shape of the network was given, it has
naturally formed a triangle based grid; notably, this triangular configuration is
the most appropriate to guarantee network connectivity while maximizing area
coverage, and was the one to illustrate our intended system on Fig 1.

(a) c = 2 (b) c = 3

(c) c = 4 (d) c = 5

Fig. 4: Different network configurations obtained after the deployment of 20
robotic routers and a ground station for different c values
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After performing several simulations with different c parameters (2, 3, 4 and
5), the mean and standard deviation of the system’s area coverage and robot’s
minimum number of connections were found. The area coverage for c =2 and 3
are quite similar, while for c = 4 is 5.8% smaller, and for c = 5 is 19%. Robot’s
minimum number of connections is an indication of the systems redundancy,
the more connections each agent possess the more redundant the system is to
communication link lose. If each robot possesses at least 2 connections, then
even if one connection is severed the network connectivity remains intact; this
redundancy is the one we desire. The mean of the robot’s minimum number of
connections for c = 2 is 1.8±0.41, for c = 3 is 2.18±0.82, for c = 4 is 2.68±0.55
and, for c = 5 is 2.98±0.77; making for this particular implementation parameter
c = 4 an appropriate choice, as it’s a compromise between area coverage and
minimum desired number of connections.

4.2 Office-like Environments

Now we analyze the performance of our system in office-like environments; for
practical applications, especially for search and rescue operations, this kind of
environments are the most likely to be found. For simulations we consider much
more restricted signal strength thresholds, as we expect obstacles and debris to
heavily hinder signal propagation - signal strength parameters were set to Sa

equivalent to 16 m and Sd to 15 m. The scenario used for simulations is shown
at Fig. 5, it is a 100x30 m2 area with several rooms, doors and one main corridor.
All robots (blue circles) are initially clustered in one room, where the ground
station (black circle) is also located.

Fig. 5: Office-like scenario used for testing. 20 robotic routers and a ground sta-
tion are initially placed clustered together close to the building’s entry.

First we consider the same case as in the obstacle-free environment, with
only BS1 activated - Fig. 6a shows the results of this approach. As it can be
seen, robots fail to successfully position themselves on the map as to maximize
area coverage; in fact, most of them remain in few rooms close to the initial
position of deployment. This mainly occurs because robots get stuck due to walls
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positioned in the middle of their desired paths; as no exploration algorithm nor
path planner has been implemented on the robots, they have no idea how to
overcome these obstacles - the collision-avoidance behavior only allows robots
to circumvent small obstacles, when faced with walls in a room, robots do not
have any mean to overcome this.

However, once BS2 is introduced, area coverage notably improves; as it can
be seen on Fig. 6b. As mentioned before, when a robot gets stuck due to a wall,
acquiescence builds up, and after certain amount of time BS2 is activated. BS2
then forces the robot to give up on its current desired position, and instead
makes it start exploring the environment by following the wall that previously
restricted its movements. Once the behavior set is deactivated due to time, the
robot goes back to BS1 and tries to find an adequate position abiding BS1 rules.
The robot will perform these actions until it finds a suitable location, which
improves the positioning of the robots all over the environment; however, as the
exploration is random, network deployment requires a considerable amount of
additional time - around 3 times that of deployment without BS2.

(a) System’s self-deployment with only BS1. Robots get stuck in rooms near the entry,
failing to further increase the network coverage to the whole map.

(b) System’s self-deployment with BS2. By BS2, robots no longer get stuck, success-
fully covering the whole map. However this comes with an elevated required time for
deployment and considerable energy spent moving.

Fig. 6: Effect of BS2 on the deployment of 20 robotic routers and a ground station
in an indoor environment.
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After running several simulations we found that on average, the area cover-
age, without BS2 activation, for our 3000 m2 example scenario was 1294±103 m2,
43.13±3.43% of the total area; and, with BS2 activation, was 2932±63 m2,
97.73±2.1% of the total area. Demonstrating the importance of BS2 for indoor
exploration in structured, office-like, environments.

5 Conclusions and future work

In this work we have demonstrated, using simulations, the feasibility of deploy-
ing a robotic network in indoor environments using only simple behaviors and
no explicit inter-robot communications. This was achieved employing three be-
havior sets (BS0, BS1 and BS2). BS0 importance comes when under unexpected
situations, the robot becomes totally disconnected from its neighbors. As the
system is thought for disaster scenarios, these situations are expected. Specially
on physical implementations, we believe BS0 will be of great importance. A more
in depth analysis of such situations remains for future work.

Regarding BS1, its robustness against single-robot failure was addressed, and
although it can be concluded that certain assurance of this robustness is in fact
obtained just by varying parameter c, it still does not explicitly guarantee it.
Work done by Ahmadi and Stone [2] may give a light into how to guarantee
connectivity after single-robot failures; furthermore, if fast re-arrangement of
the network into a bi-connected graph after single-robot failure can dote the
system with a high degree of robustness even after multiple-robot failures.

The importance of BS2 for the network’s deployment in office-like environ-
ment was established by simulation results, which showed that on average, for
our particular study case, the network was able to cover more than twice the area
than without it. These results can be generalized for any office-like environment
with similar characteristics (abundance of rooms or offices). It is important to
notice that network deployment in this kind of environments requires a signifi-
cant amount of time and spends considerably more energy than in obstacle-free
environments. However, as robots start exploring the area by following walls, it
could be possible for them to store information from its sensors and use it to
map the area, this information could be then sent to the base station and used
to create a virtual model of the environment; with this information the system
could start to use more complex strategies for exploration and, perhaps, signifi-
cantly reduce the amount of time spent on deployment. All these ideas are yet
to been implemented and remain as future work.

Finally, we would like to emphasize that, although simulations have shown
promising results for our approach, we believe physical implementation and test-
ing of the proposed algorithms in robotic platforms are key remaining issues of
the work herein presented. Thus, we are actively working towards this.
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