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Abstract. In multi-robot system, cooperation is needed to execute tasks efficiently.
The purpose of this study is to realize cooperation among multiple robots using in-
teractive communication. An important role of communication in multi-robot sys-
tem is to make it possible to control other robots by intention transmission. We
consider that multi-robot system can be more and more adaptive by treating com-
munication as action. In this report, we adopt action adjustment function to achieve
cooperation between robots. We also run some computer simulations of collision
avoidance as an example of cooperative task, and discuss the results.
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1. INTRODUCTION

In multi-robot systems, communication is thought as a necessary skill for robotsto co-
operate, and a number of schemes have been proposed for it [1,2]. However, these stud-
ies may not be useful to adapt in a dynamic and complex environment as they set rules
to communicate. To achieve cooperation effectively in such environments, we have to
discuss the adaptable cooperation using communication. Yanco et al. tried to develop a
method to acquire an adaptive communication for cooperation of two robots[3]. Billard
et al. proposed a learning method of communication through imitation [4]. This is an
interesting approach but the system needs a teacher robot. In these methods and most
of robotics resesarch, the communication is treated as special function for the robotic
systems.

On the other hand, in developmental psychology, communication is considered as
interaction between individuals [5]. Moreover, communication is the transmission of in-
tention, and those who received have to comprehend the intention. In conventional stud-
ies on cooperation of robots based on communication as signal transmission, action is
taken as a motion of its own body and they focused on decision making using sensory
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information. Communication is signal transmission over wireless LAN or other devices,
but it is not correct in developmental psychological sense. There should be a sort of
protocol between robots to communicate, and the intention should be exchanged.

Consequently transmitting one’s intention could be treated as an action and receiving
other’s intention could be treated as perception in multi-robot system. By introducing this
concept to their control architecture, robots can make an attempt to control other robots.
This means that a robot can make an action over constraint of its own D.O.F.(body-
expansion behavior), and multi-robot system can be more flexible and adaptable.

In this study, we take in communication to robot’s model both as perception and
action. It means to achieve cooperation between robots, not only robot’s own movement
but also sending message to other robots is treated as an action. We have previously
developed an action selection method [6] which treats communication as above, but there
was a problem of how to adjust different type of actions; self generated action and a
requested one by communication. It seems that most effective strategy for the whole
system is to accept a request only when the situations for both robots seem to improve.

In this paper, we propose an action adjustment function to achieve cooperation be-
tween mobile robots. We also have some computer simulations of collision avoidance as
an example of cooperative task, and discuss the results.

2. ACTION SELECTION METHOD INCLUDING INTERACTIVE
COMMUNICATION

2.1. Reinforcement Learning

Reinforcement Learning(RL,[7] is widely used in robotic systems to emerge robots’ ac-
tions from the interaction between the environment. However, in multi-robot system,
there is a possibility that the same action causes different state transition which mis-
leads the learning. To avoid this problem, Q-Learning for Semi Markov Decision Pro-
cess (SMDP, [8]) which can handle discrete time series is utilized generally. Q-Learning
algorithm for SMDP is as follows.

1. Observe state st at time t in the environment.
2. Execute action at selected by action selection node.
3. Receive reward r and calculate the sum of discounted reward Rsum until its state

changes.

Rsum = rt + γrt+1 + γ2rt+2 + · · ·+ γN−1rt+N−1 (1)

Here, r is a discount factor (0 ≤ r ≤ 1).
4. Observe state st+N at time t + N after the state change.
5. Renew Q value by equation (2).

Q(st, at)← (1− α)Q(st, at) + α[Rsum + γN max
a′

Q(st+N , a′)] (2)

Here, α is a learning rate (0 ≤ α ≤ 1) and a′ is possible actions in state st+N .
6. Clear r.
7. Renew time step t to t + N , and return to 1.
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2.2. Basic Actions

There are a variety of tasks considered as cooperative tasks, but in this paper, we are
going to discuss collision avoidance problem of mobile robots. This is because that al-
though there are a lot of the rule based schemes proposed for it, it can still see the effect
of the communication and the expansion in D.O.F. directly.

We suppose omni-directional mobile robots which are equipped with omni-
directional visual sensors. Considering communication as robots’ action, basic actions
for robots are set as Table 1. Here, “Comminication” means intention transmission,
which is a requesting action to other robot to make an asked action. This means that
a robot can request any actions which the other robot can make. Robots acquire their
state-action policy by RL. We also configure robot’s state space as Table 2. Numbers
in Table 2 shows the number of state space for each domains. Example for the visual
sensory information is shown in Figure 1. The size of the other robot on image plane is
determined by the distance threshold. Both the direction of the other robot and the goal
are devided into six state spaces. Direction of the wall has five state spaces, which are
front, left, right, and the back of the robot, or, no walls. In Figure 1, the white wall is
placed above the distace threshold, so only the grey wall is considered as an obstacle
in robot’s state space. In this framework, a robot selects, evaluates and learns its action
from sensory information and other robots’ intentions.

Table 1. Actions of robot

Move Own Body Communication

- No changes in speed or direction - No changes in speed or direction
- Speed down (2[mm/sec]) - Speed down (2[mm/sec])
- Speed up (2[mm/sec]) - Speed up (2[mm/sec])
- Change direction (+45 [deg]) - Change direction (+45 [deg])
- Change direction (-45 [deg]) - Change direction (-45 [deg])

2.3. Action Selection and Reward

There are a lot of action selection models for Q-Learning like Max Selection or Random
Selection. One of the methods to improve its adaptability gradually by RL is probabilistic

Table 2. Configuration of state space

Visual sensory information

- Size of other robot on image plane 2
- Direction of other robot 6
- Direction of the goal 6
- Wall direction inside the sensing area 4+1(none)

Communication

- Other robot’s request 5+1(none)

Other Information

- Own Speed 2

Number of the State Space 4320
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Figure 1. Visual Sensory Information

action selection using Boltzmann distribution (Boltzmann selection). It is used widely
and is reported that probabilistic selection works better than deterministic policy in multi-
agent systems [9].

In Boltzmann Selection model, probability p(a | s) to make action a in state s is
defined as equation (3).

p(a | s) =
expQ(s,a)/T

∑

ai∈A

expQ(s,ai)/T
(3)

Here, T is temperature constant. If T is near zero, action selection will be deterministic,
and if T becomes large, action selection will be more random and will do aggressive
search for state-action policy. Evaluation of the selected action is done by using the
distance from the goal g(t) in time t. Reward rt is defined by equation (4).

rt = µ(g(t)− g(t−∆t)) (4)

Here, µ is a weight value and represents effectiveness of the reward. ∆t is cycle time for
decision making.

3. ACTION ADJUSTMENT FUNCTION

When communication is treated as an action for intention transmission, accepting all
the requested actions will only to improve other robots’ situations. However, for the
whole system, it is seems that most effective way is to accept the request only when the
situations of both robots can be improved. To accept such requests, there is a need for
action adjustment function to compare the actions which are self determined action and
a requested one by communication. It makes the robots to create better situations, and
will be able to cooperate efficiently.

For this action adjustment, we introduce the algorithm which is illustrated in Figure
2. First, a robot decides whether to move itself or to make other robot move by commu-
nication. This is a selfish action selection which doesn’t consider the state of other robot.
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Of course there is a probability that the request will be refused, but whether to accept
or reject the request is determined by the receiver. Next, a robot will determine which
action to make; the selfish action that is decided at first step or a requested action by
other robot. By those two steps, a robot can select an action considering a request from
other robot.

This adjustment algorithm can be utilized generally by giving numeric values for
each actions. In this paper, we use Q-Learning algorithm for SMDP and the Q values
from the RL are used as numeric values for two step action selection. The implemented
algorithm for the robot is shown in Figure 3.

Move Own Body
Move Other Robots

(Communicate)
Execute

Requested Action

Selfish
Action Selection

Selected Action

Total

Action Selection

Figure 2. Action selection process

Observe State s

Calculate Reward r

Renew Q value

Execute

Selected Action a

State Changed?
No

Yes

Selfish

Action Selection

Total

Action Selection

Figure 3. Algorithm for action selection including communication

4. COMPUTER SIMULATION OF COLLISION AVOIDANCE PROBLEM

In this section, we are going to have some computer simulations to test our approach and
discuss the results.
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4.1. Settings

There are two omni-directional mobile robots in simulation field, and the task is colli-
sion avoidance as an example of cooperative task. To compare our approach to general
approach of communication in robotic research field, we set three conditions.

Case A is for our proposed approach and robots can use communication to move the
other robot by intention transmission. In case B, robots can inform their adjacent action
which they made by signal transmission. By this, we can eliminate an influence on the
size of state space and robots in case B have same state number as in case A. Robots in
case C cannot use communication.

Common settings are as follows. Robot is cylinder shaped and its diameter is
300[mm]. Start position of each robot is set 500[mm] from longitudinal sides of the
environment, symmetry in ups and downs. Goal position is the starting point of the
other robot, and is set face to face in initial condition. Maximum speed of the robots is
40[mm/sec], and minimum is 10[mm/sec]. It assumes that robots can output their speed
without a time lag.

A trial is terminated under four conditions, which are the goal of the both robots,
the collision of robots, the collision of either robot against walls or simulation area, or
when the time step reached to 3000. The parameters for RL are set experimentally as
∆t = 1.0[sec], µ = 0.1, α = 0.04, γ = 0.9 and T = 0.2. Reward for the robots are
calculated by equation (4), but in case of any collisions, r = −5 is given as punishment
value.

4.1.1. Simulation 1

In simulation 1, straightway environment in Figure 4 is utilized. Width 800 ≤ x ≤
3000[mm] is changed by 100[mm] and computer simulation is run for four times in
every situation, and the learning is episodic for each simulation. Maximum trial number
is 30000 for every experiment.

4.1.2. Simulation 2

In simulation 2, crossroad environment in Figure 4 is utilized. Simulation area is
3000[mm] square, and the width of both roads are x[mm], which changes 600 ≤ x ≤
3000[mm] by 200[mm]. Four black pieces in Figure 4 are walls (obstacles). Computer
simulation is run for four times in every situation, and Maximum trial number is 100000
for every experiment. Learning is episodic for each simulation.

All settings has the same distance for goal, to make it easy to compare the results.
In simulation 2, when a robot moves, physical relationship against the walls change, and
it affects robot’s state space. Consequently, robots’ state change frequently when x is
small, and the problem will be much difficult compared to the same x in Simulation 1.

4.2. Results

Figure 5 shows the number of trials for convergence. In this report, “convergence” means
100 continuous goals. Horizontal axis shows the width of the road x. Data on those
graphs are the average of four trials. It shows some oscillation, but the aptitude can been
comprehended.
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Figure 5. Number of trials for convergence

4.2.1. Convergence Properties

When the width x is large enough for robots and the problem can be solved easily, Case
C achieves convergence faster than other cases. We believe that this occurs because the
state space of Case C is one fifth of other cases and therefore it is easy to acquire the state-
action policy. The result of Case B shows large oscillation in both graphs. In this case,
communication changes the state of the other robot, and it makes difficult to search state-
action policies. Communication as signal transmission doesn’t show its superiority in any
case of our experiments. It only multiplies the number of states and prevents system from
fast achieving of cooperation. Finally, Case A has superiority to other methods when x is
small. This is the condition which the problem is hard to solve and is difficult to cooperate
with others. Results show that our approach can solve the problem cooperatively even
when the other approaches cannot solve it. It is a difficult situation for robots to cooperate
without communication, and comparing Case A to Case B, our proposed system works
better than usual usage of the communication such as information transmission.

4.2.2. Quality of the Solution

Figure 6 shows the number of steps to converge, which shows the quality of the solution
achieved by the system. Data on those graphs are the average of four trials. Although
there are many spikes, Case A apts to generate better solutions than the other methods.
We consider that intention transmission worked effectively by affectiong the other robots,
only when the communication is needed. This result supports our approach that it is not
only in the fastness in finding solutions but also in the quality of the solution.
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Figure 6. Number of steps

5. CONCLUSIONS

In this paper, we proposed a method to adjust different type of actions which include
communication as intention transmission. By using this method, we enabled to treat com-
munication as intention transmission action in multi-robot system and also examined its
performance by computer simulations. The results show that our approach can find solu-
tion in difficult situation where cooperation is hardly achieved without communication,
and is also excels in the quality of solution achieved by the system than ordinal way
of communication or without using communication. In our future work, we will try our
approach in more complex environments or other tasks.
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