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In a multi-robot system, cooperation within robots is
essential in order to execute tasks efficiently. The pur-
pose of this study is to investigate how robots cooper-
ate with each other using interactive communication.
A fundamental role of communication in a multi-robot
system is to control other robots by an intension trans-
mission. We believe that a multi-robot system can be
more adaptive by treating communication as an ac-
tion. In this paper, we implemented the action ad-
justment function to achieve cooperation between two
mobile robots. Also we discuss the results of computer
simulations of collision avoidance as an example of co-
operative task.

Keywords: Q-learning, multi-robot system, communica-
tion, cooperation, mobile robot

1. Introduction

In a multi-robot system, robots can improve their ca-
pabilities by changing their configurations or by working
in parallel according to the circumstances. In such a sys-
tem, robots execute their tasks for their own purpose, but
they have to share and consider the purpose of the whole
system simultaneously. Therefore, communication is a
necessary skill for robots to realize cooperative tasks [1].
Our previous works were on communication among two
robots as a means of signal transmission to the other robot
to achieve tasks cooperatively [2, 3]. However, these stud-
ies set rules to communicate, so these methods may not be
adaptive in a dynamic and complex environment. Yanco
et al. tried to develop a method to acquire an adaptive
communication for cooperation between two robots [4].
In this system, un-interpreted vocabulary is given and the
robots acquired the usage of the words. Billard et al. pro-
posed a learning method of communication through imi-
tation [5]. This is an interesting approach but the system
needed a teacher robot. In these methods and in most of
robotics researches, communication is treated as a special
function for a robotic system.

On the other hand, in developmental psychology, com-
munication is considered,as an interaction between indi-
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Fig. 1. Communication as an intention transmission.

viduals, and nonverbal communication as its fundamen-
tal part [6]. Moreover, communication is a transmission
of intention, and those who received the message have to
comprehend the intention. In conventional studies on co-
operation of robots, communication is taken as a signal
transmission over wireless LAN or other devices, an ac-
tion is taken as a motion of its own body, and they focused
on decision making using sensory information. But it is
not correct in developmental psychological sense. There
should be a sort of protocol between robots to communi-
cate, and an intention should be exchanged by communi-
cation.

Consequently transmitting one’s intention could be
treated as an action and receiving the other’s intention
could be treated as a perception in a multi-robot system
(Fig. 1). By introducing this concept to their control ar-
chitecture, robots can make an attempt to control the other
robot. This means that a robot can make an action over
constraint of its own degree of freedom, and a multi-robot
system can be more flexible and adaptable. In this study,
we take in communication to robot’s model both as a per-
ception and an action. It means that not only a robot’s own
movement but also sending message to the other robot is
treated as an action.
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We have previously developed an action selection
method [7, 8] which treat communication as above, but
there was a problem of how to adjust different type of ac-
tions: a self generated action and a requested action from
the other robot by communication. It seems that the most
effective strategy for the whole system is to accept a re-
quest only when the situations for both robots seem to
improve.

In this paper, we propose an action adjustment function
to achieve cooperation between two mobile robots. Also
we will discuss the results for the computer simulations
on collision avoidance as an example of cooperative task.

2. Intention Transmission

In most researches of multiple robots cooperation, only
the physical actions(for example, just moving) were con-
sidered as the actions of a robot. However, by applying
communication between robots, transmission of a robot’s
intention to the other robot could be treated as an action
as well. Therefore, we have attempted to introduce this
transmission of intention to the robot’s control architec-
ture.

In terms of control, one of the important role of com-
munication is to make the robot control the other robot’s
behavior by intention transmission. If a robot’s behav-
ior is limited by the number of actuators, D.O.F. of the
robot would also be limited by the number of actuators.
However, if the robot can transmit its own intention and
the receiver executes the order, the robot is capable of
controlling the other’s behavior. And this demonstrates
the expansion of the robot’s D.O.F., which we refer to as
body-expansion behavior. We consider that a multi-robot
system can improve flexibility and adaptability with body-
expansion behavior.

In our previous work, we applied this concept to col-
lision avoidance problem of mobile robots [7,8]. We at-
tempted computer simulations to examine the communi-
cation scheme among the robots and discussed the effect
of our method. Also, we have focused on communica-
tion emergence for body-expansion behavior within two
mobile robots. It was a task to acquire a common proto-
col for cooperation by exchanging meaningless symbols,
and the robot system became more adaptive with our pro-
posed method. However, the system had a problem that
only one of the robot in the system was able to communi-
cate to the other robot to request an order. Where as the
other robot always obeyed to the orders made. When it
comes to a bidirectional communication system, robots in
the system have to decide which action to take: a self gen-
erated action or a requested action from the other robot by
communication.

In this paper, we examine the action selection method
with our discussed system for further effective adaptation.
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Fig. 2. Q-learning.

3. Action Selection Method Including Interac-
tive Communication

To emerge functions of adaptation to a dynamic envi-
ronment, we utilized reinforcement learning scheme. By
utilizing this scheme, robots are able to acquire adap-
tive behaviors in a dynamic environment without a prior
knowledge.

3.1. Reinforcement Learning

When a robot has a large state space, it is difficult to
predict a solution, and to set all state-action rules before-
hand. But in an autonomous robot system, action selec-
tion should be online and processed in real time. In such
cases, robot must acquire behavior generation function to
emerge its action from the interaction between the envi-
ronment and the other robot. To treat this sort of acquisi-
tion problem, un-supervised learning approach is utilized,
and Reinforcement Learning (RL, [9]) method is one of
such approaches. In RL, trial and error approach is ap-
plied.

However, in multi-robot systems, there is a possibil-
ity that the same action causes a different state transition
which can mislead the learning. To avoid this problem,
Q-learning for Semi Markov Decision Process (SMDP,
[10]) (Fig. 2) is utilized generally because it can handle
discrete time series. Q-learning algorithm for SMDP are
as follows.

1. Observe state s, at time ¢ in the environment.
2. Execute action a, selected by action selection node.

3. Receive reward r and calculate the sum of discounted
reward Ry, until its state changes.

Ryum = re + ¥ri+i +err+2 +-- '+w_lrt+N—1 (1)
Here, 7 is a discount factor (0 <y < 1).

4. Observe state s,y at time t + N after the state
change.

5. Renew Q value by Eq. (2).

O(sr,a) + (1 —0)Q(st,ar)
+a[Rsum +']/vm?XQ(st+Naal)] .. ()
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Table 1. Actions of robot.

Move own body

- No changes in speed or direction
- Speed down (2 mm/sec)

- Speed up (2 mm/sec)

- Change direction (+45°)

- Change direction (—45°)

Speech

- No changes in speed or direction
- Speed down (2 mm/sec)

- Speed up (2 mm/sec)

- Change direction (445°)

- Change direction (—45°)

Table 2. Configuration of state space.

Visual sensory information

- Size of the other robot on image plane 2
- Direction of the other robot 6
- Direction of the goal 6
- Wall direction inside the sensing area | 4+1(none)

Communication

- The other robot’s request

Other information

- Own speed [ 2
Number of the state space | 4320

| 5+1(none)

Here, o is a learning rate (0 < a < 1) and d’ is pos-
sible actions in state s;4n.

6. Clear r.
7. Renew time step ¢ to t + N, and return to 1.

This learning algorithm is utilized in each mobile robot.

3.2. Basic Actions

In this paper, we discuss collision avoidance prob-
lem of mobile robots as an example of cooperative task.
We have assumed to use omni-directional mobile robots
which are equipped with omni-directional visual sen-
sors. By considering communication as one of robots’
actions, basic actions for robots are set as Table 1. Here,
“Speech” means communication through message trans-
mission. Robots acquire their state-action policy by RL.
We also configured a robot’s state space as Table 2. An
example of the visual sensory information is shown in
Fig. 3. In this framework, a robot selects, evaluates and
learns its action from sensory information and the other
robot’s intentions.

3.3. Action Selection and Reward

There are a lot of action selection models for Q-
learning like Max Selection or Random Selection. One
of the methods to improve robots’ adaptability gradually
by RL is probabilistic action selection using Boltzmann
distribution (Boltzmann selection). Boltzmann selection
is used widely and is reported that probabilistic selection
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Fig. 3. Visual sensory information.

is significant than deterministic policy in multi-robot sys-
tems [11].

In Boltzmann Selection model, probability p(a | s) to
make action a in state s is defined as Eq. (3).

epr(Sya)/T

Z epr(S»“i)/T
a;€A

plals)= . (3)

Here, T is a temperature constant. If T is near zero, action
selection will be deterministic, and if T becomes large,
action selection will be more random and carry out ag-
gressive search for state-action policy. Evaluation of the
selected action is done by using the distance from the goal
g(t) in time . Reward r, is defined by Eq. (4).

n=u(gt)—gt—A)) . . ... ... .4

Here, u is a weight value and represents effectiveness of
the reward. At is cycle time for decision making.

4. Action Adjustment Function

When communication is treated as an action for inten-
sion transmission, accepting all the requested actions will
only improve the other robot’s situation.

However, for the whole system, it seems that the most
effective way is to accept requests only when the situa-
tions of both robots seem to improve. To accept such re-
quests, action adjustment function is needed in order to
compare actions which are self-determined action and a
requested one by communication. This allows the robots
to create favorable situations, and to cooperate efficiently.

For this action adjustment, we introduce an algorithm
which is illustrated in Fig. 4. First, a robot decides
whether to move itself or to make the other robot move by
communication. This is a selfish action selection which
does not consider the state of the other robot. Of course
there is a possibility that the request will be refused. Next,
a robot will determine which action to make: the selfish
action that is decided at first step or a requested action by
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Fig. 5. Algorithm for action selection including communication.

the other robot. By those two steps, a robot can select an
action considering a request from the other robot.

The Q value from RL is used for two-step action selec-
tion. The implemented algorithm is shown in Fig. 5.

5. Computer Simulation of Collision Avoidance
Problem

In this section, we discuss the results of the computer
simulations to test our approach.

5.1. Settings

There are two omni-directional mobile robots in a sim-
ulation field, and the task applied to these robot is col-
lision avoidance as an example of cooperative task. To
compare our approach to the general approach of commu-
nication in robotic research field, we have set three condi-
tions.

Case A is for our proposed approach, and robots can
move the other robot by intension transmission. In case
B, robots can use communication which can send mes-
sage of their conditions to the other robot. To eliminate
an influence of the size of the state space, robots have the
same state number as in case A, and robots can inform
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their adjacent action. Robots in case C cannot use com-
munication.

Common settings are as follows. A robot is cylinder
shaped and its diameter is 300 mm. Start position of each
robot is set 500 mm from longitudinal sides of the envi-
ronment, symmetry in ups and downs. Goal position is
the starting point of the other robot, and robots are set
face to face in the initial condition. Maximum speed of
the robots is 40 mm/sec, and minimum is 10 mm/sec. It
assumes that robots can output their speed without a time
lag.

A trial is terminated under four conditions, which are
the goals of both robots, the collision of robots, the col-
lision of either robot against walls or simulation area, or
when the time step reach 3000. The parameters for RL
are set as At = 1.0 sec, 4 = 0.1, « =0.04, y=0.9 and
T =0.2. Reward for the robots are calculated by Eq. (4),
but in case of any collisions, » = —5 is given as a punish-
ment value.

5.1.1. Simulation 1

In simulation 1, straightway environment in Fig. 6
is utilized. Width 800 < x < 3000 mm is changed by
100 mm and computer simulation is run four times in each
situation. Maximum trial number is 30,000 for every ex-
periment.

5.1.2. Simulation 2

In simulation 2, crossroad environment in Fig. 6 is uti-
lized. Simulation area is 3000 mm square, and the width
of both roads are x [mm], which changes 600 < x <
3000 mm by 200 mm. Four black pieces in Fig. 6 are
walls (obstacles). Computer simulation is run four times
in each situation, and maximum trial number is 100,000
for every experiment.
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Fig. 7. Number of trials for convergence. Case B did not
converge when x = 800, 900, and Case C did not converge
when x = 800.

5.2. Results

Figure 7 shows the number of trials for convergence. In
this report, “convergence” means 100 continuous goals.
Data on those graphs are the average of four trials, and
only the points which converged more than 3 out of 4 tri-
als are depicted in the graphs. Horizontal axis shows the
width of the road x.

5.2.1. Convergence Properties

When the width x was large enough for robots and the
problem could be solved easily, Case C achieved conver-
gence faster than other cases. We believe that this oc-
curs because the state space of Case C was one fifth of
other cases and therefore it was easy for robots to acquire
the state-action policy. The result of Case B shows large
oscillation in both graphs. In this case, communication
changed the state of the other robot, and it made robots
difficult to search state-action policies. Communication
as signal transmission does not show its superiority in any
case of our experiments. We believe that in this case,
communication only multiplied the number of states and
prevented system from achieving of cooperation immedi-
ately. Finally, Case C had superiority to other methods
when x was small, the condition which the problem was
hard to solve.

Results show that our approach solved the problem co-
operatively even when the other approaches could not
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Fig. 8. Number of steps. Case B did not converge when
x = 800, 900, and Case C did not converge when x = 800.
solve it. Those cases were the difficult situations for

robots to cooperate without communication, and compar-
ing Case C to Case B, our proposed system worked better
than usual usage of the communication such as informa-
tion transmission.

5.2.2. Quality of the Solution

Figure 8 shows the number of steps to converge, which
shows the quality of the solution achieved by the system.
Data on those graphs are the average of four trials, and
only the points which converged more than 3 out of 4 tri-
als are depicted in the graphs. From these graphs, Case
A tends to generate better solutions than other methods,
and our approach is supported not only in the fastness in
finding solutions but also in the quality of the solution.

6. Conclusion

In this study, we have discussed the adaptive cooper-
ation behavior between mobile robots using communica-
tion as intention transmission. We have proposed to treat
transmitting one’s intention as an action and also receiv-
ing the other’s intention as a perception. By introducing
communication to control architecture, robots can control
the other robot which implies to make an action over con-
straint of its body (body-expansion behavior). We have
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already discussed cooperative behavior acquisition which
treats communication as above, but there was a problem
of how to adjust different type of actions: self generated
action and a requested one by communication.

In this paper, we proposed a method to adjust differ-
ent type of actions which include communication as in-
tention transmission. By using this method, we allowed
to treat communication as intention transmission action
in a multi-robot system and examined its performance by
computer simulations. The results show that our approach
can find solution in difficult situations where cooperation
is hardly achieved without communication. Also, our ap-
proach showed significance in the quality of the solution
achieved by the system, rather than the ordinal way of
communication or without using communication.

In our future work, we will try our approach in more
complex environments or other tasks.
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