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Abstract Larval crickets develop a big body and high aggressiveness under iso-
lated conditions, but develop a small body and low aggression under crowded con-
ditions. Furthermore, their ensemblc variance increases. It is known that the heav-
ier cricket tends to win, Therefore, the two growth processes affcct competition.
We constructed a mathematical model for intraspecific competition based on the
Bonabeau mode), showing body weight effects on the winning rate. Results show
that the population mean of body weight decreases under the condition of specific
memory enhancement that places more emphasis on losing than winning. Further-
more, hierarchical effects in foraging efficiency increase the ensemble variance.

1 Introduction

It is essentially necessary for multirobot system 1o maintain community structure
s0 as to perform the cooperative function. Recently some studies intend to trans-
fer multirobot through bottlenecks with reculibrating the bilateral relations between
community structure , and it is difficult to reconstruct the prior community structure
after transit through the bottlenecks{1](2).

Reconstructing the prior community structure is important in many circum-
stances, for example, guard patrol and waitstaff : robots always deploy themselves
close to security area or table whereas they go and retum between namow hallway,
boltlenecks, frequently.
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Now we focus attention to animals’ starategy of territory. Most of animals guard
and memorize own territory so once they are away from home. they'll be back
again|3]. We specifically examine the competition of cricket G. bimaculatus.

G. bimaculatus also have territory behavior : they guard tervitory for foraging
behavior and courtship behavior. It has never examined that cricket will be back o
same place again or not when crickel is away from home. However, they remember
the dominance between crickets in few hours and can reconstruct dominance hier-
archy afier an absence of few hours[4]. So territory behavior of cricket is thought as
a premitive form of the way that multirobot reconstructs task distribution not spatial
distribution.

It is known that agonistic behavior, such as aggressive behavior, constructs
temritory(3)i5). Cricket causes aggressive behavior to constauct tersitory too, so we
focus in the way how crickets fight lo the finish.

Regarding the growth process of cricket G. bimacularus, the adult insects® body
size, activity, and aggression are strongly associated with aliertion of their growth
environnient [81(91] {0]. Moreover, they display distinctive and destructive intraspe-
cific interaction and fighting behavior. Recent reports describe that crickets develop
a large body and high aggressiveness under isolated conditions[8)[11]. Conversely,
they develop a small body and low aggressiveness under crowded conditions. There-
fore, intraspecific competition seems to be an embedded ability that maintains vari-
ance among them.

In this paper, we present a mathematical model of intraspecific competition based
on Bonabeau model] 131, and clarify how competition affects individual body weight
growlh, ensemble variance. and the population mean of body weight. In order to
understand the way territory is constructed. we would like to know about if crickets
treat win or lose in the same manner or not. In this regard, we deduce which is
the long-continued memory about win or lose. At last, we conclude that crickets’
experience of loses is long-continued state.

2 Modeling of Body Size Development

A logistic function describes evolution of animal body weight growth of some
types[6]. Two studies have examined body weight increases in relation to effects
of population density in the cricket G. bimacularus[8][9] and an evolutionary logis-
tic equation fitting them(see fig. 1.1).

For this study, we use a logistic growth function writien in the differential form
as shown below:
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Post hatch date [day]

Fia. I Discrete body weight increasc points arc measurcd|8).

where M = const. [g] > 0 is the mature weight, ini(r) [g]> O is the current weight,
ny = const. [s7'] > 0 is the egg growth rate immediately afier production, r,()
[s'1> 0 is the growth rate, T[°C] is the temperature, P, [g/s] is the foraging ef-
ficiency, and a and B respectively signify a weighting function on the growth rate
and mature weight (sce Fig. 1.2). Experience shows that & and f§ are important
factors for development[12).
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Fig. 2 Each curve shows growth hysteresis under five types of percentage of the profein rute in
(o). There are two other temperature data: 23 {"C| and 31 {"C). All data ase froan an catlier
study(9].

Equation (1.2) includes M; however, an animal can not know its own mature
weight at an interim period during growth. We redefine the weight growth equation
wilhout M as the following.

dr _ _ o dm
dt— MB dt
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Regarding eq. (1.3). we must devole attention to the fact that the factor § was re-
moved. The reason is the mode of formula development: we take the condition “a
and B as time-invariant if T and £ are constant.” Consequently, df /dr = 0. Such a
condition is necessary for a logistic growth curve and construed as solitary growth or
at a least low-crowd-density growth condition, effects of papulation density can be

gligible. In ¢ itis comp d as eq. (1.4) when effects of the population
density can not be negligible.

dr, _d{MB) /d:)
T (rl ~ ) (ar, —Mﬂ @
In addition, d (MB) /d1 is expanded as follows
dMB _ IMB ar + oMB dr,
dt ~ IT dt 9P dt
_ aMB ar,
=38 @ (5)

The temperature is constant for the experiments{8][9).
According to eq. (1.5), the stabilization points of r; are r, = rp and r, = ‘“—:’%’éﬂ
The stable convergence point of m, is

wf® = Mp (1—%’%), 6

Consequently, when we calculate the body weights under effects of population den-
sity, we must know the data of body weight and growth rate under low-density M
and roa, and the time varialion of the foraging efficiency dP,/dr.

3 Modeling of Intraspecific Competition

As computers became powerful and sophisticated, numerous studies of many-body
systems using computer simulation increased rapidly during the 1990s. Bonabeuu
studied how the hierarchy emerges in the counse of agonistic behavior in an in-
traspecific ¢ ity using I simulation[13]. A few studies derived from
his mode) were later performed[14](15]. Lacasa studied the most primitive pant of
Bonabeau model using a discrete mean-field approximation approach{14].In this
section, we construct a mode! of time variation of the foraging cfliciency dF,/dt
using the parameter of hierarchy from the modified competition model.
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3.1 Modified Bonabeau model

The most primitive equation of the Bonabeau model is described as follows| 14].
|
Py(n) =
A Fr T T
hi(r4 1) = (1 - p)(1 - p) k(1)
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p = N/S, N: Number of animals, S: Field size [cm?]

In those equations, P; is the probability that attacker i will defeat individual
Jj« time dependent variable #,(¢) is the hierarchy (Lacasa calls it status), 1 > 0 is
an adjustable strength of force parameter. p is the population density, (1 — ) is a
relaxation factor of status, which is interpreted s the fading memory of individuals.
In this discussion, we treat k; as the parameter reflecting a dominance hierarchy in
the way that Bonabeau treated it in his study(13]. Equation (1.8) reflects that, after
cach combat, the winner’s h; increases by 1 and the loser’s &, decreases by F.

In their models, hierarchy emergently becomes differentiated between individu-
als at the point of critical density p, with phase transition (see Fig. 1.3).
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Fig.3 Hi ganizod by phase ion. (N=4,F=1)
That is to say, &; yields instability under p > p,. Therefi i fluctuations in

the hicrarchy trigger a phase transition. Minute fluctuations result from, for example,
individual differences of agonistic behavior generated over time or innate individual
differences of the body structure. Large individuals are known to tend to defeat small
ones. We add this body size effect with hierarchical effect(see eq.(1.8) and fig.(1.8))

1
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where 0 < & < 1 is a fluctuation factor.
In the equations above, my is the initial weight after egg hatching. Furthermore,

my is affected by the mother’s condition, so adoption of individual differences is
completely natural.

3.2 foraging efficiency affected by hierarchy

Definition of sociul hierarchy includes that the domi hierarchy is superior to that
of the subordinate in foraging efficiency(7]. We define this tendency to the factor of
foraging efficiency £, ineq. (1.11):
df _ oh dh, 31 an
dr  ohy 8t dr’
where 81 is the interval of time required for agonistic behavior; also,
81/d1 s a frequency of fighting in a day.

In eq. (1.11), we construct 9F,/dh; as Fig. 1.4, where dh; /81 is an outcome of eq.
(1.8) under the condition “&1 = 1™,

o0 O
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efficiency Pi(t)

foraging
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Fig. 4 How the foraging cficiency is affecied by hicrarchy, with the assumption that minh,),
requircs double the time to achicve foraging cqual to solitary oncs.

3.3 Parameter determination

In this section, we determine paramieter ro@x. M. p,,(m,,m;) and 81 /ds from ex-
periments.
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4.1 Computer simulation

We determine other undefined parameters as 1) = 1,F = 2N = 4, and$ = 16, Sim-
ulation 1 shows a variance increase of the body weight on the last molt day. Simu-
lation 2 demonstrates decreased body weight in the final weight,

4.1.1 Simulation 1: Comparison of ensemble variance

This simulation is designed to compare the ble variance of the final weight

under solitary growth and crowded growth. As discussed previously, we set N = 4,
The ensemble variance of solitary growth has roots in the fluctuation factor on .

Fig. 10 Body weight of solitary individuals, Fig, 11 ScIf organization of hody weight, which
which has root (rom initial fluctuntion of body has a ot (rom  hicrarchical foraging ¢fM-
weight. cicney (N=4,F=2)
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4.1.2 Simulatien 2: Comparison of Population Means
This simulation compares the population means of the final weight under solitary

growth and crowded growth. Bonabeau shows that the population mean of hierarchy
becomes zero under (F == 1). We show (F -. 0.5) and (F = 2) specifically. The mean

° o

Weight(g)
255en

oo o

” " 2
Protein[%) ™7 Mleperature[C)

Fig. 12 Subtract the mecan weight of group Fig. 13 Subiract the mcan weight of grosp
growth individuals fromn the mean weight of soli- growth individuals from the mean weight of soli-
tayoncsunder 0 < F < | tary oncs under F > |

weights under crowded growth is greater than under solitary growth in (F = 0.5),
this is opposite to (F = 2).

4.2 Analytic approach: A qualitative feature from eq. (1.6)

Herein, Mf is the body weight of solitary growth of individuals, 50 §, = “ 4 '"
are correction terms of the density effect(eq. (1.6)). In addition, (mnx(ﬁ.) mm(&,))
reflects the vnnunce of individuals® body weights affected by the density effect. Fur-
thermore, ¢ b I¥ | & reflects the mean value of the individuals® body weights affected
by the density effect. We discuss these two equations and make a qualitative predic-
tion below.

4.2.1 Approach I: Magnitude carrelation of max(5,) and min(3§,)

{max(en,)-min(m,)}, ... .q — {max(em)-min(m;)} sotirary SHOWs that the ensemble
variunce of body weights. It is equivalent to {max(§,)-min(5;}}. The difference on
&, arises from factor ":‘1

dMB) _ d(MB)dPdh; dr

@ " ar ana ™" 13)
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so that difference on "f: origi from the facton 'L;';,E and %. Merkel re-
ported that "7"# shows positive und negative valuc{9]. To see qualitative trend on
the ensemble variance, it is sufficient 1o show that any two terms are different (s.t,
‘-f,’;t # % | i £ j). Moreover. it is readily apparent that the bifurcation of h; satisfies
G A GHi# D,

Consequently, the variance of individuals' body weights increases or decreases.

4.2.2 Approach 2: Discriminant positive and negative of (- 5 3V | 8)

The discriminant positive and negative of (-§ X% | §) are equivalent 10 those of
(ﬁ Zﬁ, "3:-').1'he foregoing study demonstrated that (2,” 1 "7? < D) when (F > 1)j14].

Therefare, the mean value of an individual's body weight decreases when losing
a game has a greater effect than that of winning a game (F > 1).

5 Discussion and Conclusion

For the anulyses described in this paper, we constructed a mathematical model of
intraspecific competition based on the Bonabeau model{13] to clarify how com-
pelition affects individual body weight growth, ensemble variance, and population
mean of body weight. We added the effect of body weight on the winning rate 1o the
simplest Bonabean model and the effect of the foraging rate, as influenced by the
dominance hicrarchy. Results demonstrated that fluctuation of initial body weight
causes bifurcation of hierarchies. Using the analytical approach with eq. (1.6), we
showed that hierarchical bifurcation increases the variance of body weight and that
F > | causes a mean value decrease of body weight. Actually, F > 1 means that
losing a game has a greater effect than winning a game, which is not improbable.

This study includes a quantitative comparison because biological data for Gryllus
bimaculatus are lacking. For example, we substitute T and ma from group individu-
als for those values from solitary ones. Actually, ro is probably fit in solitary ones
because competition might be negligible in the neighborhood of 7 == 0. However
T might not. We expect 1o perform further laboratory experiments. Several studies
have examined density effects on body size[ 16].We expect 1o perform more simula-
tions on other animals as well. ’

Initial individual differences (e.g.. physical structure, informational imbatance,
and so on) engender further diversity with time in general terms, as shown by de-
velopmental phenomena such as those occurring through evolutionary progress.

Shiro YANO, Hajime ASAMA
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