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Abstract— Technologies to identify people and determine their
positions are developing rapidly day by day. Many means exist
to estimate a person’s position. Mainly, wireless sensors are
used. Nevertheless wireless sensors have problems in accuracy.
Because of multipath problem, wireless sensors cannot actually
measure one’s position as the level of their specifications. This
causes some fatal problems to estimate an area where person is.
In this paper, we present a way to improve position information
by filtering data which was obtained by a wireless location
awareness system, We also show designed filter which is based
on particle filter is effective by simulations and experiments.

Index Terms— Location awareness, Particle filter, Visibility
graph, Time difference of arrival

I. INTRODUCTION

Location technology are developing daily. They have be-
come capable of measuring one’s position and personal
information more correctly and their cost has become lower
than before. Locatoin technology enable us to supply high-
quality services on demand.

One of the representative example is Global Positioning
System. GPS technology is used in many places and by many
devices. Car, cellular phone, note PC and more. It means
location technology is definitely needed.

Now we consider services using wireless sensors. Wire-
less sensors are now frequently used in location awareness
services because they can be used in a wide area and many
can easily identify a person using information transmitted
by radio waves. As described later in related works, RFID
sensors are one good example.

We presume that these sensors are used at a complicated
partitioned indoor place such as a shopping mall or depart-
ment store. In such places, it is necessary to detect a partition
in which a person is present and the person who he is. If
these things can detect, services and infomation can meet
the demand at a high quality.

Conventional location awareness systems are filtered by
one-dimensional restrictions. Various devices can provide lo-
cation awareness services using wireless systems. Actually, as
I mentioned before, GPS is the most used device. Researchers
have attempted to improve the accuracy of GPS estimates.
White et al. [1] showed that the use of map information
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to correct the estimated position is definite effective to
improve accuracy. Furthermore, Greenfeld [2] suggested the
way to make the White algorithm more adequately fit the
real position. These works are not useful in presumed case,
however. This fact means that conventional filtering cannot be
used in a situation such as that shown in Fig. 1. The estimated
position could not be decided uniquely if we applied a one-
dimensional restricted filter, as shown in the right side of the
figure.

Recently RFID, Wireless-LAN and Bluetooth systems
have often been used. These systems have the merit of being
able to identify personal information, whereas GPS cannot.
It can be said that these systems better supply service on
demand than GPS does. Feldmann et al. [3] described that the
strength of radio waves used with Bluetooth devices enables
us to estimate positions of the devices. Rekimoto et al. [4]
reported a way to estimate a position by Wireless-LAN access
point signal strength. Many studies using RFID have been
published because RFID costs have decreased rapidly. In fact,
Hahnel et al. [5] and Ni et al. [6] established the basis of
RFID position estimation.

In addition, services by position estimation are sometimes
investigated for their value. Especially noteworthy is that
Bohnenberger et al. [7] showed that people in a shopping
mall got more satisfaction when they were given information
of position and guided to a destination than without.
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Fig. 1. Apply one-dimensional restricted filter to two-dimensional area
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Fig. 2. Figure of simulation. (a) is a normal distribution noise-simulated route, (b) is a estimated route by extended Kalman filter and (c) is a estimated

route by particle filter. A real route is showed by a broken line in (a). (b) and (c).

II. FILTER DESIGN

When we use wireless sensors, we should use appropriate
filtering and cut their noise. In contrast to wired sensors,
wireless sensors give us data that are too noisy because
wireless sensors have a multipath problem. Reflected or
diffracted radio waves interfere with original waves. Thereby,
their accuracy is degraded.

A. Extended Kalman filter and particle filter

First, we specifically examined filters of two kinds: an
extended Kalman filter [8] and a particle filter [9]. These
filters are frequently used to estimate position. Of course,
numerous studies have been undertaken to improve accuracy
using these filters.

To confirm these filters’ performance, we simulated
whether these filters improve accuracy of the estimated
position. We presumed that humans are walking in a large
room and that a wireless sensor periodically measures one’s
position. Noise was generated and added to the real position
to simulate a multipath situation. We also presumed that
noise follows a normal distribution which average is O[m]
and standerd deviation is I[m). We processed these data
using each filter and compared the calculation time, average
error, and standard deviation. In article filter, the number
of perticles set for the particle filter is 100. The result is
presented in Fig. 2 and Table 1. Both filters can reduce the
average error and standard deviation.

However, fatal problems exist in this result. They can be
illustrated best using extreme cases. In Fig. 2, if a space was
partitioned by wall between (x,y) = (8.1,0) to (8.1,15),
then the partition might be detected wrongly many times
around the wall, even after filtering. Therefore, other means
must be considered to improve the estimated position in a
presumed situation.

2968

TABLE 1

RESULT OF SIMLATION

calculation average error | standerd

time per | [m]) deviation
datum [s] |m)
(Without filter) N/A 1.18 0.63
Extended Kalman filter | 0.005 091 0.51
Particle filter 0.15 0.83 045

B. Adding map information

As described in a related work, filtering by map infor-
mation is also useful for position estimation. In presumed
situation, however, it is not enough only to use map in-
formation for filtering. For that reason, we consider adding
map information to the particle filter. Two main reasons
can explain why we use the particle filter. The two filters
differ widely in that the particle filter is non-parametric and
the extended Kalman filter is parametric. Consequently, the
particle filter is more easily added to map information for
algorithms than an extended Kalman filter is. Furthermore, it
is presumed that multi-path noise does not always follow a
normal distribution. From that perspective, parametric filters
also present advantages. Therefore, we decided to use a
particle filter.

1) Farticle filter algorithins: Before explaining how to
add map information to a particle filter, we present a brief
description of particle filters. Commonly, particle filters ex-
ecute a four-step process in relation to one observed datum:
resampling, forecasting, assigning importance, and position
estimation.

In the resampling step, particles are choosen according
their importance, as decided in the ’assigning importance’
step. Only the first time, particles are uniformly arranged
in an area. By this step, particle positions Q(!) ~ QM) are
determined uniquely as (1), where M is a number of particles.
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The forecast step moves particles according to the state
function. Particle positions at k-th step moved as (3) if state
function was described as (2).
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For examination in this paper, particles move randomly in-
side a circle. People generaly move arbitrarily within a room,
but their walking speed are effectively limited. Therefore,
we decided to change the circle’s radius in propotion to the
measured interval.

Assigning importance step is to determine each particle’s
plausibility. Plausibility is commonly determined by the
distance from particle to the observed position O (x5, y2)
as (4).

W= Q). Q% = f(Q2,
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Finally, the position estimate step determines the decide

estimated position Ey(x},y5) uniquely considering all par-

ticles. Here we take the average of all particles as (5).
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These four steps organize the particle filter.

2) Adding visibility graph algorithms: We next specifi-
cally examine assigning importance step. In particle filter,
the plausibility is generally determined by Euclidean dis-
tance. Euclidean distance is not always correct to determine
plausibility however. For example, obstacle between previous
step position and present step position exists, two possibility
can think about present step estimation. One is that the
present step position and previous step position is same
side of the obstacle in essence, but accidentally present step
position was estimated the other side of the obstacle cause of
multipath problem. Another is that a person walked around
the obstacle and that the present step position is correct.
The latter possibility can be expected to be lower for larger
obstacles because a person must move around the obstacle
to cross. Therefore, we suggest expressing the importance
by the shortest distance considered as obstacles between two
steps.
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In mobile robotics, many solutions are suggested to find
the shortest path in a place with many obstacles. From these
solutions, we use a visibility graph method [10] . This method
is effective in two-dimensional space. Below are proceedings
of visibility graph method.

(a) Set nodes of the graph on vertices of obstacles and the
start node and the goal node. In Fig. 3, A ~ F are
nodes.

(b) Link nodes which are visible to each other. Whether
A{az,a,) and B(bs,b,) are visible can be decided
by endpoints of segments structured by the surface of
obstacles such as C(c.. c,) and E(e;.e,). When both
(6) and (7) are satisfied, segment AB and segment CE
intersect. Consequently, A and B are not visible to each
other.

(ay - by)(c.r - bm)(cy - ay)'

- a;) - (a:r

(ay = by} er —as) —(az = bz)(ey —ay) <0 (6)

(cy —ey)(a. —

(cy = €y)(br = cz) — (ex

(c) On a graph, calculate the shortest path between the first
position and the goal position. In Fig. 3, compare route
A—C—D—-Bandrouwte A -~ E —~F - B.To
work out the shortest path on graph, Dijkstra method
are generally used.

(::’:) - (Ca: - em)(ay - Cy)‘

—e)by—¢,) <0 (D

These proceedings are added to particle filter algorythm.
Fig. 4 is the flowchart of designed filter algorythm.
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Fig. 3. An example applying the visibility graph algorytms
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III. EXPERIMENTS

To evaluate performance of the designed filter, experiments
are conducted.

A. Experimental settings

We used a wireless-LAN location awareness system (Air
Location II; Hitachi wirelessinfo venture company.). Aspect
was shown in Fig. 5. Below are some features. This sys-
tem measures the position using time difference of arrival
(TDOA). This system can identify devices if a MAC address
is registered in advance and find plural devices at once. It
means that we can obtain location data and identify a person’s
data at the same time.

Experiments were performed in a large room: a hall at
The University of Tokyo. The hall has partitions and can be
divided. Therefore, we can simulate the presumed situation.
Floor space is 21 m by 18 m. Then we set the measurement
area 20 m by 16 m rectangle and placed Air Location II
devices on each corner. We divided the hall into block A
and block B. Blocks A and B were partly partitioned by a
metallic wall.

B. A mode of experiment

We specifically examined places around the partition be-
cause these place are apt to have mistakes which block a
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Fig. 5. Aspect of Air location II

person. Therefore, we walked the route shown in Fig. 6 four
times. A device to send radio waves used an active tag (Air
Location II). The tag also has a MAC address and sends a
ping regularly. The system can change measurement cycles
to some degree. We decided on a measurement cycle of four
times per second, we obtain data every 0.25 secounds.

C. Simulation to determine the number of particles

Before doing experiments, the number of particles must be
determined. Therefore, we simulated filtering as a change the
number of particles. As in the simulation performed, noise
follows a normal distribution which average is O[m] and
standerd deviation is 1[m]. Results are presented in Table
II. The accuracy rate is the rate of whether the estimated
position and real position are in the same block.
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Fig. 6. Sketch of a hall and a walking route



TABLE 1l
DETERMINE THE NUMBER OF PARTICLES

number of particles | average error [m] improvement accuracy rate [%] calculation time per
percentage [%] data[sec]
(Without filter) 2.58 0 69.85 N/A
10 2.87 -10.89 73.67 0.0064
50 1.14 55.94 88.82 0.0264
100 1.10 57.39 88.19 0.0531
500 1.50 42.10 83.44 0.2531
1000 1.58 39.05 81.24 0.5113
The results show that there are not such great differ-
TABLE 11l

AVERAGE ERROR AND IMPROVEMENT PERCENTAGE IN THE EXPERIMENT

average error with- | average error with | improvement
out filter {m]) filter [m) percentage |%]
2,603 2.030 22

TABLE IV

ACCURACY RATE IN EXPERIMENT

accuracy rate without filter
%]
7591

accuracy rate with filter (%]

83.07

The improvement percentage I, was defined as (8), where
D is the average error without a filter and Dy is the average
error after filtering.

I,=(1-D;/D)- 100 (8)

particles
7/ .
estimated position .
(average of particles) . B measured position

| real position

Fig. 7. A figure in which filterling was done
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ences in the improvement percentage and the accuracy rate
between50, 100, 500 and 1000, which might imply that
saturation occurs. On the other hand, the calculation time
increases in direct proportion to the number of particles.
Above and beyond 500, the calculation time becomes greater
than the measurement interval 0.25(s). It means filtering can
not be done untill next position data is gotton, and filter
can not be used in a real time situation. 50 is not enough
to implove average error. Therefore, we decided to set the
number of particles to 100.

D. Experimental results

Figure 6 presents the situation in which filtering was done.
Particles are seen to estimate the block correctly, even mea-
sured position is the other side of the wall. Table III shows
the average error and improvement percentage in experiment.
Table IV shows the accuracy rate in the experiment.

Now we disscus our experiment. We are concerned that the
average error and improvement percentage are less accurate
than the results of simulation. Some reasons are inferred.
First, although we presumed that the noise follows a normal
distribution, the possibility exists that hypothesis is wrong.
Second, the metallic partition biased by radio waves to the
far side from the partition, as presented in Fig. 8.
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Metallic partition makes reflection and diffraction of radio wave

Fig. 8.



TABLE Vv

Block B {9] M. Sanjeev Arulampalam. Simon Maskell. Neil Gordon, Tim Clapp, “A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking,” IEEE Transactions on Signal Processing, 50, 2002, pp. 174-

[4] Jun Rekimoto, Takashi Miyaki. and Takaaki Ishizawa, “LifeTag: WiFi-
THE ACCURACY RATE DIVIDED INTO DISTANCE FROM EP based Continuous Location Logging for Life Pattern Analysis.” 3rd
International Symposium on Location-and Context-Awareness, 2007,
distance from | accuracy rate without | accuracy rate with fil- pp.35-49.
EP(m] filter [%) ter (%) 15] Dirk Hihnel, Wolfram Burgard, Dieter Fox. Ken Fishkin, and Matthai
042 - 1.42 72.05 71.65 Philipose, “Mapping and Localization with RFID Technology.” Proceed-
1.42 - 2.42 74.02 74.80 ings of the IEEE International Conference on Robotics and Automation,
Y 0 20 04, pp.1015-1020. ) )
242 - 342 76.36 81. 6] Lionel Ni. Yunhao Liu, Yiu Cho Lau, and Abhishek P. Patil, "LAND-
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442 - 542 76.95 98.44 works. 10, 6, 2004, pp.701-710.
5.42 - 642 79.13 100.0 [7] Thorsten Bohnenbe!ger, Anthony Jan:neson. l%ntonio Kriiger, .and An-
dreas Butz, “Location-Aware Shopping Assistance: Evaluation of a
. Decision-Theoretic Approach” Human Computer Interaction with Mo-
! bile Devices. LNCS2411, 2002, pp.155-169.
! |8} Greg Welch, Gary Bishop. “An Introduction to the Kalman Filter,”
! Technical Report TR 95-041, University of North Carolina, Department
Block ! of Computer Science, 1995.
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Fig. 9. Figure and graph of accuracy rate

Therefore, we considered the accuracy rate. Strictly speaking,
80% is insufficient for practical use. However, a good result
is in prospect when designed filter is used in daily life
such as shopping mall or department store. Table V and
Fig. 9 presents the accuracy rate, which divides the distance
from the wall endpoint EP (x,y) = (6.35,9.58). This table
shows that the filter has strong effects as separate from EP.
Consequently, the filter can be said to be sufficiently effective,
except at the boundary.

IV. CONCLUSION

The results of this study suggest effective way to improve
the estimated position by wireless sensors using the designed
filter. Furthermore, we demonstrated that the designed filter
is effective. Although several problems such as noise models
and correctness around the boundary remain, the designed
filter can be of practical benefit.
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