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Design of differential Near-Infrared Spectroscopy based
Brain Machine Interface
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Abstract—Near-Infrared Spectroscopy (NIRS) is a non-
invasive technology for measuring brain activity. Recently, the
number of research papers on Brain Machine Interface (BMI)
based on NIRS technology is increasing. NIRS is a safe and
convenient technique but its measurement results are unstable.
To improve reliability of NIRS-based BM1, methods to extract
stable data from NIRS signals are necessary. This paper
describes a reliable NIRS-based BMI system we have
developed. The feasibility of the method was demonstrated
through generating motion of a humanaid robot.

1. INTRODUCTION

RAIN Machine Interfaces (BMIs) allow users to

interact with devices through thought processes alone.
BMlis or Brain computer Interfaces (BCls) are mainly
studied for patients who are suffering from severe motor
impairments to interact or communicate with the external
world. Recently, BMI applications to entertainment use
such as controlling a humanoid robot are also proposed [1].
Expansion in application requires BMIs to become more
simple and convenient.

BMIs detect changes in brain activity during specific
mental tasks and output corresponding control commands to
an external device. The development of BMI studies have
been derived from improvement on technologies for
recording brain activity. Since the BMI studies started, big
achievements such as controlling robotic arm [2-5] were
made by studies relied on invasive techniques for recording
brain signals. Progress in non-invasive brain-imaging
modality further pursued the BMI studies. Employing
brain-imaging modalities, a variety of brain signals can be
used by BMIs non-invasively. These include signals
obtained by electroencephalographic (EEG), functional
magnetic resonance imaging (fMRI), magnetoencephalo-
graphy (MEG), positron emission tomography (PET), and
near-infrared spectroscopy (NIRS) [6].

Although fMRI, MEG, and PET may provide good
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spatial and temporal resolution, they are only available
under limited conditions. These modalities require bulky
expensive equipment and therefore BMIs based on these
techniques are impractical for widespread clinical and
entertainment use. At present, EEG is the most practical
modality for BMI. Only EEG has relatively short time
constants, can function in most environments, and requires
simple and inexpensive equipment [7]. There are numbers
of recent demonstrations of EEG-based BMI for controlling
robots [1, 8], wheelchairs [9, 10], and cursors on a computer
screen for communication [11-13]. However, although
existing studies showed the feasibility of EEG-based BMI,
they have limitation in operation performance; only few
control commands are available. One of the considerable
approaches to increase the number of available control
command is to use EEG in combination with other
brain-imaging modalities.

NIRS is one of the most appropriate candidates for this
approach. NIRS is a relatively novel optical brain-imaging
technique and its application to BMI is actively proposed.
Users of these BMIs perform tasks such as motor tasks [14,
15] and motor imagery [16, 17] in order to control brain
activation. BMI which detects the user’s subjective
preference and utilize it as a control signal was also reported
[18]. NIRS enables non-invasive, low-cost, and portable
monitoring of brain -activity. It measures changes in the
brain’s hemodynamic response, while EEG measures
electrical activity of neurons. Since measurement principles
of these two modalities are different, NIRS-based BMI can
utilize knowledge which EEG-based BMI have difficulties
to utilize. EEG can only provide spatial information
reconstructed by probabilistic models [19]. NIRS can
provide spatial information more directly, and thus
NIRS-based BMI can effectively utilize knowledge of
cerebral localization. Existing NIRS studies showed results
consistent with well-known findings about cerebral
localization [20].

In order to prove the feasibility of NIRS-based BMI,
inherent disadvantages of NIRS must be overcome. One
major disadvantage of NIRS is instability of measurement.
Its measurement values are relatively unstable compared to
other functional imaging methods such as fMRI and MEG.
In addition, NIRS-based BMIs need to overcome a
disadvantage which is common to previous BMlIs of all
kinds. Most of existing BMlIs require lengthy training
periods, which can lead to frustration and anxiety on the
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part of the users [11-13, 17, 21-22].

In this paper, we have conducted experiments in order to
improve the reliability of NIRS-based BMI by employing a
method for detecting stable NIRS signals. The experimental
results suggest that the differential signal of oxygenated
hemoglobin levels in cerebral blood flow (CBF) recorded
from two specific regions during mental arithmetic task is
stable. Such NIRS signals can be detected without
conducting any training to a subject. We have applied
NIRS-based BMI system to humanoid robot control.

II. MATERIALS AND METHODS
- A. Subjects
Seven healthy subjects (Four males and three females)
participated in the experiment. All subjects were
right-handed and had no neurological abnormalities. The
subjects had never participated in prior BMI experiments

and they didn’t have any previous knowledge about this
experiment.

B. NIRS

We used an OMM-3000 NIRS system (Shimadzu
Corporation). It consists of laser transmitter probes and
laser receiver probes. Each transmitter probe emissions
three different near-infrared laser beams. The wavelengths
of three beams are 780+5, 8055, and 830+5 nm. The lasers
penetrate outer tissues of human head, pass through brain
cortex, and are detected by receiver probes. NIRS system
measures hemodynamic changes in the cortex which the
lasers pass through.

Twelve transmitter probes and twelve receiver probes
were used in this experiment. Transmitter probes and

number :Channel No

® :Transmitter Probe

O  :Receiver Probe
Fig. 1.  Allocation of NIRS transmitter probes, receiver probes and
recording channels on the surface of a subject’s head. Suffixed
alphabets represent positions in International 10-20 Electrode
Placement System

receiver probes were alternately placed in two rows and
twelve columns. The space between a transmitter probe and
a receiver probe was approximately 3 cm. The lower row
was located on the line which connects T4, Fp2, Fpl and T5
of the International 10-20 Electrode Placement System. Fig.
1 shows the allocation of the probes and recording channels.
Recording channels are defined as regions between each
pairs of transmitter probe and receiver probe. Subject’s
hemodynamics were monitored by thirty four recording
channels.

NIRS can assess two types of hemodynamic change
associated with brain activity [23]. Neural activity is fueled
by glucose metabolism. Increases in neural activity result in
increased glucose and oxygen consumption, which leads to
increase in deoxygenated hemoglobin (deoxy-Hb) concen-
tration level. A reduction in local glucose and oxygen
stimulates the brain to increase local CBF. Over a period of
several seconds, the increased CBF carries oxygen to the
area. The increased oxygen transported to the area typically
exceeds the rate of oxygen consumption. An overabundance
of cerebral blood oxygenation results in increase in
oxygenated hemoglobin (oxy-Hb) and total hemoglobin
(total-Hb) [23]. The initial increase in deoxy-Hb level, a
phenomenon known as initial dip, occurs much faster than
the changes in oxy-Hb and total-Hb levels. However, the
signal of initial dip is weak and difficult to detect in
real-time [24]. In this study, we have focused on increase in
oxy-Hb which is pronounced and can be constantly
monitored in real-time.

NIRS signals are sensitive to artifacts. The effects of
artifacts can be classified into two general types. The first
type is attributed to contact failure of receiver probes and
scalp. Movement of subject can cause the receiver probes to
lose contact with the scalp, exposing them to light which
does not come out from the brain tissue. This type of artifact
is relatively easy to filter out because it causes sudden, large,
and recognizable spikes in the NIRS signals. The other type
of artifact causes relatively slow and subtle changes in CBF.
Changes in CBF can be caused by various elements other
than voluntary mental tasks: subtle and inevitable head
movements, involuntary physiological and psychological
activities. These changes accumulate as time progresses.
The accumulated changes in oxy-Hb level may become
much larger than changes evoked by mental tasks and can
be confused with the hemodynamic response due to the
mental tasks.

Oxy-Hb level detected by NIRS is not an absolute value
but a relative value to a baseline. In experimental situations,
the baseline is defined as the average of oxy-Hb level
during the latest rest period. In contrast, a baseline for BMI
application can’t be defined in the same way since the
timings of rest period are not predetermined. In actual use
of BMI, the baseline is defined as oxy-Hb level at the time a
user starts using it. Changes in CBF due to the artifacts
accumulate as time progresses, which may result in
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Fig. 3. The averages of time series variations in all subjects’
oxyHb measured by ch-5 (F4) and ch-32 (F7). :

confusing NIRS signals after a long term use.

For BMI application, we employed differential signal of
oxy-Hb levels recorded from two specific regions of
subject’s brain. By subtracting one signal from the other,
hemodynamic response common to widespread areas of
brain may be balanced out and only changes specific to
local remain. Local changes in CBF evoked by a mental
task can be detected without being affected by widespread
changes caused by artifacts even after a long term use. In
this experiment, we examined if mental arithmetic task
evokes such local changes to CBF.

C. Methods

In our preliminary experiments, easy arithmetic tasks
such as multiplication with one-digit numbers and addition

* oxyHb within cerebral blood flow of brain cortex during mental arithmetic tisks.

TABLEI
AVERAGE VALUE AND STANDARD DEVIATION
OF OXYGENATED HEMOGLOBIN.

time integral of oxyHb level

location of

channel average + standard deviation
channel (mM-mm-sec)
5 F4 0.07£0.09
6 Fz 0.16+£0.18
7 F3 0.22+0.29
19 F7 0.41£0.15
25 T4 0.35+0.13
32 F7-T3 0.36£0.23

without carry didn’t evoke detectable changes in subject’s
oxy-Hb level. In this experiment, we employed arithmetic
tasks that are hard enough to excite brain activity.

Each 30 seconds of a task period for solving
computational problem was alternated by 60 seconds of a
rest period for 4 repetitions. A couple of additions of three
arrays of three-digit numbers such as “121+258+378” were
shown on a display in front of a subject during the task
period. The subject kept on calculation until the task period
ended. A cross symbol was shown on the center of the
display during the rest period and the subject kept on
watching it without thinking of anything. The Subject was
not allowed to move over the entire experimental period.
Changes in CBF were recorded by NIRS during the whole
experiment.

[Il. RESULTS

A. Optical response

Fig. 2 shows the averages of all subjects’ oxy-Hb
concentration level in time series. Subjects started mental
arithmetic task at 0 second and stopped at 30 second. The
values are relative values to baselines. The baselines are
defined as averages of recorded oxy-Hb levels from -30 to
-15 second. In Fig. 2, the number in each column shows
corresponding recording channel number. The columns are
put in the position corresponds to the location of the
recording channel on the surface of the subjects’ head,
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Fig. 4. A typical subject’s oxyHb level ranges during each rest and
task trial at F7 (a) and F7-F4 (b). The data shown in the figure is 5 sec
moving average.

which is shown in Fig. 1. Bilateral frontal cortices and
bilateral temporal lobes show significant activations during
mental arithmetic task while prefrontal cortex didn’t show
remarkable change. This result is confirmed by a previous
" research which measured hemodynamic changes by fMRI
during arithmetic tasks [25]. In the research, contribution of

working memory to solving arithmetic problems is analyzed.

With NIRS, the activity of working memory can be detected
by the channel located near F7 of the International 10-20
Electrode Placement System (Fig. 1). Table I shows average
and standard deviation of time integral of oxy-Hb levels

from 0 to 30 second with the recording channel number and -

its position in the 10-20 system. It can be said that oxy-Hb
levels recorded by channels on temporal region (ch-19, 25,
32) changed more significantly than those recorded by
channels on forehead (ch-5, 6, 7). In Fig. 3, discriminative
channels are selected from Fig. 2. The oxy-Hb
concentration level measured by ch-32 located between F7
and T3 increased remarkably during the task compared to
the level measured by ch-5 located near F4.

B. Stable NIRS signal for BMI
5 sec moving average of oxy-Hb level recoded by

channel on X is represented as A, in this article. This is

done to take into account sudden artifacts caused by sensor
contact failure. Fig. 4 (a) shows a typical subject’s range of
5 sec moving average of oxy-Hb level recorded by the

. control signal
Display showing
arithmetic task

o

..v'/" “‘ )
i

o

-

mental task

NIRS

Fig. 5. The setup of NIRS-based BMI consisting of NIRS device,
a computer for analyzing NIRS signals, and a display for showing
arithmetic tasks.

TABLEII
MINIMUM THRESHOLD AND RESPONDING TIME OF NIRS-BASED BMI
TO EACH SUBJECT'S INTENTIONS.

Average of
Subject  Minimum threshold minimum
ID (mM +mm) responding time
(sec)
1 0.00671 9.1
2 0.00606 7.9
3 0.00963 6.5
4 0.00791 4.0
5 0.00697 17.1
6 0.0271 7.2
7 0.00652 11.9

channel on F7 during each rest and task trial (hF., ).As

shown in the graph, ranges of A, during both rest and

task period are unstable. This is assumed to be caused by
artifacts which gradually change the amount of CBF and its
oxy-Hb level.

Fig. 4 (b) shows ranges of the difference between hg,
and h,., during each rest and task trial. In Fig. 4 (b), the
values h,., —h,., during both rest and task periods fall
within a certain range. The maximum difference between
h,, and h,, during task period is constantly larger than

the maximum during rest period. BMI system performs
stable discrimination of the brain activity during rest and
task by the threshold determined by the first several trials,
which is shown in Fig. 4 (b).
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Fig. 6. Humanoid rebot controlled by NIRS-based BMI: (a) BMI
sends control signals to the robot. (b) When inequality (1) is false,
the anms of the robot are down. (¢) When inequality (1) is ture, the
right arm is raised

IV. BMISYSTEM

NIRS-based BMI system consists of a NIRS device
(NIRO-300, Hamamatsu Photonics Corporation), a
computer for analyzing NIRS signals, and a display for
showing arithmetic tasks. BMI system is connected to a
General Robotix HRP-2m humanoid robot (Fig. 5). The
arithmetic tasks on the monitor will be updated in after a
certain period of time. Users solve arithmetic tasks on the
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Fig. 7. The responding time of BMI depends on the level of the
threshold.

timing when they intend to produce a control signal.
Recording channels of NIRS are located on F4 and F7.

BMI sends control signal to the robot constantly while
inequality (1) is true. Invariable T is the threshold.

(M =h)=-T>0 (1)

The minimum threshold is the highest value during the all
rest periods as shown in Fig. 4 (b). The threshold should be
set at level higher than the minimum threshold in order to
prevent unintended transmission of control signal.

The minimum thresholds for all of seven subjects
calibrated from the result of experiment are shown on Table
II. The NIRS-based BMI was customized for each subject.

BMI system transmits control signals to the robot to raise
right arm (Fig. 6(a)). When inequality (1) is false, both of
the arms are down (Fig. 6(b)). When inequality (1) is true,
right arm of the robot is raised (Fig. 6(c)).

V. DISCUSSION

NIRS-based BMI system we have developed can serve as
stable controller of a robot. Since arithmetic task is an
everyday task for most of people, and since our system
detects hemodynamic response to such an everyday task,
users can use NIRS-based BMI system without training,
However, this system has limitation in responding times.
The responding time is elapsed time from the moment a
user intended to send control signal until the difference

between 4., and h,., become larger than threshold (Fig.

7). The minimum threshold and the average of minimum
responding time of all seven subjects are listed on Table II.
The delay of control signal ranges from a few second to
over ten second. Users may sense significant delay from the
moment they intended to control devices.

The delay is due to slowness of hemodynamic changes in
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oxy-Hb concentration level. In order to improve the
response of NIRS-based BMI, we need to employ quicker
hemodynamic response, such as initial dip, as a trigger of a
control signal.

VI. CONCLUSION

In this study, we proposed and developed NIRS-based
BMI system. In order to overcome existing problems on
NIRS that its measured raw data are unstable, we employed
differential signals of oxy-Hb concentration levels during
mental arithmetic task as input to BMI system. Thresholds
were calibrated through the first several trials for each
subject so as not the users to be trained for adapting to the
system. The input is proved to be stable and can be evoked
without trainings. Future work includes diminishing the
responding time of NIRS-based BMI to make it more
user-friendly interface.
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