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Abstract – We firstly consider a kind of dynamical mobile 
task assignment problem, which allows the condition of 
tasks and robots to be time dependent before assigned 
robots accomplish the relational tasks. For such new 
domain, we propose two methods, one is called dynamical 
sequential task allocation and reallocation, and another is 
global optimal task allocation and reallocation, for the 
distributed multi-robot coordination system. The former 
approach implements multi-round negotiation and body 
expansion behavior for mobile tasks selection. To utilize 
body expansion behavior, we set two distance thresholds 
for robot decision making. The latter method is extended 
from combinatorial optimization and market-based task 
allocation. Robots bid tasks and transmit the costs to other 
robots. Then robots select tasks from the combinatorial 
cost table based on the objective function. This paper is a 
comparative study of the mentioned methods above. The 
simulation results show that minimal executed costs and 
maximal accomplished efficiency are obtained by global 
optimal task allocation and reallocation method, while this 
method consumes numerous communication costs and 
computation times. Reversely, dynamical sequential task 
allocation and reallocation is an approximative global 
optimal assignment approach. Otherwise it expends 
acceptable communication costs and computation times. 
 
Keywords – Mobile task allocation and reallocation. Body 
expansion behavior. Multi-round negotiation. Global 
optimization. Distributed multi-robot system. 

 

1. Introduction 
 

 The field of distributed multiple robots coordination 
system (DMRCS) has received increased attention in 
recent decades. There are many potential advantages of 
DMRCS compared with single robot system, such as 
reducing the complexity of a single robot’s structure, and 
decreasing the total cost to accomplish complicated and 
large scale tasks, since DMRCS can be used to complete 
the given tasks more quickly than a single robot, and 
execute tasks concurrently. The inherent complexity of 
certain tasks environment may require using multiple 
robots due to the demanded capability is quite difficulty 
for a single robot to be resolved. Moreover, multiple 
robots are assumed to enhance the system robustness and 
flexibleness by taking advantage of parallelism and 
redundancy. 

However, the number of required communication 

which utilizes both previous centralized and distributed 
task allocation approaches is still excessively high 
requirements, and computational time required to plan an 
optimal solution is too long, that make the DMRCS unable 
to keep up with real-time execution demand. Thus, neither 
communication nor computational time is high 
undesirable for realistic applications, especially for 
dynamical mobile tasks that can move randomly before 
assigned robots execute, and the condition of these tasks 
could vary over time. The solution which tasks have been 
assigned to the given robots may not suit for the next 
solution when the conditions of tasks are changing during 
time. Therefore, the allocated system should reallocate 
robots to tasks so as to find the potential optimal solution. 
For such new dynamical mobile task assignment domain 
[1], we propose two novel methods for the distributed 
multi-robot coordination system, that one is dynamical 
sequential task allocation and reallocation, and another is 
global optimal task allocation and reallocation. The former 
method implements multi-round negotiation and body 
expansion behavior [2] for tasks selection. The latter 
approach is extended from combinatorial optimization [3] 
and market-based task allocation method. This paper is a 
comparative study of the mentioned methods above. 

The remainder of this paper is structured as follows. 
The next section presents a formal definition of dynamical 
mobile task assignment problem, and the disadvantages of 
existing investigated task assignment methods which are 
utilized to resolve the new domain. Section III describes 
notion about body expansion behavior, setting two 
thresholds to make decision, and details the two proposed 
algorithms for DMRCS. Section IV presents the 
implementation and discusses simulation results. Section 
V discusses related works of task allocation. Finally, 
section VI draws conclusions and sketches future work. 
 

2. Task Description 
 

2.1 Formal Definition 
 

In this paper, task assignment problem among multiple, 
fully distributed, initially homogeneous mobile robots is 
studied, i.e., we develop two novel task allocation and 
reallocation methods which can deal with dynamical 
mobile tasks. The formal definition of this problem is that 
assume such kind of environment included two kinds of 
mission, one is initial mission assigns multiple dynamic 
mobile tasks to robots reasonably and efficiently, another 
is final mission. The final mission is that robots should 
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take the selected tasks to its destinations sequentially. 
For the initial mission, due to dynamical mobile tasks 

can move randomly before assigned robots execute, and 
the condition of these tasks could vary over time, we 
should assign and reassign tasks to robots propertly. That 
is, we allow a set of tasks T and robots R to be time 
dependent (i.e., T(t), R(t)) and require the objective 
functions be minimized/maximized (The task allocation 
reallocation method should minimized the objective 
functions which are cost, energy and others. Reversely, it 
should maximize the objective functions which are 
efficiency and so on.) every instant of time or over the 
entire history, then the definition also covers online and 
dynamical domain where tasks and robots may be added or 
removed over time. We propose two methods, which are 
dynamical sequential and global optimal task allocation 
and reallocation, to resolve this kind of new domain. 
While the final mission, when robots move nearby tasks, 
tasks transmit its destinations to robots, then in each robot 
global coordinate system, robots find the coordinate of 
destination, plan the optimal path (e.g., we utilize the 
particle swarm optimization to motion planning which is 
proposed in [4]), finally, take tasks to its destinations. 
 

2.2 Disadvantages of Existing Methods 
 

Previously, few researchers have done the new domain 
about tasks which are dynamical and move randomly. All 
existing methods are suitable for the tasks which positions 
are fixed, while for the mobile tasks, these methods are 
inefficient. And they don't discuss the task reallocation 
during robots are executing tasks, except the robot 
malfunction, communication failure and partial system 
failure. Actually, for mobile tasks in terms of position 
change, we should consider not only assign the tasks to 
robots successfully, but also robots perform tasks 
efficiently for whole coordination system. 

Except for, none of previous approaches explicitly 
address the problem of minimizing communication, time 
of path planning, computational time and computational 
memory. For example, market-based auction methods [5, 
6], ALLIANCE [7-9] and BLE [10] need each robot plan 
the path from location of itself to each task, calculate the 
distances between robots and tasks, when the positions of 
tasks change. Once the situation of tasks and robots vary, 
system should auction these tasks for all robots. After 
bidding tasks, robots which obtained profits are largest for 
the whole system execute these tasks. In other words, the 
efficiency of these methods is very low to deal with the 
dynamical mobile task allocation and reallocation problem, 
it takes a long computational time to motion planning, 
distance calculation and tasks negotiation. Both BLE and 
ALLIANCE methods don't explicitly consider global 
efficiency, while these methods are satisfied with finding 
any feasible solution. A notable exception is the work by 
M. Nanjanath et al. [11], where they propose a method of 
repeated auction for distributed tasks dynamically among 
a group of cooperative robots. Tasks not yet achieved are 
re-submitted for bids every time a task has been completed. 
The repeated auction comes closest to our approach. Main 
differences include our proposed system reallocation tasks 

for robots every time step, and we mainly contrite on the 
dynamical mobile task. Moreover, in this paper we utilize 
body expansion behavior to reduce the communication 
and computational time when the distance between robot 
and task is large than a given threshold. 
 

3. The Proposed Algorithm 
 

3.1 Mathematical Model 
    

In this paper, we consider only homogeneous robots, 
the efficiency which robots to perform the mobile tasks 
depend on time needed by robots to reach the location of 
tasks. This measure depends on the mobile task and robot's 
position which is a function of time. Therefore, the 
efficiency for a robot to perform a task varies with time, as 
a result, robots should select the optimal tasks which the 
time needed by robots to reach are shortest to perform 
every time to improve the efficiency for the whole system. 

The location of M robots and N mobile tasks, as well as 
a cost function D that specifies the cost of moving from 
one location to another are known. The objective is to find 
an allocation of tasks to robots, so that the total travel cost 
is minimized for the whole system. The major criterion for 
the proposed strategy is to optimize the total distance. The 
model formulated to enhance the mobile task allocation 
and reallocation is shown below. Let VR denote the set of 
robot vertices and VT denote the set of mobile task vertices. 
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Where a binary variable r
tx  indicates whether a robot 

RVr ∈  performs a task t  which selected from all tasks TV . 

rD  is the distance which robot RVr ∈  moved, and r
tst ,π  is 

a binary value that represents whether task TVt ∈  executed 
at the time step ),0( +∞∈st . 

The objective function, Eq. (1) minimizes execution 
cost of the whole distributed multi-robot coordination 
system. In this case, the system cost is the total distance 
which robots moved. The first set of constrains, Eq. (3) 
specifies that each robot performs exactly one task. The 
second set of constraints, Eq. (4) specifies that each task is 
assigned to exactly one robot at each time step. 

 
3.2 Body Expansion Behavior 

 
Body expansion behavior [2] means that one robot can 

transmit its own intention and the receiver executes the 
order, thus the robot is capable of controlling the other’s 
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behavior. In addition this demonstrates the expansion of 
the robot’s degree of freedom (D.O.F.). 

Fig. 1.  Distance threshold 
Two distance thresholds for decision making are settled 

to implement body expansion behavior. One is the small 
distance threshold �1, means that robot is about to take the 
assigned task to its destination. Another is the large 
distance threshold �2, means that robot have a certain time 
to execute the assigned task (Fig. 1). If the distance is more 
than �2, robot can request other robots to execute the task, 
if the distance between �2 and �1, robot compares the 
distance and select the shorter distance task to execute, and 
if the distance is less than �1, then robot refuses all 
requests from other robots. 

 
3.3 Dynamical Sequential Task Allocation and 

Reallocation Algorithm 
 

Assume that all robots are homogeneous robots with the 
same speed, function, and structure, and can communicate 
with each other using radio frequency broadcast. One 
robot is allocated only single task one time, executes only 
single task and take the assigned task to its destination. 

The tasks are randomly distributed in the environment, 
and can move anywhere with variable speed before robots 
reach around them. Each task does not know its 
destination where it is unless under the robot helping. And 
all tasks are waiting for being taken in the priority queue 
under the principle of "First In First Executed". Robots 
always execute the relative most priority tasks regardless 
other tasks move around. We propose a novel mobile task 
allocation method, called dynamical sequential task 
allocation and reallocation which can reallocate the mobile 
tasks to robots according to the shortest distance. In the 
environment, },,2,1{ rnrrVri R ⋅⋅⋅∈  denotes the i th robot, 

},,2,1{ tmttVtj T ⋅⋅⋅∈  denotes the j th task, The Dritj  denotes 
the utilizable distance from ri  to tj , and m n. 
Assumption that tasks },,2,1{ tmttVtj T ⋅⋅⋅∈  are distributed 
in the environment randomly, and can move anywhere, all 
tasks need robots take them to their destinations due to 
these tasks don't know the path to their destinations. In the 
initial state, the working statuses of all robots are 
free-robot, and wait for executing tasks. 

Tasks broadcast the request information include task 
IDs and coordinates to all robots every time pulse. In the 
initial time step, there are two times round negotiation and 
selection for each robot. For the first time round, all robots 
receive request information from tasks, then plan paths to 
all tasks, and calculate the distances between all tasks in 
the robot's global map of environment. Robots are priority 

according to the robots index, the priority of robot which 
index is small is larger than the priority of robot which 
index is large. From robot 1r  to robot rn  sequentially 
select tasks to perform according to the given distance 
thresholds, that is if there are distances which between 
robots and tasks are less than the small distance threshold 
�1, the robot selects the task to perform which distance is 
smallest. Otherwise, Robot does not select any task, and 
requests other robots to execute these tasks. Then all 
robots declare the information to other robots. When all 
robots have finished the first time selecting, then the 
remaining un-selection robots choose the rest un-assigned 
tasks again sequentially in the second time round.  

For the second time negotiation, based on the priority of 
that the smaller robot index firstly does the task selection 
process, the later robot index should receives the all task 
selection information from the former robots then can 
carry out the task selection process, the remaining 
un-selection robot sequentially selects the un-assigned 
task which distance is shortest in the un-assigned tasks to 
perform, even though the distance between them is more 
the large distance threshold �2. 

Fig. 2. Dynamical sequential task allocation 
Due to the dynamical mobile tasks that move randomly 

before the assigned robots to reach around and execute 
them, the condition of these tasks could vary over time, the 
distances between robots and the corresponding assigned 
tasks may vary. The DMRCS should reallocate tasks to 
robots every seconds time based on utilizing body 
expansion behavior during the implemental period, in 
order to improve the efficiency of which robots execute 
tasks for whole system. If the distance between robot and 
corresponding assigned task is more than�2, then robot 

DRP 
�1 
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request other robots to execute this task and broadcasts the 
information to all other robots. For the other robots which 
from 1r  to rn  sequentially, if the distance between robot 
and task which assigned in the latest time step is less 
than�2, the working state of robot change to busy-robot 
and refuse any requests from other robot. Otherwise, robot 
selects task which distance is shorter and broadcasts the 
task selection information to other robots. The other robots 
can make a decision on accepting/refusing the request 
according its calculated distance and the received task 
selection information. If all other robots refuse the task, 
the robot should continue select the task to perform despite 
the distance is more �2. Note that robot also request other 
robot to execute the assigned task when robot is failure. At 
the next time step, robots continue move toward the 
assigned tasks which are allocated in the latest time step 
before the system assigns the new task to robot. The entire 
of our proposed novel dynamical sequential task allocation 
and reallocation method is shown in Fig. 2. 
 

3.4 Global Optimal Task Allocation and 
Reallocation Algorithm 
 

Global optimal task allocation and reallocation method 
is extended from combinatorial optimization [3] and 
market-based task allocation method [12]. It is proved that 
combinatorial optimization can obtain the global optimal 
assignment. In addition, market-based task allocation is a 
simple and valid method for complicated assignment. 
Robots bid tasks and communicate costs with other robots. 
For each robot, makes a combinatorial cost table after 
congregating all the bidding from others, then selects task 
to execute based on objective function at every time step. 
The objective function which is to be minimized executed 
costs and maximized accomplished efficiency for the 
whole system. The objective of this method is to reduce 
the total tasks executed time for the entire system. The 
algorithm of global optimal allocation and reallocation 
approach is shown in Fig. 3. 

Initialization

For robot Rj
(j=1; j<=n; j++)

For task Ti
(i=1; i<=m; i++)

Robot Rj bids task Ti

Robot Rj selects task Ti under 
the combinatorial cost table

Any new task ?

All tasks are accomplished

Any task is 
accomplished ?

Robot Rj executes task Ti 

The next time step

Fig. 3. Global optimal task allocation and reallocation 

4. Simulation and Results 
 

4.1 Simulation Environment Setting 
    

To compare the validity and efficiency of the proposed 
two approaches, a variety of experiments are carried out 
by computational simulation. The simulation environment 

without obstacles is built up with the setting of 400*400m2. 
At the initial time step, three tasks and three robots are 
randomly distributed in the environment. Then at time step 
= 500, 800 and 850, the fourth, fifth and sixth tasks move 
in the simulation environment. During the simulation tasks 
move with the variable speed over time which are shown 
in Fig. 4, while the speed of robot is constant which is 
0.76m/s. The small distance threshold �1 is 4m. The large 
distance threshold �2 is 40m.
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Fig.4. The speed of tasks 
 
4.2 Simulation Results 

 
Figure 5 is the selected situations of robots that utilize 

the above mentioned approaches in every time step. We 
employ Fig. 5(a) which is the figures about dynamical 
sequential method to illustrate. Global optimal method is 
similar like Fig. 5(a). At T=62, 110, 230, 475 and 1179, 
tasks are reallocated to robots because of distances 
between them are vary. At T=371, robot 3r  arrive at 1t  
and will take 1t  to destination D1. In such situation, 3r  
will refuse all requirements from other robots, since 
distance is short than�1, T=507, 667, 969, 1422 and 1448 
are the same as T=371. 4t  walks into the environment at 
T=500(The same as T=800 and 850 are distributed into the 
environment). 4t will move randomly with the un-assigned 
state, due to each robot can assign to only single task to 
guide each time, until there is a free-robot that like T=705, 
1t  has arrived at D1 under the 3r  guiding, in the next time 

robot will check whether there is un-assigned task. Robot 
will assign to the un-assigned task if there is a un-assigned 
task in the environment like T=705, 1120, 1273 and 1789, 
or like the situation that robot will move freely due to there 
is no un-assigned task (as T=782). 
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(a) Dynamical sequential method                              (b) Global optimal method 

Fig.5. The selected situation 
Results show that the condition which robot assigns 

which task during the simulation time. From the figure, we 
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can see that robots often changed the task to perform 
according to the shorter distance, but not as frequently as 
we expected. Figure 6 shows the time steps which robots 
reach around tasks and take tasks to the destinations. 
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(a) Reach around  tasks                                          (b) Arrived at destinations 

Fig.6. The executed time step 
Figure 7 shows the total costed time steps that robots 

reach around the first three tasks and all tasks, and take the 
first three tasks and all tasks to their destinations. 
Simulation results show that the total number of time steps 
for robots reach around tasks is 3134 by utilizing 
dynamical sequential method, while for the first three 
tasks it only needs 1545 time steps. The total time steps 
which robots take the first three tasks and all tasks to the 
destination are 2607 and 7505. Similarity, for global 
optimal approach, the total number of time steps for robots 
reach around tasks is 3293, while for the first three tasks it 
only needs 1840 time steps. The total time steps which 
robots take the first three tasks and all tasks to the 
destination are 2472 and 7165. From Fig. 7 we can see that 
the costed time steps which under dynamical sequential 
method for robots reach around the first three tasks and 
guide the first three tasks to their destinations are the least 
than global optimal method, due to the positions of these 
tasks could vary over time. While for accomplishing the 
all six tasks, the costed time steps by utilizing global 
optimal method are the least than dynamical sequential 
method. Because of dynamical sequential method is an 
approximative global optimal allocation approach, which 
is a suboptimal allocation approach. 
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Fig.7. The total costed time step 

4.3 Communication Costs and Computation Times 
 

One of the greatest strengths of our task allocation and 
reallocation methods is their ability to deal efficiently and 
successfully with the changing conditions. Since our 

approaches do not rely on the initial task allocation and it 
can task reallocation according to the variable solutions, 
the DMRCS is highly robust to change with the 
environment, including malfunctioning robots. Thus, the 
presented methods in this paper allow robots to deal with 
dynamical environments in an opportunistic and adaptive 
manner. The communication costs and computation times 
by using global optimal method are TNN ∗−∗∗ )1(2  
and

0TTNN ∗∗∗ , where N is the number of robots, T is the 
number of time steps and 

0T  is the time for calculating the 
distance from one robot to one task. The communication 
costs and computation times of dynamical sequential 
method vary dependent time, because of implementing 
body expansion behavior for robots to select tasks. 

Figure 8 and figure 9 show the communication costs 
and computation times for the simulated example. The 
results show that global optimal method could be faster to 
complete all tasks for the whole system than dynamical 
sequential method, but need more communication costs 
and computation times. Reversely, for the dynamical 
sequential method , if the distance between robot and task 
is less than the large distance threshold�2, robot only plan 
the path to the assigned task, thus it is more conducive to 
reduce the numerous computational time to calculate the 
distances from robots to tasks for the entire system. Since 
the communication costs between robots are task selection 
information, communication is greatly decreased. 
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Fig.8. The communication costs 
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Fig.9. The computation times 
 

5. The Related Works 
    

Task allocation for MRCS is a widely studied field. It 
can be broadly classified into two classes: one is 
centralized planner based systems, planners are often 
based on auction mechanisms in which robots bid for tasks, 
e.g. Gerkey’s MURDOCH [13]. As [14] proposes a 
method for team-task allocation in a multiple robots 
transportation system, since such kind of systems are that 
agents and tasks are still fixed, in addition capabilities and 
resources do not depend on time, while in real world 
application it is not very useful. Another problem is the 
systems which rely on individual robots to make 
individual task allocation decision without considering 
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other team member and the optimization of whole system.  
Empirical results of an auction based algorithm for 
dynamic allocation of tasks to robots is proposed by [11]. 
In their researches, they propose a method of repeated 
auction for distributed tasks dynamically among a group 
of cooperative robots. The distinctive feature of this 
algorithm is its robustness to uncertainties and to robot 
malfunctions that happen during task execution. 

Another kind of method is distributed task assignment, 
e.g. Asama et al. develop an autonomous and 
decentralized robot system called ACTRESS to address 
the issues of communication, task assignment, and path 
planning among heterogeneous robotic agents [15, 16]. 
This approach revolves primarily around a negotiation 
framework which allows robots to recruit help when 
needed. A distributed multi-robot cooperation framework 
for real time task achievement is proposed in [17, 18]. The 
framework integrates a distributed task allocation scheme, 
coordination mechanisms and precaution routines for 
multi-robot team execution. When initial assignments of 
tasks may become inefficient during real time execution 
due to the real world issues such as failures, and these 
allocations are subject to change if efficiency is a high 
concern, reallocations are needed and should be performed 
in a distributed fashion. They propose an online dynamic 
task allocation system for reallocation to achieve a team 
goal that can respond to and recover from real time 
contingencies. [19] presents a reasonable system that 
enables a group of heterogeneous robots to form coalitions 
to accomplish a multi-robot task using tightly coupled 
sensor sharing. The advantages of this new approach are 
that it enables robots to synthesize new task solutions 
using fundamentally different combinations of sensors and 
effectors for different coalition compositions, and 
provides a general mechanism for sharing sensory 
information across network robots. However, all the 
mentioned above mainly concern the computational 
performance, and tasks are fixed location, they do not 
mention the dynamical mobile tasks and method of such 
task reassignment. 
 

6. Conclusion 
    

The DMRCS based on the methods of dynamic 
sequential and global optimal task reallocation are 
developed in this paper. We propose two novel methods 
which can reallocate tasks to robots for dynamical mobile 
task assignment problem according to shortest travelled 
distance. The dynamic sequential method is based on 
multi-round negotiation and body expansion behavior. 
Global optimal approach is extended from combinatorial 
optimization and market-based task allocation. In this 
paper, we compare the accomplished efficiency, 
communication costs and computational times between 
the two methods. The simulation results show that the 
minimal executed costs and maximal accomplished 
efficiency are obtained by global optimal method, while 
consumes numerous communication costs and 
computational times. Reversely, dynamical sequential 
method is an approximation global optimal assignment 
approach, and expends acceptable communication costs 

and computational times. 
The disadvantages of both algorithms are still take long 

time to negotiation and communication, and need certain 
communication costs and computational times. Moreover, 
dynamical sequential method is an approximative global 
optimal allocation method that is a suboptimal allocation 
approach. Therefore, it is very suitable for small/medial 
scale distributed multi-robot coordination system. In the 
future work, we will improve the novel proposed 
algorithms for the large scale multi-robot coordination 
system and implement our approaches to real robot system, 
such as employing our methods for guidance service 
system which using multiple robots guide customers in 
shopping mall, museum and exhibition. 
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