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Abstract: The inconvenience and cost of utilising existing task assignment approaches to resolve 
dynamical mobile task allocation. For such new domain, we first propose a method, called 
dynamical-sequential task allocation and reallocation, by implementing multi-round negotiation 
and body expansion behaviour. Every former half time step, robots negotiate sequentially and 
select tasks to perform, and declare the information to other robots. When all robots have finished 
first time selection, then the remaining unselected robots choose the remaining unassigned  
tasks again sequentially at the latter half time step. We set two distance thresholds for robot 
decision-making to apply body expansion behaviour. The advantages of our methodology are 
demonstrated by comparison with existing algorithms, simulation results demonstrate that the 
efficiency for whole system to accomplish given tasks is improved by utilising our approach. 
Moreover, it is more conducive to reduce the numerous computational time and communication 
compared with existing investigated task assignment methods. 
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1 Introduction 

The field of distributed multi-robot coordination has 
received increasing attention in recent decades. Many 
potential advantages of distributed multi-robot coordination 
exist in comparison with a single robot, including reduction 
of the complexity of the robot structure, and decreasing total 
system costs by implementation of multiple simple and 
cheap robots as opposed to a single, expensive, and complex 
robot. Moreover, the inherent complexity of certain tasks 
might require the use of multiple robots because demands of 
tasks are often quite difficult for a single robot to resolve. 
Multiple autonomous mobile robots are also assumed to 
enhance system robustness and flexibility by taking 
advantage of inherent parallelism and redundancy. 

For numerous applications, distributed multi-robot 
coordination is useful effectively to accomplish assigned 
tasks by executing them concurrently. Many real world 
problems necessitate the use of a group of robots to 
accomplish a set of tasks, although difficulty arises in 
coordinating all of these robots to perform such a set of 
tasks. Previously, classifications of two kinds were 
proposed to solve multiple tasks assignment problem to 
multiple autonomous mobile robots, which named 
centralised task allocation and distributed task allocation. 
Centralised task assignment method which one robot 
(leader) coordinates other robots to accomplish the specified 
tasks optimally. The problem is optimal coordination, which 
is computationally difficult because the best-known 
algorithms present exponential progression in complexity 
according to their size. Another disadvantage is that the 
centralised task assignment method is a highly vulnerable 
system; if the leader agent malfunctions, then the entire 
system is disabled unless a new leader robot is made 
available. 

Distributed task assignments address problems arising 
from centralised task allocation. Each robot coordinates 
with others to execute the assigned tasks. The whole 
system’s performance no longer depends on a single leader 
robot. Therefore, the distributed multi-robot system 
becomes more robust and flexible. Additionally, robots are 
better able to respond to an unknown and dynamical 
environment because each robot can perceive its local 
environment independently. It is considered that distributed 
task allocation can reduce computational time and 
communication costs compared with centralised task 
allocation. 

Nevertheless, the number of required communication 
costs which make use of distributed task allocation approach 
remains excessively high, and consumes too much 
computational time to obtain an optimal solution. For that 
reason, multi-robot coordination systems are unable to keep 
up with the real-time execution demands. Therefore, neither 
communication costs nor computational times are desirable 
for realistic task assignment and reassignment applications, 
especially for mobile tasks (for example, applications of 
guidance robots in exhibitions and museums, human can 
move randomly before robots guide them.), for which 
positions change randomly before the assigned robots to 
execute them, and the requirements of these tasks can vary 
over time. That is true because of the last solution, by which 
robots have been assigned to given tasks, might not be 
suitable for current circumstance when conditions are 
changing over time. The system should reallocate robots to 
tasks to find the potentially optimal solutions. For such a 
new domain, we propose a dynamical-sequential moving 
task allocation and reallocation method for distributed 
multi-robot coordination system based on multi-round 
negotiation and body expansion behaviour. The word 
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‘dynamical’ means that both the number of tasks  
and the requirements of tasks can change, whereas 
‘sequential’ indicates that one robot assigns tasks after 
another robot under some order. As described in this paper, 
we use the proposed approach mainly to improve the 
accomplished efficiency for the whole distributed  
multi-robot coordination. Moreover, it is more conducive  
to reducing the numerous computational times and 
communication costs compared to existing investigated task 
assignment methods. 

The remainder of this paper is structured as follows. The 
next section presents discussion of the related works of the 
well-known field task allocation. Section 3 presents a 
formal definition of moving task assignment problem, and 
presents discussion of the disadvantages of existing methods 
in addressing our defined problem. The notion of body 
expansion behaviour is described in Section 4, which sets 
two thresholds for robots to make decisions. We also detail 
the proposed task allocation and reallocation algorithm in 
this section. Section 5 presents discussion of simulation 
results, which compares our approach to the existing general 
task allocation approach. Finally, Section 6 presents a 
description of conclusions and sketches a prospective plan 
of future work. 

2 Related works 

The task allocation problem for a multi-robot coordination 
system is a widely studied field. It is classifiable broadly 
into two classes: one is centralised planner-based systems, 
for which planners are often based on auction mechanisms 
in which robots bid for tasks, e.g., Gerkey and Mataric’s 
(2002) MURDOCH. Wawerla and Vaughan (2010) 
proposed a method for team-task allocation in a multiple 
robots transportation system because systems of such kinds 
have agents and tasks that is still fixed. Moreover, 
capabilities and resources are independent of time, although 
in real world applications, it is not useful. Another problem 
is a system which relies on individual robots to make 
individual task allocation decisions without considering 
other team members and optimisation of the whole system. 
Empirical results of an auction-based algorithm for dynamic 
allocation of tasks to robots were proposed by Nanjanath 
and Gini (2010). From their research, they proposed a 
method of repeated auctions for distributing tasks 
dynamically among a group of cooperative robots. The 
distinctive feature of this algorithm is its robustness to 
uncertainty and to robot malfunctions that occur during task 
execution. 

A method of another kind is distributed task assignment, 
such as the methods described by Asama et al. (1992) and 
Ozaki et al. (1997), who develop an autonomous and 
decentralised robot system called ACTRESS to address 
issues of communication, task assignment, and path 
planning among heterogeneous robotic agents. This approach 
revolves primarily around a negotiation framework that 
allows robots to recruit help when needed. Parker (1992, 
1994a, 1994b, 1994c, 1997, 1998) formulated a related 

multi-robot task allocation problem called the ALLIANCE 
efficiency problem. Werger and Mataric (2000) introduced a 
broadcast of local eligibility (BLE) approach to multiple 
robots coordination. The BLE mechanism involves a 
comparison of locally determined eligibility with the best 
eligibility calculated using peer behaviour on another robot. 
A distributed multi-robot cooperation framework for  
real-time task achievement was proposed by Sariel and 
Balch (2008a), and Sariel et al. (2008b). The framework 
integrates a distributed task allocation scheme, coordination 
mechanisms and precaution routines for multi-robot team 
execution. When initial assignments of tasks might become 
inefficient during real-time execution because of real world 
issues such as failures; these allocations are subject to 
change if efficiency is an important concern. Reallocations 
are needed and should be performed in a distributed fashion. 
They proposed an online dynamic task allocation system for 
reallocation to achieve a team goal that can respond to and 
recover from real-time contingencies. Parker and Tang 
(2006), and Tang and Parker (2007) presented a reasonable 
system that enables a group of heterogeneous robots to form 
coalitions to accomplish a multi-robot task using tightly 
coupled sensor sharing. The advantages of this new 
approach are that it enables robots to synthesise new task 
solutions using fundamentally different combinations of 
sensors and effectors for different coalition compositions. 
Moreover, it provides a general mechanism for sharing 
sensory information across network robots. However, all the 
points presented above mainly relate to the computational 
performance. Tasks are static: they do not describe 
dynamical tasks and methods of task reassignment. 
Furthermore, they do not discuss fault tolerance, flexibility, 
and robustness. Moreover, when a robot fails, the system 
does not know how to address it. 

Other related works examined task allocation problems 
such as a coalition maintenance scheme for dynamic 
reconfiguration of assigned tasks to obtain optimum 
allocations in noisy environments during the running time 
(Sariel and Balch, 2005a, 2005b). This framework is used to 
address different types of failures that are common in robot 
systems and to solve conflicts in cases of communication 
and robot failures. Task allocation using particle swarm 
optimisation method is suggested to determine coalitions 
and sequences for all targets (Sujit et al., 2008). Sujit et al. 
employ this algorithm to resolve the problem in a 
reasonable amount of time. Market-based auction (Dias  
et al., 2006; Stentz and Dias, 2006) is well known for 
dealing with task allocation problems: the system auctions 
tasks to all robots. After bidding for tasks, robots that obtain 
profits that are largest for the whole system execute these 
tasks. Additionally, they investigate a real-time single-item 
allocation method under an uncertain and dynamic 
environment (Sariel and Balch, 2005a, 2005b). The initial 
assigned targets might have to be reallocated during a time 
when the environment is dynamic and/or unknown. The 
market-based auction method can be successful and 
effective to resolve the conventional task allocation domain, 
large number of researchers improve and study the variation 
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of such method, such as sequential single-item auction 
(Zheng et al., 2006), distributed sequential auction (Sujit 
and Beard, 2007), and decentralised task sequencing method 
(Paola et al., 2011). 

3 Task description 

3.1 Formal definition 

This paper describes task assignment problems among 
multiple, fully distributed, initially homogeneous mobile 
robots. We develop a novel method of task allocation and 
reallocation that can deal with dynamical moving tasks. The 
formal definition of this problem is that we assume 
environment of such kind included missions of two kinds: 
one is the initial mission, the initial mission is that assign 
multiple mobile tasks to robots reasonably and efficiently; 
another is the final mission, with such a system that a robot 
guides a task from the initial position to the destination 
which tasks should reach. 

For the initial mission, because tasks move randomly 
before they are assigned to robots to execute them, and 
because the conditions of these tasks can vary over time, we 
should assign and reassign tasks to robots properly: we 
allow sets of tasks T and robots R to be time-dependent at 
every instant of time or over the entire history (i.e.,  
T(t), R(t)) and require that the objective functions be 
minimised/maximised (the task allocation method should 
minimise objective functions, which are cost, energy, and 
others. Reversely, it should maximise the objective 
functions which are efficient and so on.), the definition also 
covers online and dynamical domain where tasks and robots 
might be added or removed over time. We propose a 
dynamical-sequential task allocation and reallocation 
methodology based on body expansion behaviour to resolve 
domains of this kind. As the final mission, when robots 
move to nearby tasks, tasks transmit its destinations to 
robots, then in each robot global coordinate system, robots 
find the positions of robots’ destination, plan the optimal 
path and guide tasks to the destinations. 

3.2 Disadvantages of existing methods 

Few researchers have addressed the domain of tasks which 
are dynamical and which are arbitrarily movable. All 
existing methods are suitable for tasks in which positions 
are fixed. When we use existing methods to solve mobile 
task assignments, the whole system will become extremely 
inefficient. Furthermore, earlier reports neglect discussion 
of task reallocation when robots are executing tasks,  
except for robot malfunction, partial system failure, and 
communication failure. Actually, for mobile tasks in terms 
of position and requirement change, we should not only find 
an available task assignment solution. We should also 
develop a mode by which robots perform tasks efficiently 
for the overall coordinated system. 

For example, as described in this paper, if we consider 
homogeneous robots, then the efficiency for robots to 

perform tasks depends on the time needed by which robots 
reach the task location. This measure presents the task and 
robot’s position, which is a function of time. Therefore, the 
efficiency varies with time. Robots should therefore select 
the optimal tasks for which the necessary time is the shortest 
(i.e., the distance between robots and tasks are shortest.) to 
perform every time to improve the efficiency. As Figure 1 
shows, at Time0, the system assigns task1 to robot1, task2 to 
robot2 and task3 to robot3 according to the shortest distances 
for robot positions and tasks. At Time1, since changing 
positions of tasks the system should reallocate tasks to 
robots reasonably, the values of distance between robot1 and 
task1, robot2 and task2, robot3, and task3 are greater than the 
distance between robot1 and task2, robot2 and task3, and 
robot3 and task1. 

Figure 1 Dynamical moving task allocation and reallocation,  
(a) at Time0 (b) at Time1 (see online version  
for colours) 

 
(a) 

 
(b) 

Notes: (a) At Time0, tasks T1, T2, and T3 are assigned 
respectively to robots R1, R2, and R3. (b) At Time1, 
because of the changing positions of robots and 
tasks, T1, T2, and T3 are reassigned respectively to 
robots R3, R1, and R2. 

Few previously reported approaches explicitly address the 
problem of minimising communication costs, computational 
times, and memory. For example, all market-based auction 
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methods, ALLIANCE, and BLE need each robot plans path 
from location of itself to each task, calculates distances 
between robots and tasks, when the positions of tasks 
change. Once the situations of tasks and robots vary, 
systems should auction these tasks for all robots. After 
bidding tasks, robots which obtained profits are largest for 
the whole system execute these tasks. In other words, the 
efficiency of these methods is extremely low to address 
dynamical moving task allocation and reallocation 
problems. It takes a long computational time to motion 
planning, distance calculation and tasks negotiation. Both 
BLE and ALLIANCE methods do not consider global 
efficiency explicitly, although these methods are satisfied 
with finding any feasible solution. A notable exception is 
the work by Nanjanath and Gini (2010), where they propose 
a method of repeated auction for distributed tasks 
dynamically among a group of cooperative robots. Tasks 
that are not yet achieved are re-submitted for bids every 
time a task has been completed. The repeated auction comes 
closest to our approach. Main differences include our 
proposed system reallocation tasks for robots at every time 
step. Then we use body expansion behaviour to reduce 
communication costs and computational times for each 
robot when the distance between robot and task is less than 
a given threshold. 

In several reports, Turra et al. (2004a, 2004b) first 
introduce an algorithm for allocation at mission-time of 
moving targets to a group of unmanned vehicles (UAV). 
The Hungarian algorithm is implemented to perform 
optimal task assignment; then exact path lengths between 
vehicles and targets are computed through the off-line 
computed Dijkstra paths. For dynamical mobile task 
allocation and reallocation method of distributed multi-robot 
coordination, we propose dynamical-sequential task 
allocation and reallocation. This approach implements 
multi-round negotiation and body expansion behaviour for 
robots to select tasks. To implement body expansion 
behaviour, we set two distance thresholds for robot 
decision-making. Based on body expansion behaviour, one 
robot can request, accept, and refuse other robots’ requests 
to execute tasks by intention communication. Herein, we 
demonstrated that this method is an approximate global 
optimal assignment method and that it expends acceptable 
communication costs and computational times compared to 
existing investigated task assignment methods. 

4 Task allocation and reallocation method 

4.1 Mathematical model 

As described above, we only consider a homogeneous set of 
robots. The efficiency for distributed multiple robots 
coordination system consists of two important evaluations. 
One is the summation executed costs of all robots – ESEC by 
which robots perform all mobile tasks. ESEC depends on the 
relative positions of tasks and robots. In other words, it 
depends on the summation completion time of all robots – 
TSCT necessary for robots to reach the task location, it is a 

function of time. Because all tasks can move randomly 
before they are assigned robots to execute, ESEC and TSCT for 
which a robot performs a task varies. For that reason, robots 
must select optimal tasks for which the needed executed 
costs by robot are least to perform. Doing so for each task 
improves the overall system efficiency. 

Another important evaluation is the time at which the 
last task is completed, which we define as last task 
completion time – TLTC. We know that we can declare that 
the entire system is completed only after the last task is 
finished. In some situations, the system consumes very little 
ESEC and TSCT, whereas TLTC might be large compared with 
other situations. The salient meaning is that robots take a 
long time to execute the last task in these situations. 
Therefore, we say that the time at which entire system is 
completed is later than others, although the ESEC and  
TSCT are more efficient. Actually, such a situation  
arises frequently in coordination system which uses 
dynamical-sequential task allocation and reallocation 
method. 

The locations of M robots VR ∈ {R1, R2, ···, Rm} is the 
number of robots) and N mobile tasks VT ∈ (T1, T2, ···, Tn) (n 
is the number of tasks) are known, as is the cost function 
ESIR,Ri (where i ∈ {M/1, 2, ···, m}) that specifies the ith 
summation individual robot cost when the whole system is 
completed. ECost,Ri,t–time specifies the cost of ith robot from t 
time step to t + 1 time step. The objective is to find an 
allocation of tasks to robots such that the total cost ESEC is 
minimised for the whole system. Because we only consider 
a homogeneous set of robots and tasks, the major criterion 
for the proposed strategy is to optimise the total travelled 
distance of all robots – DTTD. Accordingly, we can use  
the ith summation individual robot distance – DSIRD,Ri and  
the distance of ith robot – DDistance,Ri,t–time from t time  
step to t + 1 time step, to denote ESIR,Ri and ECost,Ri,t–time, 
respectively. The model formulated to enhance the mobile 
task allocation and reallocation is presented below. Let VR 
denote the set of robots and VT denote the set of mobile 
tasks. 

The objective functions are to minimise 

, ,
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Therein, one time step – TTimeStep specifies a unit length of 
time, TTime,Tj is the time when the jth task Tj is completed. A 
binary variable Ri

Tjx  denotes whether the ith robot Ri ∈ VR 
performs the jth task Tj selected from all tasks VT. TTimeStep,Ri, 
signifies the number of time steps that robot Ri ∈ VR selects 
task Tj ∈ VT; ,

Ri
t time Tjπ −  and ,

Ri
st Tjπ  are a binary value showing 

whether task Tj ∈ VT is executed at time step t-time and all 
time steps, respectively. 

The objective function, equation (1) minimises the 
execution cost of the whole distributed multi-robot 
coordination system. 

In this case, the system cost is the total travelled 
distance that the robots move. Equation (4) minimises the 
completed time of the last task, which is to minimise the 
time to finish the whole system. The first set of constraints, 
equation (5), specifies that each robot performs exactly one 
task. The second set of constraints, equation (8), specifies 
that each task is assigned to exactly one robot at each time 
step. 

4.2 Body expansion behaviour 

The notation body expansion behaviour means that a robot 
can transmit its own intention and the receiver executes its 
requirement. Thereby, a robot can control others’ behaviour 
by intention transmission using communication (Fujiki  
et al., 2007). This demonstrates an expansion of the robot’s 
degrees of freedom (DOF). A multi-robot coordination 
system can improve flexibility and adaptability by 
application of such body expansion behaviour. 

Two distance thresholds for robot decision-making are 
set to implement body expansion behaviour. One is the 
small distance threshold D1Threshold, which means that the 
robot is about to execute the assigned task. Another is the 
large distance threshold D2Threshold, which means that robots 
have a long time to execute the assigned task (Figure 2). If 
the distance is greater than the D2Threshold, then a robot can 
request that other robots execute the assigned task. If the 
distance between D1Threshold and D2Threshold, then robots 
compare the distances and select the tasks presenting the 
shortest distance. If the distance is less than D1Threshold, then 
robots refuse all others’ requests. All robots exist in one of 
three working states: 

1 free-robot, when the robot has not been assigned a task 

2 half-free-robot, when the robot has been assigned a task 
but is not executing the task, or the distance is less than 
D2Threshold, but greater than D1Threshold 

3 busy-robot, when a robot is executing a task, or the 
distance is less than D1Threshold. 

When robots find remaining unguided tasks and free-robots 
exist in the environment, then the robot can request that the 
free-robot guide the remaining unguided tasks. 

Figure 2 Distance threshold (see online version for colours) 

 
Notes: Two distance thresholds are set for robot decision-

making. If distance DDistance is greater than D2Threshold, 
then the robot requests that other robots execute the 
task. If DDistance between D1Threshold and D2Threshold, 
then the robot compares the distance and selects the 
shorter distance task to execute. If the DDistance is less 
than the D2Threshold, then robot refuses the others’ 
request. 

4.3 Proposed task allocation and reallocation 
algorithm 

Assuming that all robots are homogeneous robots with the 
same speed, function, and structure, and that they can 
mutually communicate using radio frequency broadcast, 
then one robot allocates only a single task at a time, 
executes only a single task, and guides the assigned task to 
its destination. 

The tasks are distributed randomly in the environment, 
and can move anywhere with varied speed before robots 
reach around them. Each task does not know the location of 
destination unless under the robot guided to it. Furthermore, 
all tasks await guidance in the priority queue under the 
principle of ‘first in – first executed’. A robot always 
executes the relative highest priority task irrespective of the 
other tasks move around it. We propose a novel task 
allocation method that can reallocate tasks to robots 
according to the shortest distance. In the environment, Ri ∈ 
{R1, R2, ···, Rm} denotes the ith robot, Tj ∈ {T1, T2, ···, Tn} 
denotes the jth task, The DRiTj denotes the utilisable distance 
from Ri to Tj, and n ≥ m. In the initial state, the working 
statuses of all robots are free-robot, and wait for executing 
tasks (Li et al., 2011a). 
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Figure 3 Illustration of the initial step (see online version  
for colours) 

 

Tasks broadcast request information including task IDs and 
coordinates to all robots at every time step. In the initial 
time step (Figure 3), there are two rounds of negotiation and 
selection for each robot. For the first round, all robots 
receive request information from tasks, then plan paths to all 
tasks and calculate the distances in the robot’s global map. 
Robots are assigned priority according to the robot ID, the 
priority of robot which the ID is small is larger than the 
priority of a robot which the ID is large. Robots R1 – robot 
Rm select tasks to perform according to the given distance 
thresholds sequentially. If there are distances which between 
robots and tasks are less than D1Threshold, robots select the 
task to perform which present the smallest distance. 
Otherwise, robots select no task, and others are requested to 
execute it. Then all robots declare the selection information 
to other robots. When all robots have finished the first 
selection, the remaining un-selection robots choose the 
remaining unassigned tasks again sequentially the second 
time round. That is based on the priority of robots’ ID, the 
later robot’s ID should receive the entire task selection 
information from the former robot. Then it can carry out the 
task-selection process, the remaining unselected robot 
sequentially selects the unassigned task for which the 
distance is shortest in the unassigned tasks to perform, even 
though the distance between them is more D2Threshold. The 
algorithm of the initial time step is the following: 

1 Tasks broadcast request information including task IDs Tj 
and coordinate to all robots Ri. 

2 FOR Ri (i = 1, i <= m, i++) 

3 Ri plans a path for the first m tasks, calculates distances 
DRiTj ∈ {DRiT1, DRiT2, …, DRiTm, i, j, m ∈ M} between Ri and 
Tj. 

4 Task selection model in Ri: Compare the distances DRiTj ∈  
{DRiT1, DRiT2, …, DRiTm, i, j, m ∈ M}. 

5 IF Several distances DRiTj are less than D1Threshold. 

6 THEN Assign Tj to Ri of which DRiTj is shortest. 

Broadcast the selection information to other robots. 

  The working status of robot Ri changes to busy-
robot. 

7 ELSE All of DRiTj are more than D1Threshold. 
  Request other robots to execute the first m tasks. 
8 FOR Ri (i = 1, i <= m, i++) except busy-robot 
  Task selection model in robot Ri: Compare 

distances DRiTj ∈ {DRiT1, DRiT2, …, DRiTm, i, j, m ∈ 
M}. 

9 Select Tj to Ri which DRiTj is shortest. 
 Broadcast the selection information to other robots. 
 The working status of Ri changes to half-free-robot. 

During execution by which the system has assigned all tasks 
to robots and time up until the next time step, the 
intermediate algorithm is the following: 

1 Ri plans optimal path to Ti according to global map of 
environment. 

2 Ri moves along the optimal path toward Tj. 

3 IF Ri reach the location of Tj 

4  Ri guides Tj to its destination. 

5  Ri sends the guiding information to other robots. 

6  The working status of Ri changes to busy-robot. 

7 IF Ri guides Tj to its destination. 

8  Ri sends the report of guidance completion to all 
other robots. 

9  Ri clears up the information about Tj. 

10  Ri changes to free-robot. 

11 IF A new requested task Tu exists, 

12 THEN Ri plans path to Tu and calculates DRjTu. 

13 IF DRiTu is less than D1Threshold, 

14 THEN Ri broadcasts the selection information to other 
robots. 

15  The working status of Ri changes to busy-robot. 

16 ELSE The working status of robot Ri changes to half-
free-robot. 

Because of the dynamical tasks can move randomly before 
the assigned robots to reach around and execute them, the 
condition of these tasks can vary over time, distances 
between robots and the corresponding assigned tasks might 
vary. Consequently, systems should reallocate tasks to 
robots at every time step based on using body expansion 
behaviour during the implemental period, to improve the 
efficiency of which robots execute tasks. If the distance 
between the robot and corresponding assigned task is 
greater than D2Threshold, then the robot will request that 
others to execute this task and broadcasts the information. 
For other robots of R1 to Rm sequentially, it compares the 
distance with D2Threshold and selects the task for which the 
distance is shorter between the requested task and the latest 
assigned task because other robots can accept or refuse the 
request according body expansion behaviour. If all other 
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robots refuse the task, then the robot should continue to 
select the task to perform despite the distance is greater 
D2Threshold. Robots also request that other robots execute the 
assigned task when a robot shows failure. The algorithm of 
the next iterative time step is the following: 

1 Ri only deals with Tj which is assigned in the prior time 
step. 

2 FOR Ri (i = 1, i <= m, i++) 

3  Ri plan path and calculates DRiTj to Tj. 
4 IF DRiTj is less than D2Threshold,, 
5  IF DRiTj is less than D1Threshold, 
6  THEN Ri continues to move toward Tj. 
7  Ri broadcasts the selection information to 

other robots. 

8  The working status of robot Rj change to 
busy-robot. 

9 ELSE 
10   IF There is a request to execute Tp from Rk,
11   THEN Compares DRiTj and DRiTp. 
12  Selects Tp which distance DRiTp is 

Shorter. 

13   IF DRiTp is less than D2Threshold,
14   IF DRiTp is less than D1Threshold,
15  Request other robot to execute 

Tj. 

16  Broadcast the selection 
information to others. 

17  The working status of Ri changes 
to busy-robot. 

18  ELSE Request other robot to 
execute Tj. 

19  Broadcast the selection 
information to others. 

20  The working status of Ri 
changes to half-free-robot. 

21  ELSE Ri continues select task Tj.
22  Broadcast the selection 

information to other robots. 

23  The working status of Ri change 
to half-free-robot. 

24  IF The distance DRiTj is greater than D2Threshold, 

25  Ri Requests other robot to execute task Tj. 

26 IF All other robots refuse to execute Tj, 

27 THEN Robot Ri Continues select Tj. 

28  Ri broadcasts the selection information to other 
robots. 

29  The working status of robot Ri change to half-
free-robot. 

30 Return to the intermediate algorithm. 

31 Until all tasks are executed or time-out. 

The overall algorithm of our proposed novel dynamical–
sequential task allocation and reallocation method is 
portrayed in Figure 4. 

Figure 4 Our algorithm (see online version for colours) 

 

5 Simulation and results 

5.1 Simulation environment setting 

To demonstrate the validity and efficiency of our approach, 
various experiments were conducted using computational 
simulations. The simulation environment without obstacles 
is built up with the setting of 400 × 400 m2. Three robots 
(represented by small black circles) and six tasks 
(represented by small red rectangles) are employed for 
simulation in Figure 5. At the initial time step, the first three 
tasks and three robots are distributed randomly in this 
environment. Then at time step T = 500, the fourth task 
moves in the environment. Similarly, at time steps T = 800 
and T = 850, the fifth and sixth robots move in it. During 
simulation, tasks move with variable speed over time as 
depicted in Figure 6, whereas the speed of all robots is 
constant as 0.76 m/s. D1Threshold is 4 m; D2Threshold is 40 m. 
To compare our approach, we simulate two kinds of 
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method: a general distributed repeated auction method and a 
centralised global optimal task assignment in the same 
situation. 

Figure 5 Simulation environment (see online version  
for colours) 

 

Notes: The simulation environment is built up with the 
setting of 400 × 400 m2. Three robots (shown as 
small black circles) and six tasks (shown as small 
red rectangles) are used. 

Figure 6 Speed of tasks, (a) speed of task T1 (b) speed of task 
T2 (c) speed of task T3 (d) speed of task T4 (e) speed 
of task T5 (f) speed of task T6 
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Figure 6 Speed of tasks, (a) speed of task T1 (b) speed of task 
T2 (c) speed of task T3 (d) speed of task T4 (e) speed 
of task T5 (f) speed of task T6 (continued) 
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Figure 6 Speed of tasks, (a) speed of task T1 (b) speed of task 
T2 (c) speed of task T3 (d) speed of task T4 (e) speed 
of task T5 (f) speed of task T6 (continued) 

 
(e) 

Figure 7 The repeated auction method (see online version  
for colours) 

 

5.2 Repeated auction method 

Empirical results of market-based algorithm for robots that 
dynamically allocates tasks to robots is proposed by 
Nanjanath and Gini (2010). As described in this paper, they 
propose a method of repeated auction for distributed tasks 

dynamically among a group of cooperative robots. First, 
robots execute tasks which are assigned initially. When each 
task is completed, all remaining tasks are auctioned again 
and reassigned to robots. Results show that the distinctive 
feature of their algorithm is its robustness to uncertainty and 
to robot malfunctions that happen during task execution 
when unexpected obstacles, loss of communication, and 
other delays might prevent a robot from completing its 
allocated tasks. The algorithm of the repeated auction 
method is portrayed in Figure 7. 

5.3 Global optimal task allocation method 

Global optimal task allocation method is extended from 
combinatorial optimisation and market-based task allocation 
method. It is proved that combinatorial optimisation can 
obtain the global optimal assignment (Li et al., 2011b).  
In addition, market-based task allocation is a simple and 
valid method for complicated assignment. Robots bid  
tasks and communicate costs with other robots. For each 
robot, makes a combinatorial cost table after congregating 
all the bidding from others, then selects task to execute 
based on objective function at every time step. The 
objective function which is to be minimised executed costs 
and maximised accomplished efficiency for the whole 
system. The objective of this method is to reduce the total 
tasks executed time for the entire system. The algorithm of 
global optimal allocation and reallocation approach is 
shown in Figure 8. 

Figure 8 The global optimal method (see online version  
for colours) 

 

5.4 Simulation results 

Three tasks enter into the environment at different positions 
in the initial time step. The task purposes are to reach their 
destinations, although not all of them know where the 
destinations are. Therefore, tasks request robots to guide 
them to their destinations. However, during the time that 
robots reach around (approach) tasks, the tasks can move 
randomly instead of standing in the specified location when 
waiting. 
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Figure 9 portrays the selected situations of robots that 
use the approaches described above at every time step. Each 
robot compare the large/small distance threshold with 
distance DDistance which is from the location of itself to the 
task. If DDistance is greater than D2Threshold, then the robot 
requests other robots to execute the task; otherwise, the 
robot executes the task by itself. We employ Figure 8(a), 
which is related to our approach, as an example. At time 
steps T = 62, 110, 230, 475, and 1,179, tasks are reallocated 
to robots because the distances between them are greater 
than D2Threshold. At T = 371, robot R3 arrives at T1 and will 
guide T1 to destination D1. In such a situation, R3 will 
refuse all requests from other robots because the distance is 
less than D1Threshold, T = 507, 667, 969, 1,422, and 1,448 are 
the same as T = 371. T4 walks into the environment at  
T = 500 (the same as T = 800 and 850 are distributed into 
the environment). T4 will move randomly under the 
unassigned state because each robot can be assigned to only 
a single task to guide each time until there is a free-robot 
that like T = 705, T1 has arrived at D1 under the R3 guiding, 
in the next time robot will check whether there is an 
unassigned task. The robot will be assigned to the 
unassigned task if an unassigned task exists in the 
environment such as T = 705, 1,120, 1,273 and 1,789, or as 
in a situation where that robot will move freely because 
there is no unassigned task (as T = 782). The snapshots are 
presented in Figure 10. 

Figure 9 Selected situations, (a) proposed method (b) repeated 
auction method (c) global optimal method 

 
(a) 

 

 

 

Figure 9 Selected situations, (a) proposed method (b) repeated 
auction method (c) global optimal method (contniued) 

 
(b) 

 
(c) 

Nevertheless, under the same simulation condition  
[Figure 8(b)], at the initial time step, tasks T1, T2, and T3 
are allocated respectively to robots R1, R2, and R3 because 
the sums of distances between robots and tasks are shortest 
by this method of allocation. As Figure 8(b) shows, the 
system will not reallocate tasks to robots until any one task 
is guided to its destination. When task T2 reaches its 
destination, the system changes the latest task allocation 
strategy. Before the robot guide T2 reach at its destination, 
robot R1 execute the task T5 and R3 execute T4. After T2 is 
guided to its destination, the robot changes to perform the 
task T6, while R2 executes task T5. The snapshots of 
repeated auction method are presented in Figure 11. 
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Figure 10 Simulation results based on our approach (see online version for colours) 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Notes: (a) T = 0: T1, T3, and T2 are respectively assigned to R1, R2, and R3. The destinations of tasks are, respectively, D1, D2, and 
D3. (b) T = 62: T1, T2, and T3 are assigned respectively to R1, R2, and R3. (c) T = 110: T3, T2, and T1 are assigned to R1, 
R2, and R3, respectively. (d) T = 230: T2, T3, and T1 are assigned respectively to R1, R2, and R3. (e) T = 371: T2, T3, and T1  
are assigned respectively to R1, R2, and R3. R3 has reached around T1 and will guide T1 to the destination D1(20, –20).  
(f) T = 475: T3 and T2 are assigned to R1 and R2, respectively. R3 guides T1 to the destination D1(20, –20). (g) T = 507: R1 
has reached around T3 and will guide T3 to the destination (–30, 100). T2 is assigned to R2. R3 guide T1 to the destination 
D1(20, –20). T4 walks freely. (h) T = 667: R1 guides T3 and to the destination (–30, 100). R2 has reached around T2 and will 
guide T2 to the destination (–60, 160). R3 guides T1 to the destination D1(20, –20). T4 walks freely. (i) T = 705: R1 guides T3 
and to the destination (–30, 100). R2 guides T2 to the destination (–60, 160). R3 guides T1 to reach the destination D1(20, –
20). T4 walks freely. (j) T = 782: R1 guides T3 to reach destination (–30, 100). R2 guides T2 to the destination (–60, 160). R3 
assigns to T4. (k) T = 969: R1 assigns to T5. R2 guides T2 to destination (–60, 160). R3 has reached around T4 and will guide 
T4 to the destination (20, –180). T6 walks freely. (l) T = 1,120: R1 assigns to T5. R2 guides T2 to reach the destination (–60, 
160). R3 has reached around T4 and will guide T4 to the destination (20, –180). T6 walks freely. (m) T = 1,179: R1 assigns to 
T6. R2 assigns to T5. R3 guides T4 to the destination (20, –180). (n) T = 1,273: R1 assigns to T6. R2 assigns to T5. R3 guides 
T4 to reach the destination (20, –180). (o) T = 1,422: R1 has reached around T6 and will guide T6 to the destination (180, –20). 
R2 assigns to T5. T4 has arrived at the destination (20, –180). (p) T = 1,448: R1 guides T6 to the destination (180, –20). R2 has 
reached around T5 and will guide T5 to the destination (180, –180). (q) T = 1,789: R1 guides T6 to the destination (180, –20). 
R2 guides T5 to reach the destination (180, –180). (r) T = 1,836: R1 guides T6 to reach the destination (180, –20). 
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Figure 10 Simulation results based on our approach (continued) (see online version for colours) 

   
(m) (n)  (o) 

   
(p) (q) (r) 

Notes: (a) T = 0: T1, T3, and T2 are respectively assigned to R1, R2, and R3. The destinations of tasks are, respectively, D1, D2, and 
D3. (b) T = 62: T1, T2, and T3 are assigned respectively to R1, R2, and R3. (c) T = 110: T3, T2, and T1 are assigned to R1, 
R2, and R3, respectively. (d) T = 230: T2, T3, and T1 are assigned respectively to R1, R2, and R3. (e) T = 371: T2, T3, and T1  
are assigned respectively to R1, R2, and R3. R3 has reached around T1 and will guide T1 to the destination D1(20, –20).  
(f) T = 475: T3 and T2 are assigned to R1 and R2, respectively. R3 guides T1 to the destination D1(20, –20). (g) T = 507: R1 
has reached around T3 and will guide T3 to the destination (–30, 100). T2 is assigned to R2. R3 guide T1 to the destination 
D1(20, –20). T4 walks freely. (h) T = 667: R1 guides T3 and to the destination (–30, 100). R2 has reached around T2 and will 
guide T2 to the destination (–60, 160). R3 guides T1 to the destination D1(20, –20). T4 walks freely. (i) T = 705: R1 guides T3 
and to the destination (–30, 100). R2 guides T2 to the destination (–60, 160). R3 guides T1 to reach the destination D1(20, –
20). T4 walks freely. (j) T = 782: R1 guides T3 to reach destination (–30, 100). R2 guides T2 to the destination (–60, 160). R3 
assigns to T4. (k) T = 969: R1 assigns to T5. R2 guides T2 to destination (–60, 160). R3 has reached around T4 and will guide 
T4 to the destination (20, –180). T6 walks freely. (l) T = 1,120: R1 assigns to T5. R2 guides T2 to reach the destination (–60, 
160). R3 has reached around T4 and will guide T4 to the destination (20, –180). T6 walks freely. (m) T = 1,179: R1 assigns to 
T6. R2 assigns to T5. R3 guides T4 to the destination (20, –180). (n) T = 1,273: R1 assigns to T6. R2 assigns to T5. R3 guides 
T4 to reach the destination (20, –180). (o) T = 1,422: R1 has reached around T6 and will guide T6 to the destination (180, –20). 
R2 assigns to T5. T4 has arrived at the destination (20, –180). (p) T = 1,448: R1 guides T6 to the destination (180, –20). R2 has 
reached around T5 and will guide T5 to the destination (180, –180). (q) T = 1,789: R1 guides T6 to the destination (180, –20). 
R2 guides T5 to reach the destination (180, –180). (r) T = 1,836: R1 guides T6 to reach the destination (180, –20). 

 
Similarly, as Figure 8(c) shown, at first time step, according 
to the combinatorial cost table, task T1, T2 and T3 are 
assigned to R1, R2 and R3, respectively based on global 
optimal method. After 10 time steps, at T = 11, the whole 
system reassigns robot R1, R2 and R3 to task T1, T3 and T2 
respectively, because the entire distance of such 
combinatorial strategy is shortest than others. T = 90, 231, 
570, 850, 882 and 1,020 are the same as T = 11. The 
snapshots of repeated auction method are presented in 
Figure 12. 

Results show the condition under which a robot assigns 
a task during simulation. As the figures show, it is apparent 
that robots often change tasks to perform according to 
distance, but not as frequently as we expected. Figure 13 
shows the time steps that robots reach around tasks and 
guide tasks to destinations. Figure 14 shows the total 
consumed time steps that robots reach around the first three 
tasks and all tasks, and guide the first three tasks and all 
tasks to the destinations. Simulation results show that the 

total number of time steps for robots reach around tasks is 
3,134 using our method. The first three tasks need only 
1,545 time steps. The total time steps by which robots guide 
the first three tasks and all tasks to the destination are 2,607 
and 7,505. Similarly, for the repeated auction method, the 
total number of time steps for robots reach around tasks is 
3,692. The increased time steps are 458 more than those 
obtained using our approach. For the first three tasks, it 
needs 2,018 time steps. The total time steps by which robots 
guide the first three tasks and all tasks to the destination are 
3,007 and 7897. For global optimal assignment method, the 
total number of time steps for robots reach around tasks is 
3,293, while for the first three tasks it needs 1,840 time 
steps. The total time steps by which robots guide the first 
three tasks and all tasks to the destination are 2,472 and 
7,165. The detailed improved performance of our approach 
relative to the existing task allocation algorithms is shown 
in Figure 14. 
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Figure 11 Simulation results based on repeated auction method, (see online version for colours) 

   

(a) (b) (c) 

   

(d) (e) (f) 

    

(g) (h) (i) (j) 

    

(k) (l) (m) 

Notes: (a) T = 0: T1, T2, and T3 are respectively allocated to robot R1, R2, and R3. (b) T = 534: T1 and T2 are respectively allocated to 
robot R1 and R2. R3 has reached around T3 and will guide T3 to the destination (–60, 100). T4 move freely. (c) T = 657: T1 is 
allocated to robot R1. R2 has reached around T2 and will guide T2 to the destination (–60, 160). R3 guides T3 to the destination 
(–60, 100). T4 move freely. (d) T = 814: T1 is allocated to robot R1. R2 guides T2 to the destination (–60, 160). R3 guides T3  
to reach the destination (–60, 100). T4 and V5 move freely. (e) T = 827: R1 has reached around T1 and will guide T1 to the 
destination (20, –40). R2 guides T2 to the destination (–60, 160). T4 are assigned to R3, T5 walks freely. (f) T = 909: R1 guides 
T1 to the destination (20, –40). R2 guides T2 to the destination (–60, 160). R3 has reached around T4 and will guide T4 to the 
destination (20, –180). T5 and T6 walk freely. (g) T = 1084: R1 guides T1 to reach the destination (20, –40). R2 guides T2 to the 
destination (–60, 160). R3 guides T4 to the destination (20, –180). T5 and T6 walk freely. (h) T = 1109: T5 is assigned to R1. R2 
guide T2 to reach the destination (–60, 160). R3 guides T4 to the destination (20, –180). T6 walks freely. (k) T = 1,203: T6 is 
assigned to R1. T5 is assigned to R2. R3 guide T4 to reach the destination (20, –180). (j) T = 1,447: R1 has reached around T6 
and will guide T6 to the destination (180, –20). T5 is assigned to R2. (k) T = 1,468: R1 guides T6 to the destination (180, –20). 
R2 has reached around T5 and will guide V5 to the destination (180, –180). (l) T = 1830: R1 guides T6 to the destination  
(180, –20). R2 guides T5 to reach the destination (180, –180). (m) T = 1,857: R1 guide T6 to reach the destination (180, –20). 

 

 



254 G. Li et al.  

Figure 12 Simulation results based on global optimal method (see online version for colours) 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Notes: (a) T = 0: T1, T2, and T3 are respectively assigned to R1, R2, and R3. The destinations of tasks are, respectively, D1, D2, and 
D3. (b) T = 11: T1, T3, and T2 are assigned respectively to R1, R2, and R3. (c) T = 90: T3, T1, and T2 are assigned to R1, R2, 
and R3, respectively. (d) T = 231: T2, T1, and T3 are assigned respectively to R1, R2, and R3. (e) T = 256: T2, T1, and T3  
are assigned respectively to R1, R2, and R3. R2 has reached around T1 and will guide T1 to the destination D1(20, –40).  
(f) T = 562: T1 and T3 are assigned to R2 and R3, respectively. R1 guides T2 to the destination D1(20, –40), R1 has captured 
T2 and will guide T2 to the destination (–60, 160). (g) T = 570: R1 guides T2 to the destination (–60, 160), T1 has arrived at 
(20, –40) and R2 will assign to T4, R3 assigns to T3. (h) T = 589: R1 guides T2 to (–60, 160), R2 assigns to T4, R3 has 
reached around T3 and will guide T3 to (–30, 100). (i) T = 882: R1 guides T2 to (–60, 160), R2 assigns to T4, T3 has arrived at 
(–60, 100) and R3 will assign to T5. (j) T = 903: R1 guides T2 to (–60, 160), R2 has reached around T4 and will guide T4 to 
(20, –180), R3 assigns to T5. (k) T = 981: R1 assigns to T5, R2 guides T4 to (20, –180), R3 assigns to T2. (l) T = 995: R1 
assigns to T5, R2 guides T4 to (20, –180), R3 has reached around T2 and will guide T2 to (–60, 160). (m) T = 1,020: R1 
assigns to T5. R2 guides T4 to (20, –180). R3 guides T2 to (–600, 160). (n) T = 1,208: R1 assigns to T5. T4 has arrived at (20, 
–180), R3 assigns to T6. (o) T = 1,339: R1 has captured T5 and will guide T5 to (180, –180), R3 assigns to T6. (p) T = 1,361: 
R1 guides T5 to (180, –180), R3 has reached around T6 and will guide T6 to (180, –20). (q) T = 1,709: T5 has arrived at (180, 
–180), R3 guides T6 to (180, –20). (s) T = 1,776: R3 guides T6 to (180, –20). 
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Figure 12 Simulation results based on global optimal method (continued) (see online version for colours) 

   
(m) (n) (o) 

    
(p) (q) (r) (s) 

Notes: (a) T = 0: T1, T2, and T3 are respectively assigned to R1, R2, and R3. The destinations of tasks are, respectively, D1, D2, and 
D3. (b) T = 11: T1, T3, and T2 are assigned respectively to R1, R2, and R3. (c) T = 90: T3, T1, and T2 are assigned to R1, R2, 
and R3, respectively. (d) T = 231: T2, T1, and T3 are assigned respectively to R1, R2, and R3. (e) T = 256: T2, T1, and T3  
are assigned respectively to R1, R2, and R3. R2 has reached around T1 and will guide T1 to the destination D1(20, –40).  
(f) T = 562: T1 and T3 are assigned to R2 and R3, respectively. R1 guides T2 to the destination D1(20, –40), R1 has captured 
T2 and will guide T2 to the destination (–60, 160). (g) T = 570: R1 guides T2 to the destination (–60, 160), T1 has arrived at 
(20, –40) and R2 will assign to T4, R3 assigns to T3. (h) T = 589: R1 guides T2 to (–60, 160), R2 assigns to T4, R3 has 
reached around T3 and will guide T3 to (–30, 100). (i) T = 882: R1 guides T2 to (–60, 160), R2 assigns to T4, T3 has arrived at 
(–60, 100) and R3 will assign to T5. (j) T = 903: R1 guides T2 to (–60, 160), R2 has reached around T4 and will guide T4 to 
(20, –180), R3 assigns to T5. (k) T = 981: R1 assigns to T5, R2 guides T4 to (20, –180), R3 assigns to T2. (l) T = 995: R1 
assigns to T5, R2 guides T4 to (20, –180), R3 has reached around T2 and will guide T2 to (–60, 160). (m) T = 1,020: R1 
assigns to T5. R2 guides T4 to (20, –180). R3 guides T2 to (–600, 160). (n) T = 1,208: R1 assigns to T5. T4 has arrived at (20, 
–180), R3 assigns to T6. (o) T = 1,339: R1 has captured T5 and will guide T5 to (180, –180), R3 assigns to T6. (p) T = 1,361: 
R1 guides T5 to (180, –180), R3 has reached around T6 and will guide T6 to (180, –20). (q) T = 1,709: T5 has arrived at (180, 
–180), R3 guides T6 to (180, –20). (s) T = 1,776: R3 guides T6 to (180, –20). 

 
Therefore, it is demonstrated that the consumed time steps 
which under our proposed method for robots reach around 
and guide the first three tasks to their destinations are  
fewer than under repeated auction methods. While for 
accomplishing all tasks, the consumed time steps by 
utilising global optimal assignment method are less than our 
approach, because of our proposed approach is an 
approximation global optimal allocation method, which is a 
suboptimal allocation approach. That is for the whole 
distributed multi-robot coordination, the efficiency to 
accomplish the given tasks is improved greatly using  
our proposed dynamical-sequential task allocation and 
reallocation method. 

5.5 Communication costs and computation times 

An important strength of our proposed task allocation and 
reallocation method is the ability to address changing 
conditions efficiently. Our method does not rely on the 
initial allocation solution. It can perform task reallocation 
according to variable solutions. Therefore, the distributed 
multi-robot coordination system is highly robust for 
environment changing, including robot malfunction and 
communication failure. Consequently, the method presented 

in this paper enables robots to address the dynamical 
environment in an opportunistic and adaptive manner. 
Communication costs and computational times using the 
two methods described above are presented in Table 1 and 
Table 2, where M represents the number of robots, N 
signifies the number of robots, T denotes the number of time 
steps, and T0 stands for the time unit used for calculating the 
distance from one robot to one task. 

Table 1 Communication costs 

Dynamical 
sequential Repeated auctions Global optimal 

Variable 2 ∗ M ∗ (M – 1) ∗  
(N – M + 1) 

2 ∗ N ∗ (N – 1) ∗ T 

Table 2 Computation times 

Dynamical 
sequential Repeated auctions Global optimal 

Variable M ∗ M ∗ T0 + (N – M) ∗ T0 N ∗ N ∗ T ∗ T0 

Communication costs and computational times of 
dynamical-sequential task allocation method vary according 
to time because of implementation of body expansion 
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behaviour for robots to select tasks. That is, if the distance 
between robot and task is less than D2Threshold, then the robot 
only plans a path to the latest assigned task. Consequently, 
it is more conducive to reduce the numerous computational 
times to plan paths and calculate distances for the entire 
system. Because communication is used for transmission of 

task selection information between robots, communication 
costs are greatly decreased compared to the existing 
investigated methods at each time step, especially compares 
with global optimal method. Figure 15 and Figure 16 show 
the communication costs and computational times for the 
simulation example above. 

Figure 13 Executed time step, (a) robot approaches tasks* (b) tasks at destinations** (see online version for colours) 

  
(a)       (b) 

Notes: *Based on our proposed method, robots reach around task T1, T2, T3, T4, T5 and T6 at time step T = 371, 667, 507, 969, 
1,448 and 1,422, respectively. Similarly, for repeated auction method, robots reach around task T1, T2, T3, T4, T5 and T6 at 
time step T = 827, 657, 534, 909, 1,468 and 1,447, respectively. For global optimal method, robots reach around task T1, T2, 
T3, T4, T5 and T6 at time step T = 256, 995, 589, 903, 1,339 and 1,361, respectively. 
**Based on our proposed method, robots guide task T1, T2, T3, T4, T5 and T6 to its destination at time step T = 705, 1,120, 
782, 1,273, 1,789 and 1,836, respectively. Similarly, for repeated auction method, robots guide task T1, T2, T3, T4, T5 and T6 
to its destination at time step T = 1,084, 1,109, 814, 1,203, 1,830 and 1,857, respectively. For global optimal method, robots 
guide task T1, T2, T3, T4, T5 and T6 to its destination at time step T = 570, 1,020, 882, 1,208, 1,709 and 1,776, respectively. 

Figure 14 Total consumed time steps (see online version for colours) 

 
Notes: Based on our proposed method, robots consumed 1,545, 2,607, 3,134 and 7,505 time steps to reach around the first three 

tasks, guide the first three tasks to its destination, reach around all tasks and guide all tasks to its destination, respectively. 
Similarly, for repeated auction method, robots consumed 2,018, 3,007, 3,692 and 7,897 time steps to reach around the  
first three tasks, guide the first three tasks to its destination, reach around all tasks and guide all tasks to its destination, 
respectively. For global optimal method, robots consumed 1,840, 2,472, 3,293 and 7,165 time steps to reach around the  
first three tasks, guide the first three tasks to its destination, reach around all tasks and guide all tasks to its destination, 
respectively. 
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Figure 15 Communication costs, (a) proposed method* (b) repeated auction method** (c) global optimal method*** 

  

(a)       (b) 

 

(c) 

Notes: *Using the proposed method, only when all distances between robots and tasks are greater than D2Threshold does the system 
require 12 unit communication costs. Otherwise, for most of the simulation time, the consumed communication costs are 
much less than 12 units; at some time steps, the consumed time steps are 0. 
** Based on the repeated auction method, every time robots reassign tasks require consumption of 12 unit communication 
costs, such as at time step T = 0, 1,084, 1,109 and 1,203. 
***Based on global optimal method, every time step robots require consumption of 12 unit communication costs. 

 
5.6 Discussion 

As discussed above, the implemented D1Threshold and 
D2Threshold are assigned as a priori values. Hereinafter, we 
specifically examine the study of the influence of threshold 
setting on our proposed dynamical-sequential task 
allocation and reallocation method. Actually, we have 
simulated large and small distance threshold values of 
various kinds and their combinations (Li et al., 2011c). 

Figures 17(a) to 21(a) present results of completed time 
steps, the consumed time steps, computational times, 
communication costs, and the numbers of changing 

assigned times under large and small distance threshold 
values of various kinds and their combinations. As the 
figures show, it is apparent that values of setting large 
distance and small distance thresholds exert a great 
influence on performances of dynamical-sequential task 
allocation and reallocation methods. Especially, those 
performance parameters including completed time steps, the 
total consumed time steps, computational times and 
communication costs fluctuate markedly when the values of 
large and small distance thresholds are large. 
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Figure 16 Computation times, (a) proposed method* (b) repeated auction method** (c) global optimal method*** 

  
(a)       (b) 

 
(c) 

Notes: *As with communication costs, using the proposed method, only when all distances between robots and tasks are greater 
than D2Threshold did the system require 9 T0 computational times. Otherwise, most simulation times, the consumed 
communication costs were much less than 9 T0; even at some time steps, the consumed time step is 0. 
**Using the repeated auction method every time robots reassign tasks consumed 9 T0 to compute distances and plan paths. 
***Using the global optimal method every time step robots consumed 9 T0 to compute distances and plan paths. 

Figure 17 Completed time steps (see online version for colours) 
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Figure 18 Total consumed time steps (see online version for colours) 
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Figure 19 Computational times (see online version for colours) 
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Figure 20 Communication costs (see online version for colours) 
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Figure 21 Number of changing assigned (see online version for colours) 
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Simulation results suggest that it is better to allocate large 
and small distance thresholds to a small value according to 
the environment area, the large distance threshold is about 
one-tenth of environment’s length and width, the small 
distance threshold is less than half of the large distance 
threshold. It is particularly interesting that if the D2Threshold is 
settled as constant, then the D1Threshold can vary. The optimal 
values of completed time steps, total consumed time steps, 
computational times, communication costs and number of 
changing assigned times appear when small distance 
threshold is small, as Figures 17(b) to 21(b) show, as 
presented by green points. Also, if the D1Threshold is set as 
constant, then D2Threshold changes. The optimal values of 
performance appear when the large distance threshold is 
great, as presented in Figures 15(b) to 19(b) by red points. 
We believe that the results are important for us to choose 
and to adjust the values of threshold to adapt to different 
environment scales. 

6 Conclusions 

A distributed multi-robot coordination system based on  
the method of dynamical-sequential task allocation and 
reallocation is presented in this paper. We propose such a 
method to reallocate tasks to robots for a dynamical moving 
task assignment problem. Our proposed method for multiple 
robots coordination system is based on multi-round 
negotiation and body expansion behaviour. To demonstrate 
the validity and efficiency of the proposed approach, 
various experiments are conducted using computer 
simulations. We simulate a kind of general approach 
market-based repeated auction method in the same situation 
compared with the proposed approach. Simulation results 
show that the proposed task allocation and reallocation 
method has greater validity and efficiency than the general 
task allocation method. Moreover, it is more conducive to 
reduction of the numerous computational times and 
communication costs compared to existing investigated task 
assignment methods. 

However, the disadvantages of our algorithm are that it 
still takes a long time for negotiation and communication, 
and requires certain computational times. Moreover, the 
dynamical-sequential method is an approximate global 
optimal allocation method that is a suboptimal allocation 
approach. Therefore, it is extremely well suited for small 
and medium scale distributed multi-robot coordination 
systems. To resolve such problems, it is better to combine 
our dynamical-sequential method and global optimal 
method for large-scale distributed multi-robot coordination, 
especially to reduce the negotiation time and communication 
costs. In future works, we will improve the proposed 
algorithms for a large-scale multi-robot coordination system 
and implement our approaches to a real robot system, such 
as employing our methods for guidance service system 
using multiple robots to guide customers in shopping malls, 
museums, and exhibitions. 
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