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Summary. An object-oriented fuzzy expert system to
support on-line control of an automated fermentation
plant is described. The major elements of the system
consist of a fuzzy inference engine, a database, a knowl-
edge base, and an expression evaluater. The expression
evaluater calculates specific rates for growth, and sub-
strate and product formation at different physiological
states during the cultivation from the measured data.
The specific rates are then compared with the standard
target rates stored in the database. If differences outside
the set tolerances were observed, the inference engine
analyses the reasons for the faults on the basis of the
knowledge represented in the form of a knowledge net-
work and fuzzy membership functions of the process
variables. The fuzzy expert system was developed on the
basis of a shell constructed by using the object oriented
Smalltalk/V Mac programming environment, with Lac-
tobacillus casei lactic acid fermentation as the example
of process application.

Introduction

Automatic on-line diagnosing and control of biopro-
cesses is frequently difficult owing to the uncertainties
involved, to the lack of suitable models and real-time al-
gorithms, and to little available knowledge on the ef-
fects of changes in microbial physiology. The lack of ap-
propriate on-line sensors for the measuring of key proc-
ess variables further limits the real-time information
available. In current practice manual bioprocess control
is often based on experts’ decisions utilizing empirical
and/or heuristic knowledge based on past experiments
and experiences. However, such methods are not with-
out problems. Process knowledge is difficult to standar-
dize because every expert may have a different basis for
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process control. Problems associated with uncertainties
may be solved by implementing experts’ knowledge into
intelligent process control systems (Linko 1988), by fuz-
zy state estimation (Rauman-Aalto 1988; Postlethwaite
1989), by realizing automated cultivation (Endo et al.
1989), and by applying the qualitative physics theory in
model construction (Travé-Massuyé et al. 1990). Fuzzy
control system principles have been described in detail
by Lee (1990) and Abel (1991), and quite recently rule-
based fuzzy control has been applied to extrusion cook-
ing (Eerikdinen et al. 1988), glutamic acid fermentation
(Kishimoto et al. 1991), and sake brewing (Oishi et al.
1991). Object-oriented programming has been employed
in constructing fuzzy expert control systems for extru-
sion cooking (Aarts et al. 1989), and for enzyme produc-
tion (Aarts et al. 1990).

In the present work, fuzzy reasoning has been ap-
plied for on-line, real-time handling of uncertainties in
the measurements, process knowledge and diagnosing as
suggested by Aarts et al. (1990). Consequently, an on-
line fuzzy expert system was constructed to aid the oper-
ator in the diagnosing and control of fermentation proc-
esses. Lactic acid fermentation was selected as an exam-
ple case study because of the available data and expert
knowledge at both participating laboratories. The fuzzy
LAexpert diagnosing system was based on the phyvsiol-
ogical activities of the microorganism, characterized by
the appropriate specific rates for cell growth, substrate
consumption and product formation as determined by
an automated on-line HPLC system and a turbidity sen-
sor integrated to the concept of an automated fermenta-
tion plant (Endo and Nagamune 1983; Endo et al. 1989;
Pokkinen et al. 1992). Although recently both F1A (flow
injection analysis) (Nielsen et al. 1989), and FTIR (Fou-
rier transform infrared) spectroscopy (Fairbrother et al.
1991) have been suggesied for on-line monitoring both
of substrate and product concentrations in lactic acid
fermeniation, the techniques were not implemented in
fully automated intelligent control systems. The paper
describes the fuzzy L Aexpert as a useful 100l for on-line
fermeniation diagnosis and control.



Materials and methods

Microorganism. Batch cultivations were carried out with the strain
Lactobacillus casei (ATCC 27092). The culture was stored at
—40°C.

Culture conditions. Seed cultures were grown on Rogosa medium
(Constantine and Hansen 1962) at 35°C, pH 6.5. The lactic acid
production medium contained per litre: 25 g glucose, 25 g clarified
corn-steep liquor, 1g KH,PO,, 1g K,HPO,, and 0.08¢g
MnSO,-2H,0. The components were sterilized separately and ad-
ded 1o the fermentor aseptically using a clean bench. All fermenta-
tions were run at 35°C either with 2.51 (2 | working volume) (Iwa-
shiva, Japan) or 30! (Komatsugawa Chemical Engineering, Ja-
pan) fermentors. The pH was adjusied to 6.5, and the agitation
rate to 150 or 200 rpm depending on the volume. On-line data was
stored in a specially constructed MS Excel spreadsheet at a sam-
pling-time interval of 30 min. The 30-1 fermentor was monitored
and controlled by the Bio Advanced Control System (BIOACS) as
described by Asama et al. (1990a) and Endo et al. (1989).

Analyses. Biomass was measured on-line with a sterilizable turbid-
ity sensor at 632.8 nm (Nagamune et al. 1985). Substrate and
product concentrations were measured on-line according 10 Endo
et al. (1989) by an HPLC unit (Shimazu, Japan) equipped with a
Shodex Sugar SH-1011 column (Showa Denko, Japan). The re-
spective dimensionless specific rates emploved in the diagnosis
were calculated and scaled within the range of {0.1] in real time
according 10 Endo and Nagamune (1983) as the function of time.
The Kalman filter was not employed because it was found 10 be
ineffective when studyving culture conditions that differed consid-
erably from the standard conditions. When the specific rates were
calculated on the basis of off-line analvses, the results were
smoothed by using a first order delay filter with a time constant of
about 6 h.

On-line diagnosing and control sysiem. The on-line diagnosis of
lactic acid fermentation was physically realized by connecting the
process computer Fujitsu A50 through a RS232C communication
line to the Macintosh 1lci computer running the fuzzv expert sys-
tem LAexpert (Fig. 1). The process computer received measure-
ment data from the fermentor as the input for the expression eval-
vater to calculate the specific rates afier filtering. The results and
the rest of the data were sent 10 the Macimosh. The inference en-
gine implemented in the Maciniosh then applied all available ex-
perimenial resulis and knowledge for the on-line diagnosis.

In the on-line diagnosis the process compuier semt filicred
measurement data and results of the on-line analvses of subsirate
and product concentrations from the HPLC and of cell mass from
the 1urbidity sensor to the LAexpert every 20 min. The on-line di-
agnosis started when daia was received from the process computer
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and written into the file. The measurements were compared to the
standard data file and, when differences outside the set tolerances
were observed, the malfunciion diagnosis started. The results were
automatically stored into a file named by the operator. The root
causes for the faults detected were reporied to the BIOACS sysiem
for process control and countermeasures.

Programming environment. 1n the present work a BIOACS for
automatic monitoring and control, supported by an on-line tur-
bidity sensor, and an on-line sampling unit for cell-free culture
medium coupled with an automated HPLC unit, was employed as
described by Asama et al. (1990a). An Expert System for Cultivat-
ing Operations (ESCO) built using the Eshell Al-tool in UTILISP
on the mainframe computer Fujitsu M780 was emploved in the
experimental design, and aided in the cultivation operations and
data analysis.

Fuzzy objeci-oriented expert system shell. The knowledge-based
system for on-line diagnosis, implemented in a Macintosh llci
computer was constructed 1o operate integrated with the BIOACS
system (Asama et al. 1990b). The Macintosh llci computer was
equipped with a 68020 processor, with an 8 MB memory on the
main board extended to 16 MB by using Virtual 0’30 software,
and 100 MB hard disc. The Smathalk/V Mac-(Dignalk, USA) -
based object - oriented fuzzy expert svsiem shell and the user in-
terface were modified from those described by Aarts er al. (1990).
The objeci-oriented programming environment enabled flexible
modifications. The objects were arranged hierarchically, with one
superclass and one or more subclasses. Objects can send and re-
ceive messages, and they know how to react or answer to the mes-
sages. Subclasses can always do what their superclass can, but
they may also have additional capabilities. For example, a variable
is an object class, which may have subclasses such as on-fine vari-
able and off-line variable. Both subclasses could understand the
message, ‘compare’, asking them, for example, 10 compare their
respective values 10 the standard values at a certain time poini. An
off-line variable could also reply to the message, ‘sampletimz’, by
answering sample time defined for it, etc.

Fuzzy variables. The shell was construcied 1o handle uncertainties
both in knowledge and in expert svstem shell measurements by
fuzzv reasoning. For any given apphcation, fuzzy membesship
functions for each process variable were defined in addition to the
set points, 10lerances, and possible ideal (standard reference) pro-
files. Fuzzy reasoning allowed the use of linguistic descriptions for
the variables, anc greatly facilitated the ransfer of human eapert
knowledge 10 the svsiem.

For every process variable fuzzy membership funcuions were
individually defined. All of the variables had two to five fuzzy hn-
guistic values with respecive membership functions. such as
‘small’, ‘normal’. ‘high®, ‘very low’. The fuzzy membership func-
tions vielded truth values for certain claims.
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Fig. 1. The cenfizuranon of the on-iie
fuzzy experi susiem
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A fuzzy set A of a universe X is characterised by a membership
function g, (x)). ¥x€X (u4: X—[0.1]) with a grade of membership
of x;in A, represented by a real number g (x,) within the interval
{0.1}. Thus in the case of the claim “remperature is 'low'” with the
measured value for temperature of (x;), the respective truth value
(grade of membership, m = u 4 (x;)) could be checked from the fuz-
2y membership function for the value ‘low’ for the variable rem-
perature. The truth value is O [ 4(x,) =0) when the claim is not at
all true and 1.0 (u,(x;) = 1) when the claim is absolutely true. The
claim is partly true if a truth value is between 0 and 1.0
[0<u.(x)<]1.0). The resulting grade of membership, m, of the
‘fuzzy-is’ operation can be read directly from the graphical repre-
sentation of the membership function. For the ‘fuzzy-is-not’ oper-
ation the result is the complement of m, such as 1 —m.

Given the fuzzy sets A, B on X, the basic operations on A, B
employed in the present system were ‘not’, ‘or’ and ‘and’, which
¢can be defined by using the grades of membership (m for A and n
for B). The *fuzzy-and’ operation for the truth values gives the
minimum as a result. In case of the ‘fuzzy-or’ operation, the maxi-
mum of the truth values participating in the operation is taken as
the result. The measured value for a fuzzy variable could also be
compared to the membership function with ‘fuzzy smaller than’ or
*fuzzy greater than’ operators. Fuzzy operators used are summar-
ized below.

‘fuzzy-is’ Halx) m
‘fuzzy-i1s-not’

(complement) ua(x)=1=pua(x) 1—m
‘fuzzy greater than’ prfx,) if and only if x,>a, 1—-m
‘fuzzy smaller than’ g(x;) if and only if x,<a, 1-m
‘or’ (union) #aB(x)=max{u.(x), us(x)} maxim,n)
‘and’ (intersection) g NB{(x)=minlu,(x), us(x;)] min[m, n]

Using fuzzy sets A C X and BC Y, a fuzzy relationship, R from
X 10 Y can be defined. The fuzzy relationship can be expressed as
a Cartesian product, RC X x Y. The corresponding membership
function is e (x,))=min {u..(x), £g ()], where xeX and yeY (Lin-
ko 1988). This represented the basic rule used in LAexpert,
R=if A, then B, for example “Jf cellmass is ‘fuzzy greater than’
‘high’ then measured product formation rate is ‘low’.” Or in the
case of two rules connected (o a chain, for example, “If the inocu-
lum size is ‘small’ rhen cell mass is ‘low’ and rhen measured u is
‘low’.” This can be represented as a fuzzy relationship (Dupois et
al. 1980):

He. (inocSize, celiMass, pMeas)
= min {genar (in0cSize), min Ly ow (cellMass), 4 ow (1Meas)]}
= miDd [enary (in0cSize), ¢y ow (celiMass), uow (HMeas))

Trapezoidal fuzzy membership functions were emploved be-
cause of their simplicity in design and use, defined with four val-
ues (a,.s). Thus a fuzzy set A (remperature is ‘low’') can be defined
for example as A =[10°C, 30°C, 33.5°C, 35°C]. The points a,
and a, denote the truth value of 0 and the points between a; and a,
the truth value of unity. The areas a,-a, and a,-a. represent fuzzy
regions. Sometimes these regions are not fuzzy but the truth value
of unity continues to infinity. Then the corresponding a, values are
denoted by ‘nil’. When observing fuzzy variables, the ‘fuzzy-is’
operator denoted the grade of membership, ‘fuzzy-is-not’ repre-
sented the complement of the grade of membership, ‘fuzzy greater
than' denoted the complement of the grade of membership when
x, belonged 10 [a;, a,} and ‘fuzzy smaller than’ stood respecuively
for the complement of the grade of membership when x, belonged
10 [2,. 2:]. The grade of memberships, u, (x) and u{x) for differ-
ent values of x, are shown below

0 (v, <a;)
((,r,—a-‘)/(a:-al) (a,sx,<3y)
1 (a.=<x,<a,)
{a.—v)/(a;~a.)
¢ (a:<x)

Ha(y) =
(a: <y, <as)

] (xi<a,;)
(a;—-x)/(a; ~2a,) (a,<x,<ay)

uz(x)={0 (a:sx,52y)
(x,—ay)/(a,—2a;) (aysx,<al)
1 (a.<x,)

Process knowledge for fault diagnosis and control. Collecting and
organizing process knowledge is one of the most imporiant tasks
when developing an expert system. In the present work process
knowledge about lactic acid fermentation was collected through
several L. casei cultivations on different scales. In addition, data
available in the literature, and other expert knowledge about bio-
processes was used.

In a typical fuzzy expert system process knowledge is divided
into the knowledge base, and the database. The main parn of the
knowledge in LAexpert was represented as the knowledge network
and the fuzzy membership functions of the variables, stored in the
knowledge base. Table 1 lists example fuzzy membership func-
tions used in the present knowledge base for the L. casei lactic
acid fermentation.

The time-course of a fermentation was described with calcu-
lated standard specific rates for microbial grqwth, substrate con-
sumption and product formation, based on 1ypical target curves
(Pokkinen et al. 1992). The standard specific rates, dimensionless
concentrations, and the respective time-course patterns were in-
cluded in the database of the svsiem after filtering. The course of
the fermentation was divided into three different phases (Endo
and Nagamune 1983) on the basis of the different physiological
states of the cultivation observed from the standard specific rate
patterns.

Results and discussion
Knowiledge network

Much of the knowledge in the fuzzy expert system
LAexpert was expressed in the form of a knowledge net-
work, a part of which is shown in Fig. 2. The knowledge
network is a user-friendly graphical way to represent if-
then rules typical of expert svstems. The Smalhalk pro-

Table 1. Fuzzy membership functions for example process varia-
bles. The trapezoidzal functions are described by (a;. a,, a,, a.)

Fuzzv vaznable a, a; a, a,

pH
Very Low Nil Nil 4.0 6.0
Low 4.0 6.0 6.4 6.5
Normal 6.4 6.5 6.5 6.6
High 6.5 6.6 6.8 12
Very high 6.8 12 Nil Nil

Lactic acid (o)
Very Low Nil Nil -10 -3
Low -10 -3 - 3 0
Normeal -3 0 0 3
High 0 K 3 10
Very hich ki 10 Nil Nil

v and = (%)
Very Low Nil Nil - 1.2 -0.95
Low - 1.2 ~0.9s - 075 0
Normai - 0.78 0 0 0.75
High 0 0.7s 0.95 ).2
Very high 0.95 1.2 Nil Nil
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Fig. 2a, b. A simplified example of inferencing is illustrated by a
part of the knowledge network for LAexpert. a The inference en-
gine has detecied a2 fauli ~Specific produci formation rate (r) is
‘low’.” The heavy lines illusirate the search for the rootl cause
through backward chaining. b The degree of reliability of the in-
ferencing is reported 10 the operator according to the certainty
factors between the nodes of the whole rule chain, shown in heavy
lines

gramming environment was especially suited 1o graphi-
cal representation. This style of knowledge representa-
tion is both illustrative and easy 1o edit. The expert svs-
tem shell was equipped with an editor for building such
knowledge networks. The network consisted of several
nodes of various tvpe, interconnected with arcs. The
nodes represenied facts about the process, and the arcs
connecting the nodes showed the relationship between
two facts. The total amount of the nodes in this network
1s about 100. The complexitv of the network correlates
with the number of arcs. The weight of the connection
was expressed by a factor, a real number, within a range
of [0.1). The tvpe of node illustrated the tvpe of the fuz-
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zy operator in question. The rectangular start-nodes
were given a short code written in Smalltalk svntax,
which would be evaluated when the node was considered
in the diagnosis. The pointed nodes stood for the opera-
tor ‘and’, and the oval nodes for the operator ‘or’. The
rectangular action-nodes were used 1o give information
for the operator, and were differentiated from other
nodes by thinner arcs.

On the left side of the knowledge network the origi-
nal root causes 1o the faults and malfunctions were illus-
trated as start-nodes. All start-nodes were given a truth
value for the appropriate root cause in the form of a
fuzzy membership function. The oval-type end-nodes
with the operator ‘or’ on right-hand side of the network
included in natural language all of the possible faults
and malfunctions the system was able to detect. Thus,
for example the expression ‘vstd is faulty’ tells that the
standard (std) for the substrate consumption rate (v) is
faulty. This might be the case for example if the opera-
tor had accidentally loaded s1andard curves for different
cultivations. All of the original causes were given as fuz-
zy expressions for the appropriate variables such as
“pH = ‘high’” (measured value for pH is above the toler-
ance in the range of fuzzy ‘high' for pH) or “glucose
fuzzySmaller than: ‘low’™ (measured value for glucose
concentration is below the alarm limit in the range of
fuzzy ‘low’ for glucose) or “(self agitation = ‘normal’)
not” (measured agitation rate has changed form the set-
point and does not belong to the membership function
‘normal’ for the agitation rate any more). Inasmuch as
the on-line knowledge-based sysiem for example knows
the current value of the pH in real-time, the truth value
of the corresponding start-node fact ~“pH=‘low’" is
continuously coupled to the chain from the end-node in
the context of the sysiem.

Example rule chains from the LAexpert knowledge
network for lactic acid fermentation are expressed be-
low. The start- and end-nodes were connected with arcs
to form a detection chain of if-then rules through one or
more other nodes, such as:

1. *If lag phase is longer as compared 10 standard case
and conditions have made it longer

then physiological phaces are delaved from the standard
ones.”

2. “If pH and/or temperature is not normal

then cultivation conditions are faultv and specific rates
for growth, substrate consumption and product forma-
tion are low.”

3. “If lactic acid concentration and glucose concentra-
tion, both initial and current, are higher than standard
values

then HPLC calibration is off and then the measured
specific substrate consumption rate is high.”

In some cases technical nodes without anv new informa-
tion are needed in the presenting of the rule and com-
pleting the chain.

Inferencing in the knowledge network

An example of inferenaing is given ir Fig. 2. When the
system detects a fault. the inference engine begins back-
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ward chaining through the network in order to find the
reasons for the fault. In a typical case there are several
possible root causes 10 a certain fault or malfunction.
To find the most probable one the inference engine cal-
culates the certainties for each possible root cause by
multiplying the certainty factors defined for each arc in
the network (Fig. 2a). A node A with a truth value of a,
linked with a certainty factor of p to node B represents a
rule “If A is true with a value a, then B is true with 2
value a-p=b." In the example case the inference engine
has detected a fault ‘m is low’. Six possible causes for
the fault are found. The inference engine then checks
the truth values for all of the potential faults by evaluat-
ing the appropriate fuzzy expressions in the order of im-
portance as indicated by the respective weights of the
arcs. The grades of membership for the fuzzy sets repre-
senting the root causes in question is automatically con-
firmed on the basis of the current measured value for
the variable. The cause with the highest truth value was
the most likely root cause for the fault detected. [n the
example case, when the measured pH, 5.5, was fuzzv
‘low’, the truth value was found to be m=0.75 [pH
‘low’ =(4.0, 6.0, 6.4, 6.5), m=(5.5-4.0)/(6.0-4.0)]) and
the overall truth value for the fault observed was 0.61
(0.9:0.9:0.75). If the value obtained was below the giv-
en step value (set here to 0.5), the cause was neglected.
In this example the causes ‘temperature is not normal’,
‘agitation is not normal’, and ‘pH is very low' were thus
neglected, because their respective overall truth values
were less than the set limit value of 0.5 (0.08, 0.42, and
0.20 respectively). Thus, in this case only the ‘agitation
rate not normal’ with the measured value of 142 rpm
and the respective truth value m=0.53 from the mem-
bership function, was reported to the operator as an-
other possible root cause. If there are several causes with
the value higher than 0.5, they all are reported 10 the
operator in the order of decreasing certainty.

After this, the inference engine follows the chain
back to the fault and reports the reliability for the faul
reasoning by informing the operator about certaimy fac-
tors in the chain and the truth value of the original
cause/causes (Fig. 2b). Furthermore, it is possible 1o
check the truth value for the fault detected, to see how
severe the problem is. The whole chain, and the reliabil-
ity of the inferencing is reported to the operator. in the
example case as: “pH is low 75%, conditions are faulty
68%, specific growih rate is low 61%. Another possible
cause: agitation is not normal 53%."

Fault diagnosis

In the fauli diagnosis, the inference engine used both the
knowledge base and the database. Timing was con-
trolled by the process computer. The diagnosis was per-
formed using on-line filtering for data seis becavse the
diagnosing method was verv sensitive 10 any noise in the
measurements. At every sample time the svstem com-
pared the incoming data set io the corresponding s:and-
ard {1arget) daia. which should be the same within a cer-
l1ain given average 1olerance, usually in this work

+15%. The tolerance could be adjusted by the operator
at will. Furthermore, the phase of the cultivation de-
fined on the basis of the measured data should be same
as the one defined for the respective time by the stand-
ard database. The phases were defined on the basis of
the first derivative calculated from the moving average
of four subsequeni vaiues of specific rates. If the deriva-
tive was positive, the phase in question could be for
example exponential; if the derivative was zero, the re-
port to the operator indicated that the phase is chang-
ing, and so on. If any differences bevond the allowed
limits were observed, the inference engine started to
search for the reasons for the deviations found. Typical
example causes for faults are given in the following: (a)
u and/or n is ‘low’ when (1) pH is ‘low’ or ‘high’; (2)
inoculum size is ‘small’; (3) precultivation time is ‘long";
(4) cell mass is ‘high’; (5) HPLC calibration is off; or (b)
phases are delayed when (1) inoculum size is ‘small’; (2)
precultivation time is ‘long’; (3) HPLC calibration is
high, substrate and product concentrations are high.

Because the automatic fault diagnosis was based on
the use of on-line HPLC and a turbidity sensor, their
correct calibration and stability were essential for the
proper functioning of the svsiem. This was taken into
account in the knowledge network, which was also capa-
ble of detecting calibration-relaied faults.

It can be concluded that the on-line diagnosing sys-
tem was successfully tested by running experiments with
the 301 fermentor controlled by BIOACS. The commu-
nication interface constructed by using Smallialk to con-
trol the external data exchange of the Macintosh operat-
ing systern worked well. The fuzzy expert system devel-
oped proved to be able 10 communicate with the process
control computer, and to perform on-line diagnosis. We
are currently further expanding the system to provide
real-time control, by adding direct control functions to
the knowledge network.

Nomenciature: A, B fuzzy sets [4 =(a,. 23, a3, a,)]; A, comple-
ment of A; A x B, cartesian product of two sets 4 and B; Al, ar-
tificial intelligence: 2,-2.. cornerpoints for trapezoidal fuzzy mem-
bership function; #1, grade of membership in fuzzy set A; n, grade
of membership in fuzzy set B; R, a fuzzy relation; std, standard;
X, Y. classical sets of objecis (universe of discourse); x, y measus-
able vanables: x,, measured value for variable x; p, specific
growth rate (s ') w4 (v). g4 (x) fuzzy membership functions for
fuzzy set A; uy(x), ug(v) fuzzy membership functions or fuzzy set
B; uMeas, p calculated from measurements; ux(X, Y. 2), fuzzy
membership function for the fuzzy relation R; v, specific substrate
consumption raie (g <~ '); =, specific product formation rate
(gs™'): e, belongs to; C. non-strict inclusion; v, union; N, in-
tersection; v.x, universal quamifier (for all x).
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