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Abstract

In this paper, a rule-based, real-time knowledge based system for bioprocess fault diagnosis and control is
described. The system was designed to generate on-line advice for the operators and to supervise automatic control
of bioprocesses, using biotechnical production of lactic acid as an example process. It consists of a real-time data
acquisition and data processing system linked to a fuzzy expert system written in Smalltalk V/Mac. The expert
knowledge was expressed in the form of a rule-based knowledge network, fuzzy membership functions and control
strategies. The fuzzy expert system carries out on-line fault diagnosing on the basis of filtered specific rates
calculated from process variable measurements, and provides suitable countermeasures to recover the process. Fault
diagnosis was realized both by backward and forward chaining procedures. The system was constructed to allow
three different control strategies (given here in Smalltalk syntax), change of Setpoint, FuzzyAnswer for each
discovered fault, employing the fuzzy mean defuzzification method, and linguistic Advice to the operator. The
system was successfully tested on-line with a laboratory scale process.
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1. Introduction

* € ~sponding author,

Ab.  iations: A, B = fuzzy sets; NB = negative big; NM =
negative medium; NS = negative small; P = product concen-
tration (g 17!); PB= positive big; PM = positive medium:
PS = positive small; S = substrate concentration (g 17!); U=
universe of discourse; u; = an element of U; X = biomass dry
weight (g 17'); ZE = zero; v = specific substrate consumption

In the field of bioprocess control, there are
many kinds of objectives such as maintaining cer-
tain environmental conditions to optimize the
process. There are methods which can serve these
various objectives, but their applications to bio-

rate (g s™%); p=specific growth rate (s7'); po(u,)=
membership function of fuzzy set A; 7 = specific product
formation rate (g s™!); o = standard deviation; U = union:
N = intersection. Text in italics refers to Smalltalk code.
]Visiting scientist from HUT at RIKEN. Present address:
ValioData, Inc., PB 229 SF00101 Helsinki, Finland.

processes may cause some problems owing to
considerable non-linearities, time varying param-
eters, and a number of disturbances in the pro-
cess. Thus, in bioprocess control one of the major
problems is real-time estimation of the system
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state. This is often difficult owing to the lack of
reliable sensors, system complexity, model uncer-
tainties and parameter variations. Ideally, the
state of the process should be determined by
means of measurements, and the knowledge of
the process behaviour expressed in terms of a
model. Since bioprocesses often cannot be com-
pletely described by a single mathematical model,
the experience gained by working with actual
processes provides valuable information. How-
ever, human operators require time-consuming
training. Further, reserve personnel is often
needed. The operators vary in reliability, consis-
tency and emotions when dealing with the prob-
lems involved. The use of human operators is
often unsuitable under hazardous circumstances.
In order to overcome all such problems in a
bioprocess control, knowledge based systems have
been introduced (Linko, 1988).

Knowledge based systems are constructed for
emulating the reasoning process of a human op-
erator. The knowledge obtained from experi-
enced operators can be expressed as a set of rules
or other form of heuristics. We have previously
described a knowledge based fuzzy expert system
developed on the basis of a shell called BIOTALK
(Aarts et al., 1990). In this expert system shell,
the knowledge base employs ‘If, then’ rules in the
form of a knowledge network. According to
Stephanopoulos (1987), rule-based expert systems
are favoured by chemical and bicchemical engi-
neers to process verbally formulated knowledge.
By collecting the knowledge from experts and
cultivation processes into a knowledge network a
number of example applications were developed
for bioprocess fault diagnosis and control (Pok-
kinen et al., 1992; Siimes et al., 1992a,b). The
goal of the present work was to incorporate on-
line control ability to the expert system shell and
to automate some of the supervisory tasks cur-
rently performed by expert operators according
to the concept described by Endo et al. (1989).

2. System description

A 30l jar bioreactor equipped with a sampling
unit and an on-line laser turbidity electrode was

employed. The on-line sampling unit was con-
nected to an HPLC analyzer, and a sample of
cell-free medium was injected every 20 min to an
ion exchanger column in order to obtain actual
values of product and substrate concentrations
(Endo et al.,, 1985). The sterilizable on-line laser
turbidity electrode was used to measure the opti-
cal density to represent cell mass concentration
(Nagamune et al., 1985).

The bioreactor was monitored by a measure-
ment and control system BIOACS (Bio Advanced
Control System), installed in a Fujitsu A-2403
workstation used as a process computer (Endo et
al., 1989). The workstation performed real-time
data acquisition by collecting data from the pro-
cess controller and from the HPLC unit, and
carried out real-time data processing by filtering
the actual values of substrate (S), product (P) and
biomass (X) concentrations, and by calculating
the respective specific rates (v), () and ()
(Pokkinen et al., 1992). A conventiona! fourth-
order delay filter with a time constant of approx.
26 min was used. The calculated specific rates
along with the measured values of the process
variables (temperature, pH, agitation rate, and
substrate product and cell mass concentrations)
were transferred to the expert system imple-
mented in a Macintosh IIci computer. An infer-
ence engine, a database for standard variable
time-courses, fuzzy sets for the process and state
variables, and a knowledge network representing
‘If, then’ rules were incorporated into the
Smalltalk /V Mac-based object oriented fuzzy ex-
pert system shell. The inference was based both
on backward and forward chaining described in
detail below.

The knowledge based system performed on-
line, real-time diagnosing and control. This was
made possible by multiplex communication be-
tween the system and the process computer
through RS232C communication line as illus-
trated in Fig 1.

3. Knowledge expression

The system shell was constructed in the object
oriented Smalltalk V/Mac programming environ-
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Fig. 1. A schematic diagram of the system.

ment. In the system, expert knowledge was ex-
pressed in a form of a rule-based frame network
named knowledge network (Aarts et al., 1990).
The network was constructed in a modular form
in order to facilitate easy modifications and addi-
tions. An example of adding a new sub network
to an existing network is shown in Fig. 2. Each
frame consisted of a name representing a fact in
the bioprocess, and of several slots indicating
either stationary or dynamic values of knowledge.
In the present work the knowledge network was
constructed of nodes that have ‘If, then’ correla-
tion. A number of different nodes such as a
StartNode, EndNode, OrNode, AndNode, For-
wardOrNode, ForwardAndNode, ActionNode and
ForwardActionNode were defined in Smalltalk
syntax as separate classes for various purposes.
The knowledge network components are sch-
ematically shown in Fig. 3. The StartNodes repre-
sent the original causes for malfunctions,
EndNodes the observable faults in the bioprocess,
and OrNode, AndNode, ForwardOrNode and For-
wardAndNode the fuzzy operations in question
for backward and forward chaining procedures,
respectively. ActionNodes and ForwardAction-
Nodes represent the control actions in the case of
backward chaining and forward chaining proce-
dures to recover the process.

Fuzzy membership functions were integrated
into the network and used to handle uncertainties

both in the measured variables and in the causal
relations between the nodes. For the StartNodes
fuzzy sets were static, but for the EndNodes fuzzy
sets could be dynamically changed with time. The
fuzzy regions were defined on the basis of the
standard deviations derived from experiments
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Fig. 2. Adding new knowledge to the network. TruthVaiues
written below the nodes are calculated according to the origi-
nal network and TruthValues on top of the nodes are calcu-
lated after adding new knowledge. The TruthValues of the
shadowed nodes remain unchanged after the addition of the
new subnetwork.
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Fig. 3. Two example rule chains of the current knowledge network for lactic acid cultivation, representing the following rules. (a)
Forward chaining: 7 — 4: If ‘x =‘normal” then ‘process is going well’; 4 — 1: If ‘process is going well’ then ‘temperature =‘ZE",
(b) Backward chaining: 8 = 6: If ‘v =‘high” then ‘incculum is ‘strong"”; 6 = 2: If ‘inoculum is ‘strong” then ‘inoculum size is
‘large”; 6 — 3: or ‘preculture time is ‘long”; 2 — S: If ‘inoculum size is ‘large” then ‘temperature =‘NS”.
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Fig. 4. Dynamically changing fuzzy membership functions for
the change of state variable p. o = standard deviation of du.

carried out under standard conditions. The stan-
dard deviations of the state variables presented in
the EndNodes were much larger in the beginning
of the cultivation due to signal noise, and de-
creased gradually towards the end of the process.
An example for a state variable is shown in Fig. 4,
which clearly demonstrates how four different
fuzzy intervals for each state variable were used
depending on the process time involved.

4. Functional structure of the knowledge network

In order to realize the inferencing in the sys-
tem, several slots and procedures were imple-
mented to the nodes in the knowledge network.
Slots could store either static or dynamic values,
of which the latter were calculated by the proce-
dures given. Since an object oriented program-
ming environment was used, procedures are re-

Semen
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ferred to here as messages and slots as instance
variables. The procedures and slots employed are
described in a greater detail below.

Slots named InNodes and OutNodes can be
defined for each node in the knowledge network.
The set of nodes connected to the right side of
the certain node are defined as InNodes of that
node and the nodes connected to the left side are
called OutNodes. Together they indicate static
knowledge of a causal relationship between two
facts in a bioprocess. InNodes include the reasons
for a fact in a node, and OutNodes show the
results following from the reasons. A TruthValue
is a slot, which indicates the degree of possibility
of the fact as the basis of a single node. The
TruthValue varied within a range from 0 to 1. In
order to tie the knowledge of a certain bioprocess
together a slot named Model was defined. This
lot represents the model of the process under
investigation. It includes a procedure to access to
the process and state variables of the bioprocess
in question, to the respective fuzzy membership
functions, and to realize dynamic calculation of
the TruthValue of the facts.

Each node in the network is given a prelimi-
nary TruthValue by an initializing procedure per-
formed by the node itself as follows:

(a) OrNode, ForwardOrNode: The node initial-
izes its TruthValue automatically to 0.

b) AndNode, ForwardAndNode: The node initial-
izes its TruthValue to 1.

(c) StartNode, EndNode: The node calculates the
TruthValue of its fact using a fuzzy membership
function defined for the variable in question ac-
cording to the slot Model.

Subsequently, the TrurhValue of a node is re-
calculated from the actual TruthValues of the
“tNodes through backward chaining or from its
JutNodes in forward chaining. The calculation
depends on the node type in the following way
(TruthValues p.,, pg denote different values ac-
cording to the nodes in question in each case):
(a) OrNode, ForwardOrNode: The TruthValue is
set according to the maximum operation (Fuzzy-
Or); a maximum of the TruthValues of the In-
Nodes (OutNodes in case of ForwardOrNodes,
respectively), (u, U pg = max{u,, ug).

(b) AndNode, ForwardAndNode: A minimum

value (Fuzzy-And) of the TruthValues of its In-
Nodes (OutNodes in case of ForwardAndNodes,
respectively) is taken as a new TruthValue, (1, N
pp=min{p,, pg).

The TruthValue calculations described above
are independent of possible later network modifi-
cations or additions. Consequently, possible newly
installed parts of the knowledge network can be
considered separately in this respect. Fig. 2 illus-
trates how a newly installed part only affects the
nodes B and C of the original network, which
have a causal relationship with the new part of
the network. The TruthValues of the rest of the
nodes, marked with shadow in the original net-
work do not change.

5. Backward and forward chaining procedures in
fault diagnosis

In a typical deductive system, such as fault
diagnosis, inference is done at query time using
backward chaining. It is a method of reasoning by
which goals are proven to be true by recursively
proving that the sub-goals are true. In the present
work, original causes of possible faults were se-
lected as the goals in the fault diagnosis. Both
backward and forward chaining procedures were
needed in order to diagnose two different types
of faults; those which can be realized by a simple
measurement and those which are more abstract
and cannot be measured. In the backward chain-
ing procedure, each node in the network, starting
from the EndNodes, sends a message backward
to each of its InNodes and as a result the Truth-
Value from each of them is returned. After re-
ceiving all of the TruthValues from the appropri-
ate InNodes, the node in turn will recalculate its
own TruthValue and send it further to its Out-
Nodes or, in case there are no more OutNodes, to
the inference engine.

In the present work the forward chaining
method was implemented to the fuzzy expert
system shell in order to diagnose those character-
istic phenomena that are not directly observable,
such as microbial contamination during the pro-
cess. In the present fault diagnosis system, the
forward chaining is complementary to backward



e e ta b st e

114 C. von Numers et al. /Joumnal of Biotechnology 34 (1994) 109-118

chaining. The inference begins with known facts
and proceeds forward seeking to generate new
facts by matching rules contained in the knowl-
edge base (Russo and Peskin, 1987). Each node
in the network sends the forward chaining mes-
sage to each of its Qutnodes, starting from the
leftmost ones, and as a result the TruthValue
from each of them is returned. After receiving all
of the TruthValues from its QutNodes, the node
in turn will recalculate its own TruthValue and
send it further to its InNodes or, in case there are
no more InNodes, to the inference engine.

6. Fault diagnosis

An illustrative example of fault diagnosing em-
ploying backward chaining is shown in Figs. 5 and
6. First, the system receives the measured or
calculated values of the process variables. Then,
the inference engine sends a message in a consec-
utive order to each one of the EndNodes to
calculate their respective TruthValues on the ba-

sis of the measurement data. As a result each
EndNode returns a TruthValue for its fact. If this
TruthValue is higher than the pre-defined thresh-
old, the EndNode is regarded as the observed
fault or fact in the bioprocess.

In order to find possible reasons for this mal-
function the inference engine sends a backward
chaining message to the EndNode which further
sends it to the InNodes in the network. During
this procedure the nodes that are defined for
forward chaining (ForwardOrNodes, Forward-
AndNodes) will reply by similarly carrying out
forward inference using the forward chaining
procedure., When backward chaining reaches the
StartNodes, which stand for the original causes
for malfunctions, their TruthValues are calculated
by evaluating the respective fuzzy operations de-
fined in their facts.

In this example (Figs. 5 and 6), the OrNodes
(= =‘low’, conditions faulty) and AndNode (inoc-
ulum is weak) are initialized to 0.0 and 1.0, re-
spectively, on the way to the SrartNodes. The
procedure is performed chain by chain, calculat-

©

temperature

='very high’

@

agitation
= ‘high'

O,

culwretime
="long'

precult. time
= 'short’

@

O,

conditions
faulty

Fig. 5. A part of the knowledge network for lactic acid cultivation.
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Fig. 6. An example of fault diagnosis in lactic acid cultivation.
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ing the TruthValue for each node on the way back
to the EndNode (m =‘low’). The TruthValues of
the StartNodes 1 to 4 (temperature =‘very high’,
agitation = ‘high’, culture time =‘long’, precul-
ture time =‘short’) were 0.8, 0.7, 0.6 and 0.0,
respectively. After termination of the backward
chaining procedure, every node has its own
TruthValue. The TruthValue of one node can be
regarded as a TruthValue of a certain part of the
network. Consequently, for example in the step
13 the OrNode 5 (conditions faulty) has a Truth-
Value of 0.8 obtained as the maximum of the
TruthValues of the StartNodes 1 (temperature
=‘very high’, TruthValue 0.8) and 2 (agitation
=‘high’, TruthValue 0.7).

After having set the TruthValue of every node
by using the slots and procedures available, the
inference engine starts to report all the chains in
the network that have a TruthValue higher than a
pre-defined threshold by displaying the faults and

" & File Edit Data Input

Process Report Window
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their reasons in a hierarchical order to the opera-
tor. As a result the appropriate EndNode (i
=‘low’) will be given a new TruthValue (0.8)
calculated according to the Fuzzy-Or operation
(the maximum of the TruthValues of the In-
Nodes), representing the level of certainty at
which the network could predict the original rea-
son for the malfunction represented in the facts
of the EndNodes at a given time. Fig. 7 gives an
example display of the user interface at a given
time during the diagnosing.

7. Control strategies

After the system has determined the cause of a
process fault through inferencing as described
above, it analyzes the appropriate control actions.
All of the StartNodes which have a TruthValue
greater than a pre-defined value are considered
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Fig. 7. User interface of the expert system during fault diagnosis of a lactic acid production process.
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as possible reasons for the observed malfunction.
With measurable faults each one of such nodes
has its own control strategy represented in a form
of a connected ActionNode, or similarly in the
case of forward chaining with non-measurable
faults a ForwardActionNode for sending a mes-
sage on-line to the process computer for further
actions. The control strategies were individually
pre-determined for each one of such nodes on
the basis of expert knowledge representing the
key strategies to recover the process. The three
basic types of control strategies used in the pre-
sent work were, in Smalltalk syntax, SetPoint,
Advice and FuzzyAnswer.

In the SetPoint control strategy an exact value
combined with the name of the process variable
was sent to the process computer in order to
adjust the process variable to its pre-determined
set point.

If the inference engine had reached the con-
clusion to recommend the control strategy called
Aduvice, the process computer would draw the
attention of the operator to this fact and give him
advice for a manual operation.

The FuzzyAnswer control strategy consisted of
three parts, a process variable, the respective
pre-defined fuzzy membership function, and the
TruthValue of the discovered original cause. For
each discovered fault a FuzzyAnswer is created.
To obtain crisp values when using the control
strategy FuzzyAnswer, a defuzzifier based on the
fuzzy mean (FM) method was employed accord-
ing to Eq. 1 (Postlethwaite 1990):

fs_*up.A(u) du
Ap=—*—F— (1)
j;s_ ra(u) du

where Ay is the crisp value of the fuzzy set A,
p4(u) is the fuzzy membership function of A, and
pa(u)=0forus<s_oruzs,.

To further illustrate the function of FuzzyAn-
swer an example case is described below. The
EndNode messages of ‘v =‘high” and ‘u
=‘normal” were observed, and as a result of the
fault diagnosis the StartNode ‘inoculum size
‘large” with a TruthValue of 0.4 was found as the

original cause of the malfunction of . being
‘high’ (see Fig. 3). Further, the fact ‘% = ‘normal”
was connected to the ForwardOrNode ‘process
going well’ with a TruthValue of 0.6. After finding
the two facts two FuzzyAnswers were activated as
countermeasures, (a) ‘Change temperature to NS’
(TruthValue 0.4), and (b) ‘Change temperature to
ZE’ (TruthValue 0.6). The latter control strategy
is applied to reduce radical changes in the set
points when the process is actually going well
according to the measured value of p. The real
control value (change of setpoint) for the temper-
ature was calculated on the basis of the TruthVal-
ues of these two activated ForwardOrNodes. The
expert system calculates the crisp values for the
control variables separately using FM method for
defuzzification. In the fuzzy expert system shell
the membership functions for the defuzzification
of any chosen variable can be easily set through
the user interface. The crisp values obtained are
sent back on-line to the process computer to-
gether with the appropriate control strategies for
further actions. The system performed satisfacto-
rily when tested on-line with a laboratory scale
lactic acid production process.

8. Conclusions

It is difficult to avoid problems related to
malfunctions in a production process. However, if
faults are diagnosed and corrected before becom-
ing too serious, various losses in the bioindustry
can be significally reduced. For this reason an
on-line, real-time fuzzy knowledge based diagnos-
ing and control system was developed. A fuzzy
expert system was installed to realize the diagnos-
ing and control faculties, and a real-time data
acquisition and processing system was used to
carry out on-line actions. Fuzzy membership
functions of each process and state variable, ca-
sual relationships to malfunctions, and defuzzifi-
cation rules were determined on the basis of
historical data and experience from the actual
production processes. The system could satisfac-
torily perform on-line, real-time diagnosing and
control.
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