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Abstract

It is important for a robot to acquire adaptive behaviors for avoiding surrounding robots and obstacles in complicated
environments. Although the introduction of a learning scheme is expected to be one of the solutions for this purpose, a large
size of memory and a large calculation cost are required to handle useful information such as motions of robots. In this paper,
we introduce the multi-layered reinforcement learning method. By dividing a learning curriculum into multiple layers, the
number of expected situations can be reduced. It is shown that real robots can adaptively avoid collision with each other and
to obstacles in a complicated situation. © 1999 Elsevier Science B.V. All right reserved.
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1. Introduction

To accomplish various and complicated tasks by
multiple robots, Distributed Autonomous Robotic
Systems (DARS) [1-3] have been studied actively.
Collision avoidance is one of the most important
functions of the mobile robots to carry out coopera-
tive tasks in such systems. One of the most impor-
tant abilities of the robots to realize robust collision
avoidance is recognition of other robots. In the con-
ventional works [4—6], collision avoidance behaviors
are achieved in the form of planned paths on the basis
of the information measured by ranging sensors. It
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is, however, difficult to recognize the moving objects
only by those ranging data. In order to recognize the
moving robots, the most effective way is to acquire
their motion information by local communication.
For this purpose, we have developed the local sens-
ing device called “LOCISS (LOcally Communicable
Infrared Sensory System)” [7]. By the LOCISS, each
robot can recognize other robots and obstacles by
communicating valuable information in the working
environment. Based on this system, we can design
and implement an algorithm for collision avoidance
between two robots as predetermined behavioral rules
[8]. For multi-robot systems, however, it is difficult
to design appropriate rule sets by hand coding be-
cause complicated situations, in which three or more
robots and obstacles exist in the short range, should
be taken into account. In this paper, we introduce
reinforcement learning as an adaptive behavior acqui-
sition method in such complicated cases. We expand
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Fig. 1. Concept of situation recognition around robot.

this method into the multi-layered learning method to
reduce the size of required memory space and CPU
power and implement it onto actual robots. This is
a kind of structured process in which each situation
for learning is rather simplified in intermediate steps.
The concept and the detailed procedures of the adap-
tive behavior acquisition and multi-layered learning
method are presented in this paper, after the descrip-
tion of the rule-based collision avoidance. Finally,
the acquired behaviors are verified through collision
avoidance experiments using actual robots.

2. Rule-based collision avoidance using LOCISS

Each robot should detect the surrounding objects
to avoid collision with them. For avoidance of mov- Fig. 2. Omnidirectional robot and LOCISS.
ing objects such as robots, it is particularly important
to recognize their motion. The LOCISS is a device
which accomplishes local communication among mul-
tiple robots using infrared light. Using the LOCISS, I
robots can recognize multiple moving objects simulta- + fobols Hotior
neously. Since the LOCISS transmits the robots’ mo- No.0
tion information, that is, moving direction and speed
as well as unique ID number, each robot can recog-
nize other robots’ motion easily and discriminate other
robots and obstacles by receiving these information. No.2 No.6
When Robot-1 receives the ID number of Robot-2, it
can recognize Robot-2 as shown in Fig. 1(a). When a
robot receives its own ID number, it can recognize that
the object is an obstacle because the transmitted signal
is reflected by the obstacle as shown in Fig. 1(b).
The omnidirectional mobile robot which was devel-

No.1 No.7

No.3 No.5

No.4
B : Transmitter / Receiver
No.X : Sensor No.

oped at RIKEN [9] is shown in Fig. 2. The LOCISS is Fig. 3. Configuration of transmitters and receivers.
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Fig. 4. Definition of avoiding behaviors.

mounted on the top of the robot. This system has eight
transmitters and receivers located radially as shown
in Fig. 3. The sensor number is assigned from O to
7 as starting from the heading of robot’s motion. Ev-
ery robot transmits these numbers as sensor codes by
all transmitters to show its moving direction. There-
fore, the robot can know the positional relation to sur-
rounding objects as well as motion of robots by these
information.

When surrounding objects are detected, robots
should select appropriate behaviors to avoid them. In
this section, a method selecting an avoiding behav-
ior based on predefined rules between two objects is
described. Behaviors are defined on the assumption
that the robot moves at its maximum speed toward
its goal when it detects no objects. Generally, a robot
changes moving direction and speed to avoid objects
which are on its path. The direction can be changed
to the left or the right and the speed can be changed
by accelerating, stopping and decelerating. However,
the robot cannot avoid objects by acceleration be-
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cause it moves at maximum speed according to the
above assumption. Therefore, when two robots move
in the same direction and one of them approaches
behind another at faster speed, one has to adjust its
own speed to another. This behavior is defined as
“following”. According to the above consideration,
five kinds of behaviors, that is, “turning left/right”,
“stopping”, “following” and “ignoring”, are defined
for the collision avoidance (Fig. 4). “Ignoring” be-
havior means to take no reaction even when collision
warning is detected.

Two different sets of collision avoidance rules, i.e.,
for a robot and an obstacle, should be defined by us-
ing the above mentioned behaviors. The rule set for a
moving robot is shown in Fig. 5(a). It is represented
as a matrix for 64 patterns of situations which are de-
fined by the combination of moving directions of two
robots (8 x 8). The row S, denotes the number of the
sensor which received data from the surrounding robot
and the column S, denotes the sensor code which was
transmitted from the other robot. When two robots ap-
proach each other into the communicable area of the
LOCISS as shown in Fig. 5(b), Robot-1 receives the
sensor code “7” of Robot-2 from sensor no. “1”. In this
case, Robot-1 refers to the row of “1”” and the column
of “7” in this rule matrix and applies “stopping” be-
havior. In the same manner, Robot-2 takes “ignoring”
behavior on the row of *“7” and the column of “1”.

The rule set for a stationary obstacle is shown in
Fig. 6(a). It is represented as a matrix for eight patterns
of situations which are defined by the robot’s moving
direction. The row S, shows the number of the sensor
which received data from the surrounding obstacle.
For example, when the robot approaches an obstacle

Robot2

Robot1

Op 7~
$ 2

D dectbn of D kecton of
wbotl Smoton mbot2 8m otbn

(b) Example of detection

Fig. 5. Collision avoidance rule for robot.
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Fig. 6. Collision avoidance rule for obstacle.

as shown in Fig. 6(b), the robot receives its own data as
well as its own ID number from sensor no. “7”. In this
case, the robot recognizes that the detected object is an
obstacle and applies “turning left” behavior referring
to the row of “7” in this rule matrix.

When a robot applies a rule, the robot keeps taking
the behavior while there are no changes of received
data from the sensors. If received data are changed,
it means a change of situation between the robot and
the object. The robot takes the corresponding behavior
based on the rule according to the change of received
data. By repeating this procedure, the robot can go
toward its goal by avoiding collisions.

3. Adaptive behavior acquisition

In the rule-based collision avoidance, it is difficult
to give rules to robots when the number of robots
increases, because the recognized situation becomes
complicated and the combinatorial number of situa-
tions becomes very large. In order to avoid collision
in such situations, it is necessary to introduce learning
schemes to let the robot acquire adaptive behaviors
by itself. We have introduced reinforcement learning
for this purpose because it can execute without any
teaching signals and large costs for calculation. The
procedure of adaptive behavior acquisition based on
reinforcement learning is shown in Fig. 7.

The avoiding behavior is defined as a combination
of avoiding direction and speed. A score is introduced
for each avoiding behavior in each situation specified
by the input from the LOCISS as shown in Fig. 8.

Let S;; be the score for an avoiding behavior which
is defined by a combination of moving direction i and
speed j. Then, the selecting ratio r;; for the behavior
is calculated by normalizing S;; for scores of all the

Behavior
acquisition

> Selection of
avoiding behavior

Evaluation of
avoiding behavior

|

Learning
based on reward

——

fEsesea

Learning is
accomplished

Fig. 7. Procedure of adaptive behavior acquisition.
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Using the selecting ratio, the robot selects the avoiding
behavior in a probabilistic way. This means that the

(1
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Fig. 9. Evaluation of avoidance behavior.

behavior which has larger score is selected with higher
probability.

The robot executes the behavior and evaluates it
based on the result of execution using the function
E(¢). Whenever a behavior is selected and executed,
the score for the behavior is calculated by adding the
newest evaluation value E(t) incrementally, as

Snew = Sold + E(t)- (2)

As shown in Fig. 9, the behaviors are evaluated based
on three criteria at time ¢, i.e., the summation of the
distances from the robot to stationary objects dy(¢),
the summation of the distances to other robots d;(t)
and the distance to the goal dg(t). Here, it is assumed
that the distance to the goal can be calculated by the
position data based on the dead-reckoning. The total

rebot2 oot

Robot-2

(a) Environment of simulation experiment

evaluation function E(#) is expressed as:
E(t) = aAdw(t) + BAd (1) — y Ady (1), 3
where

Ady(t) = dw(t) — dw(t — At),
Adi(t) = di(t) — di(t — A1),
Ady(t) = dg(t) — dg(t — A1),

where Ady (1), Ad:(t) and Ady(t) are differences of
the distances for At. &, B and y are weighting coeffi-
cients for each criterion. Hence, the reward means the
positive evaluation value, and the punishment means
the negative value in the context of the reinforcement
learning methodology.

In case the robot collides with surrounding ob-
jects by executing selected behavior, the score of
the selected behavior is set to zero unconditionally
for disabling the behavior. By repeating this proce-
dure, the scores for suitable behaviors in the situation
become large and the learning is proceeded.

To show the validity of the proposed method, a
learning experiment was conducted in a simulation
environment, which is shown in Fig. 10(a). There are
two robots in the environment and the goal of each
robot exists on the other side of each. The robot can
move in eight directions in every 45° at discrete speed,
that is, from 0 to 30 cm/s by every 10 cm/s, keeping its
orientation constant. The robots approach each other
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Avoidance Target

Fig. 11. Parameters for learning.

face to face to go toward their goals. Initial score val-
ues are set to be equal for the behaviors to all the direc-
tions on a speed and to be proportional to the speeds.
a, B and y are set to 50, 50 and 100, respectively.
Fig. 10(b) shows the transition of the ratios of se-
lected avoidance behaviors. As a result, at about 800
learning steps, the behaviors converged into the fol-
lowing three behaviors, which had the largest three
probabilities:
e Go straight at 10cm/s.
e Tumn right 45° at 10cm/s.
o Turn left 45° at 10cm/s.
In the learning steps from O to 500, ratios of three be-
haviors were very small because ratios of other behav-
jors with faster movement were large in this region.
Although ratios of some behaviors grew drastically,
these behaviors led to collision and their ratios were
reduced to zero in order not to repeat collision. It is
reasonable that behaviors with slower movement are
learned to avoid the robots.

4. Muliti-layered learning

To implement the proposed learning scheme onto
a real robot, a memory large size is required for the
storage of the score set because the number of situ-
ations is very large and the number of scores is in
proportion to it. Fig. 11 shows the parameters used to
accomplish adaptive behavior acquisition in this pa-
per. The robot ID is used to discriminate robots and
obstacles. If the recognized object is a robot, the be-

havior of the robot, that is, the moving direction and
the moving speed should be considered. The direction
of the detected object and the robot’s own moving
speed are used to recognize the relation between the
object and the robot. The relative direction of the goal
is important to show the direction in which the robots
should go. The number of scores is represented by
the product of the ranges of these parameters and is
about 1.8 x 10'3. When the score is represented by
1 byte, the size of the score sets becomes unaffordable
amounts, i.e., about 1.8 x 10° Mb. To reduce the size
of the required memory and to make the learning pro-
cess more structured, the concept of the multi-layered
learning is introduced.

4.1. Concept of multi-layered learning

In the multi-layered learning method, the leaming
curriculum is divided into multiple layers. By limit-
ing the number of parameters minimum for each layer,
the number of situations in each layer is reduced dras-
tically and the number of situations in whole layers
is represented not as the product but as the summa-
tion of numbers in every layer. In this method, the re-
sult of the precedent learning layer must be reflected
in the layers downstream because the learning has to
be represented by an accumulation of experiences in
situations which become complicated layer by layer.
Therefore, the avoiding behavior which is selected in
the precedent layer should be used as one of the inputs
to the next layer.

4.2. Configuration of controller

Fig. 12 shows the flow of multi-layered learning. In
this paper, the curriculum is divided into four layers,
that is, movement toward goal, avoidance of a single
object, avoidance with sensor groups and avoidance of
multiple objects. In this figure, selectors of behaviors
are represented as controllers in each layer. Namely,
the aim of the learning is to construct these controllers.

The aim of the first layer is to acquire the behavior
to go toward goal. There are no objects around the
robot. The robot can go toward its goal without any
interferences, recognizing the direction in which the
goal exists.

The aim of the second layer is to avoid a single
object. Only one object, that is, an obstacle or a moving
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Fig. 12. Flow of multi-layered learning.

robot, exists around the robot. In this layer, there are

eight controllers from Cop to Co7 for each channel of

sensors. Moreover, these controllers C,; are divided

into three flows based on the ID detection as shown in

Fig. 13. They are for avoiding one robot C;;, avoiding

one obstacle CJ; and through. Inputs used for each

controller in this layer are as follows:

o the avoiding behavior from the controller Cy in the
first layer;

e moving direction and speed of the robot, if a robot
is detected.

The aim of the third layer is to avoid multiple objects
detected by each sensor group. The configuration of
the sensor group is shown in Fig. 14. Eight channels
of sensors are divided into three groups based on the
direction of robot’s motion. The sensor on the moving
direction belongs to two groups, that is, sensor group A
and C, because the robot collides easily with the object
which exists in this direction. With this configuration,

{55}
- =2 N
- Avolding Behavior - Avoiding Diraction
outputed from Cq - Avoiding Speed
- Moving Direction of Robot
Robot | - Moving Speed of Robot
Robot ID D\ Obatacle =
toctiop avoiding Behavior— - Avoiding Direction
No objects outputed from Cq - Avoiding Spsed
- Avoiding Behavior
cutputad from Co

Cb : Controller for avoiding one robot
C% : Controller for avoiding one obstacle

Fig. 13. Flow of leamning for avoidance of single object.

Direction of

robot’s motion

@ B : Transmitter /
Receiver

® : Sensor group A
© : Sensor group B
© : Sensor group C

Fig. 14. Configration of sensor group.

it is possible to reflect information from the sensor in
this direction strongly on the result of learning in this
layer. Inputs to this layer are three pairs of avoiding
behaviors selected by controllers Co; for three sensor
groups.

The fourth layer is the final layer. The aim of the
fourth layer is avoiding multiple objects with all the
sensing information. Inputs to this layer are three
avoiding behaviors selected by controllers Cy; for
each sensor group in the third layer.

4.3. Improvement for size of memory space

The number of situations recognized in each layer
using this method is as shown in Table 1. In the first
layer, the number of recognized situations is defined
by the robot’s own moving direction (8) and speed
(4), and should be 3.2 x 10'. In the second layer,
a motion of the detected robot which is recognized
by its moving direction (8) and speed (4), or an
existence of detected obstacle (1) is considered to
recognize the surrounding situation. The number of
situations recognized by each sensor is defined by
this kind of consideration for the detected object and
avoiding behaviors from the controller in the first

Table 1
The number of recognized situations in each layer

The number of situations

First layer 8 x4 =32x 10’
Second layer 8x4+1)x32x8=84x10°
Third layer 32x32x32x3 =98x 10
Fourth layer 32 x32x32 =3.3x 10
Total 1.4 x 10°
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Fig. 15. Results of collision avoidance in the simulation environment.

real robots are the same as for the simulation environ-
ment described in the previous section.

In the environment for the experiment (shown in
Fig. 16), there were four robots and a wall as an ob-
stacle. Two pairs of robots were set face to face at a

distance of 4.0m. The lateral distance between two
pairs was 2.0m. The distance between a wall and
Robot-3,4 was 1.5m. Goals of the robots were set
at the start position of the counterpart robot in each
pair.
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Fig. 16. Environment of collision avoidance using a real robot.

Fig. 17 shows the trajectory in the experiment. This
figure is drawn by plotting positions of each robot at
intervals of 1 s. It is confirmed that four robots take left
directions to avoid other robots. The symbols from A
to H are added to explain situations of avoidance with
the log of communication as shown in Fig. 18. In this
figure, arrows mean the flow of received. information
by the robot from other robots. The filled area in the
axis means that the robot receives its own ID, that is,
the robot detects an obstacle. Results of two avoidance
sequences are explained as examples. The former is
the sequence from A to D (Fig. 17). The latter is the
sequence from E to H (Fig. 17).

Fig. 19(a) shows an enlarged view of the trajectory
from A to D in Fig. 17. At point A, Robot-2 moves
in the left forward direction by receiving information
from Robot-1 (Fig. 19(a) A). At point B, it is con-
firmed that Robot-2 moves approximately along the

Trajectory

2 Ylobol-z [
p=il i

Trajectary B 1 Trajecto L'T
of robot-1 - of robot-3 3

Fig. 17. Experimental result.

center line between the Robot-1 and Robot-3; Robot-
2 detects these robots by receiving information from
both (Fig. 19(a) B). At point C, Robot-2 avoids Robot-
3 by moving along a parallel path based on commu-
nication from Robot-3 because Robot-1 has already
gone away (Fig. 19(a) C). At point D, Robot-2 goes
toward its goal because no robots are detected at all
(Fig. 19(a) D).

Fig. 19(b) shows an enlarged view of the trajectory
from E to H in Fig. 17. In this figure, it is confirmed
that Robot-4 detects an obstacle by receiving its own
ID at points E, F and G. At point E, Robot-4 can avoid
Robot-3 without collision with the wall (Fig. 19(b)
E). At point H, Robot-4 goes toward its goal ignoring
detection of Robot-3 because there are no risks of
collidsion at this moment (Fig. 19(b) H).

Consequently, the collision avoidance using real
robots is successfully accomplished by the proposed
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Fig. 18. Log of communication between robots.
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Fig. 19. Trajectory of robots avoiding each other.

method. It is confirmed that the proposed method is
useful in multi-robot system.

6. Conclusion

We propose a new collision avoidance method for
actual multiple robots based on reinforcement learn-
ing. The robot can reflect many information acquired
by local communication on a behavior selection and
select adaptive behaviors in a complicated situation.
By dividing the learning curriculum into multiple lay-
ers, it is possible to reduce the required size of mem-
ory space and to implement the learning scheme for
collision avoidance to actual robots. It is shown that
a robot can avoid collision with surrounding robots
and obstacles in a realistic environment through the
experiment with four robots and a wall. For future
work, the combination of the method with global
path planning should be discussed to solve dead-
lock problems which could frequently occur when
the robots work in an environment with complicated

topography.
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