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Abstract. Consider two omnidirectional robots carrying a ladder, one
at each end, in the plane without obstacles. Given start and goal posi-
tions of the ladder, what is a time-optimal motion of the robots subject
to given constraints on their kinematics such as maximum acceleration
and velocity? Using optimal control theory, Chen, Suzuki and Yamashita
solved this problem under a kinematic constraint that the speed of each
robot must be either 0 or a given constant v at any moment during the
motion. Their solution, which requires complicated calculation, is cen-
tralized and off-line. The objective of this paper is to demonstrate that
even without the complicated calculation, a motion that is sufficiently
close to time-optimal can be obtained using a simple distributed algo-
rithm in which each robot decides its motion individually based on the
current and goal positions of the ladder.

1 Introduction

Recently distributed autonomous robot systems have attracted the attention of
many researchers as a new approach for designing intelligent and robust sys-
tems [6]. A distributed autonomous robot system is a group of robots that indi-
vidually and autonomously decide their motion. In particular, in such a system
no robot is allowed to act as a leader that controls the other robots in the group.
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A crucial issue in designing such a system is to have the robots autonomously
coordinate their motion so that the system achieves a certain goal, since in many
applications,

1. the interest of an individual robot can conflict with that of the entire system,
and
2. each robot may be unaware of the global system state.

Typically there are two kinds of coordination problems; conflict resolution and
cooperation. Roughly speaking, conflict resolution attempts to avoid certain (un-
desirable) situations such as collision of robots. Cooperation on the other hand
aims to eventually generate a certain (favorable) situation.

The problem we discuss in this paper is a motion coordination problem for
producing a time optimal behavior of the system.

Centralized and distributed approaches are two major paradigms for design-
ing motion coordination in multi-robot systems [9], each with its own merits
and demerits. It is not our objective here to discuss them in detail, and we only
mention that roughly speaking a centralized approach tends to yield efficient
solutions, while solutions obtained by a distributed approach can be more ro-
bust against failures. Most of the work in the literature, however, takes either a
centralized or a leader-follower approach {2,8,12,13]. The work on distributed ap-
proachs often assumes the existence of some navigation devices [15,7], and only
a few take a fully distributed approach [1,11,14,16,17]. Among these, Miyata,
et al. [11] and Ahmadabadi and Nakano [1) discuss how a group of robots may
carry and handle an object, which is the subject of this paper. They investigate
how the robots can coordinate their motion to carry an object, while in this
paper we investigate how quickly the robots can carry an object.

Recently a time optimal motion of robots has been investigated by some
researchers. In [4], Chen, et al. discuss the problem of computing a time-optimal
motion for two omnidirectional robots carrying a ladder from an initial position
to a final position in a plane without obstacles, and calculate an optimal path
using a method based on variational calculus, a branch of functional analysis [5],
under the assumption that the speed of each robot must be either 0 or a given
constant v at any moment during the motion. In [10] Media¥illa, et al. describe
a path planning method for three robots for obtaining collision free time-optimal
trajectories using a mathematical programming method. Both of these papers
have adopted an off-line (and therefore centralized) setting: a motion is computed
and given to each robot in advance.

The objective of this paper is to demonstrate that even without the compli-
cated calculation of [4], & motion that is sufficiently close to time-optimal can
be obtained for two omnidirectional robots carrying a ladder, using a simple
distributed algorithm in which each robot decides its motion individually based
on the current and goal positions of the ladder. The algorithms we propose are
based on the following simple idea:

Basically we let each robot pursue its individual interest (e.g., mainly
moving toward the goal) when deciding its motion. Since the robots are
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carrying a ladder, however, their intended motions may be “incompat-
ible,” making it impossible for the robots to move as intended. Now,
suppose that there is a (virtual) “coordinator” that resolves the conflict
in a “fair” manner for both, allowing the robots to continue to move.
Then the resulting motion may be sufficiently close to time-optimal.

We will present two such algorithms. The first one is obtained by a naive
application of this idea and works well for many, but not all, instances. The
second one requires a slightly more complicated calculation, and works well for
many of the instances for which the first algorithm does not.

The paper is organized as follows: Section 2 gives an outline of the method
of (4] for computing an exact optimal motion under some (rather strong) assump-
tions. Section 3 presents the two distributed algorithms we propose. Section 4
describes the physical robots we plan to use and reports the results of some pre-
liminary experiments using them. Section 5 presents the computer simulation
results, We then conclude the paper by giving some remarks in Section 6.

2 Time-Optimal Motion for Carrying a Ladder

Chen, et al. discussed the problem of computing a time-optimal motion for two
omnidirectional robots carrying a ladder from an initial position to a final po-
sition in a plane without obstacles [4]. In order to explain a formidable nature
of the problem, suppose that robots A and B must move to A’ and B’, respec-
tively, as is shown in Fig. 1, carrying a ladder. (We use “A” and “B” to refer to
the robots as well as their initial positions.) A time optimal motion is shown in
Fig. 2. You can observe that the path of robots B is not a straight line segment,
indicating that B yields to give enough time for A to complete the necessary
rotation. Thus this time optimal motion is not attainable if one of them insists
on its individual interest of reaching its goal as quick as possible.

A

Fig. 1. Robots A (empty circle) and B (filled circle) moye to A’ and B’, respec-
tively, carrying a ladder.

Let v be the maximum speed of a robot. In (4] it is assumed that the speed of
a robot is either 0 or v at any moment. (Computing a time-optimal motion in the
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Fig. 2. Time-optimal motion for the instance shown in Fig. 1. The figure consists
of a series of snapshots. In the first few shots the segment increases in grayscale
as time increases. :

general case is still open.) Without loss of generality assume that |BB'| > |AA'|.
For convenience, we take AB to be of unit length (|JAB| = 1), and let L = |BB'|
be the distance between B and B'. We set up a Cartesian coordinate system as is
shown in Fig. 3, where B and B’ are at the origin (0,0) and (L, 0), respectively.
Let o and B, respectively, be the angles that AB and A’B’ make with the z-axis.

Al

Fig.3. The setup of the Cartesian coordinate system with reference to the
initial and final positions of the robots.

Since the robots can move only at speed v or 0 at any moment, a lower bound
on the time it takes to move AB to A'B’ is L/v. Intuitively, this lower bound is
achievable if A can complete the necessary rotation around B within time L/v
while B moves straight to B’ at speed v. The following theorem characterizes
the case.

Theorem 1. AB can be moved to A'B’ in optimal time L/v if and only if either

1. a=p, or
2. 0° < a < 8 < 180° and tan(8/2) < tan(a/2)e*r,

where L, o and B are as defined above.
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Now we consider the case in which the lower bound L/v is not attainable.
Let (z,y) be the coordinates of B during a motion, and ¢ the angle between the
z-axis and the direction of the velocity of B. See Fig. 4.

v
A
)
B

(xy)

X

Fig. 4. The definitions of # and ¢. The arrow represents the velocity of robot B.

Since |AB| = 1, robot A rotates around robot B with angular speed w = §,
where the angle between the velocity of B and the velocity of A due to rotation
around B is 90° +  — ¢. Therefore V, the resultant speed of 4, is given by

V? =% +w? - 2wusin(d — ¢). (1)
Since V =v and w = 4, Eq. 1 can be rewritten as
0 — 22sin 6 + 2§ cos§ = 0, (2)

which describes the constraint on the optimal motion.
Now our task is to minimize the integral

F= / F T e (3)
0

subject to the constraint

6 — 2isinf + 2§ cosd = 0 4)
and the boundary conditions
z(0) =0
1o 20 )
z(t) =L
{y(t) =0 (©)

By applying calculus of variations we can find the differential equations that
an optimal trajectory obeys. In the next theorem F(¢, k) and E(g, k) denote the
Legendre elliptic integrals of the first and second kind, respectively, defined by

¢ dé
F(@.k) = /o 1 — k2sin2 8 @)
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E(¢, k) / V1 — k?sin? 8df. (8)

Theorem 2. Suppose that the lower bound L/v is not attainable. An optimal
motion in which segment AB rotates about B counterclockwise can be obtained

from

z= gsinﬁ + cv cos@sin(f + 4) (9)
Y= -—50050+cvsinesin(6+6) (10)
§ = 2v\/1 - ?sin(8 + §), (11)

were constants ¢ and & are numerically calculated from

;(cosa-—cosﬂ)+@ [\/1—0251n2(a+5) \/1—028111 (ﬁ+5)]

sind

+—[F(B+6 c)—F(a+46,c)— E(B+6,c)+ E(a+6,c))=L (12)

and

(sma—smﬂ)—-ﬂl—é[\/l—c?sm (x+9) — \/1—c251n2(ﬁ+5)]

+@[F(IB+5 c) (a+5,c) _E(ﬂ+6,c)+E'(a+5,C)] =0. (13)

N -

The time needed to execute the motion is obtained from

- 51; [F(B +6,¢) — F(a+6,0)). (14)

Figs. 2 and 2 show two optimal motions computed by the method.

MIIN

Fig. 5. Optimal motion in which the lower bound L/v is attained.




246 Yuichi Asahiro et al.

Fig. 6. Optimal motion in which the ladder turns around by nearly 180°.

3 Distributed Algorithms for Carrying a Ladder

In this section we describe two distributed algorithms for two omnidirectional
robots carrying a ladder. They are designed based on the following idea, which
is a restatement of the idea mentioned in Section 1.

At any moment both robots intend to move toward their respective goal
positions, and in case of a conflict they both yield equally by adjusting
the directions of motion so that the distance between them is always
equal to the length of the ladder.

Consider two robots A and B carring a ladder of length ¢ (see Fig. 3).! They
both execute the same algorithm. Let A and B, and A’ and B’ be the start
and goal positions, respectively, where |AB| = [A’B’| = ¢. Let |AA’| = L' and
|BB’| = L, where we assume without loss of generality that L’ < L. Angles o
and S are as defined in Fig. 3.

We view an algorithm for robot R as a mechanism that takes as input the
current and goal positions of the ladder and produces as output a force vector
fr by which we attempt to drive R. Since R is connected to another robot
by a rigid ladder, however, most likely it cannot move in the direction given
by fr. Specifically, if R is about to move closer to (or away from) the other
robot, then the ladder pushes (or pulls) R by some force hz. So in this paper
we assume that R’s actual motion is determined by force fr + hg. Note that
the term hpg in fg + hp effectively forces the robots to “yield equally” in case
of a conflict. The assumption that an algorithm's output fg does not depend on
hgr somewhat simplifies the task of designing algorithms. (In contrast, physical
robots are likely to have a force sensor for detecting the motion of the ladder,
and the sensor output will be used explicitly in a feedback control scheme that
drives the robot.)

Both algorithms ALG1 and ALG2 we present below are memoryless in the
sense that their output is a function of the current input (and is independent of
the motions in the past). It is therefore sufficient to view A and B of Fig. 3 as

! In Section 2, we assumed that ¢ = 1.
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the robots’ current positions and specify the output for input A, B, A’ and B'.
As we will see shortly ALG2 is an extension of ALG1.

As we mentioned earlier, an algorithm’s output is a force vector fg. In the
following, however, we describe ALG1 and ALG2 in terms of the target velocity
vector that the force they compute should allow the robot to achieve, if force
hr were not present.

Algorithm ALG1: Both A and B move toward their respective goals A’ and
B’ at speeds v4 and vg, respectively, where v4 = v(L’/L)® and vg = v. Note
that v is the robots’ maximum speed and s > 0 is a parameter of ALG1.

Algorithm ALG2: Let v4 and v be the velocity vectors for robots A and
B that ALG1 computes. ALG2 uses auxiliary velocity vectors r4 and ra
for robots A and B, respectively, that rotate the ladder couterclockwise.
The direction of ra (or rg) is @ + 7/2 (or @ — 7/2), i.e., perpendicular
to the ladder AB, and ||ral| = |[ra|l = ¢(8 — a), where constant ¢ 2 0
is a parameter of ALG2. Then the velocity vectors that ALG2 computes
for A and B are respectively v(v4 + ra)/a and v(ve + rp)/a, where a =
maz{||va+rall,|[ve+ral|}. Observe that ALG2 coincides with ALG1 when
c=0.

4 The Physical Robot System

For experiments we use a physical robot system involving two omnidirectional
robots developed at RIKEN [3]. Fig. 7 shows the configuration of used in a
preliminary experiment where the two robots are connected to a ladder via a
force sensor placed on top through which each can sense the motion of the other.
The connection via the force sensor is rather rigid, but it at least allows a human
operator to hold one end of the ladder attached to a robot and gently push and
pull the ladder so that the robot smoothly follows the motion of the ladder.

The results of the experiment using two robots in this configuration, how-
ever, has indicated that a more flexible link between the robots and the ladder
are required. The relatively rigid connection between the robots and the lad-
der requires the robots to react to the motion of the other much more quickly
than they actually can, resulting in an undesirable motion that is not smooth.
A promising solution for this problem is to place a flexible multi-link mechanism
that acts as a buffer between the ladder and the force sensors. We have designed
such a mechanism consisting of springs and dumpers, and are now installing
them.

5 Performance Evaluation by Simulation

5.1 Simulation Model

We conducted computer simulation to analyze the behavior of the robot system
introduced in the last section executing the algorithms proposed in Section 3.
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Fig.7. Two RIKEN robots connected by a ladder. The ladder is fixed to each
robot via a force sensor placed at the top.

We model the robots by a disk of radius 10 with a maximum speed of 1 per unit
time. The length of ladder is 100. The multi-link mechanism is modeled by an
ideal spring.

We use discrete time 0,1,... and denote by Pr(t) and vg(t) the position
of R and the target velocity vector of R that an algorithm specifies at time ¢,
respectively. Also, we let xg(t) denote the vector from the center of disk R to
the position of the corresponding endpoint of the ladder at ¢. To simplify the
simulation we assume:

1. Force hp(t) that robot R receives from the ladder at time ¢ is given by
kxpg(t), where k is a spring constant.

2. The velocity of R at time ¢ is wg(t) = VR(t) + kxg(t). (We ignore the
kinematic constraints of R and assume that R can attain any target ve-
locity instantaneously.) If the length of w4(t) or wpg(t) exceeds 1 (the
robots’ maximum speed), then we normalize them by dividing both by
max{|lwa(t)[], [[wa(t)]]}.

3. At time ¢ + 1, R is at position pp(t + 1) = Pr(t) + wr(t).

The constant k is a parameter that controls the stiffness of the link between
a robot and the ladder and therefore the amount of freedom of a robot’s motion.
When k = 0, for example, the robots can move freely irrespective of the position
of the ladder. In this paper we used k = 10.0 which we found to be sufficiently
large to keep the endpoints of the ladder within the disks of radius 10 representing
the two robots (i.e., ||xg(t)|| < 10).

-

5.2 Algorithm ALG1

To investigate the effect of parameter s on the performance of Algorithm ALGI,
we examine the number of steps IV necessary for the robots to reach their goals
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using the setup of Fig. 3 for L = 200,400,...,1600, 0° < a <90° and s =
0.0,0.5,...,4.0. To reduce the number of instances to examine, however, we
consider only those cases in which & = 180° — 8 and (by symmetry) o < 90°.
Note that N > L holds since the robots’ maximum speed is 1.

Fig.8. The motion of the robots obeying ALG1 for s = 3.0,L = 400 and
a = 45°,

Fig. 8 shows a motion obtained by ALG1 for s = 3.0, L =400 and a = 45°.

Note that the robot further from its destination moves nearly straight, as
in an optimal motion shown in Fig. 2 for the same instance. In fact, ALG1 is
expected to perform well when L and « are large since the robots need not rotate
the ladder too quickly, and our simulation results confirm this. We present only
the results for L = 200 in Fig. 9, where we observe the following:

1. The performance of ALG1 is not very sensitive to the value of s. Setting
s = 3 seems to work particularly well for most cases.

9. ALG1 shows sufficiently good performance for o > 20°. For a 2 65° it
always achieves the lower bound of N = L = 200.

3. The performance of ALG1 is noticeably worse when a < 10° and rapidly
degrades as o approaches 0.

fcistopa N

Fig.9. The number N of steps needed by ALGL1 for L = 200 and various values
of a.



250 Yuichi Asahiro et al.

Comparing the motion generated by ALG1 for s =3.0,L = 200 and o = 1°
shown in Fig. 10 with an optimal motion shown in Fig. 2 computed by the
method of Section 2, we notice that in the former the ladder starts to rotate
only toward the end of the motion, while in the latter rotation starts as soon
as the ladder starts moving. This observation has motivated us to introduce in
ALG2 auxiliary velocity vectors r4 and rp that help rotate the ladder during
motion.

Fig.10. The motion generated by ALG1 for s = 3.0,L =200 and @ = 1°.

5.3 Algorithm ALG2

Recall that ALG2 has a parameter ¢ and reduces to ALG1 when ¢ = 0. Using
the same set of instances as in Subsection 5.2 and for various values of ¢, we
again measure the number N of steps necessary for the robots to reach the goal.
Throughout this section we use s = 3.0 which was found to work well in ALGI.

Fig. 11 shows the results for L = 200 and 0° < o < 90°, for several values
of c. We observe the following:

1. ALG]1, i.e., ALG2 with ¢ = 0, performs better than ALG2 with ¢ > 0 for all
a > 20°.
2. When a < 20° ALG2 with ¢ = 0.5 shows the best performance.

Figs. 12 and 13 show the motions generated by ALG2 with ¢ = 0.5 for the
instances examined for ALG1 in Figs. 8 and 10, respectively.

Again, in Fig. 12 the robot further from its destination moves nearly straight,
as in an optimal motion shown in Fig. 2 for the same instance. The motion shown
in Fig. 13 is fairly similar to an optimal motion shown in Fig. 2 and takes much
less time than the motion in Fig. 10 generated by ALG1.

Based on the results shown in Fig. 11 we conclude that small effort to rotate
the ladder is sufficient to avoid undesired motion such as the one shown in Fig. 10.
The results also indicate that larger values of ¢ tend to increase N. We verified
this through additional simulation, and present only the results for L > 400 in
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Fig.11. The number N of steps needed by ALG2 for L = 200 and various
values of a.

Fig. 13. The motion generated by ALG2 with ¢ = 0.5, for L = 200 and o = 1°.
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Fig.14. The number N of steps needed by ALG2 for L = 400 and various
values of a.
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Fig. 15. The change of ¢ during the motions of Figs. 10 and 13 for L = 200
and o = 1°,
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Fig. 16. The change of o during the motions of Figs. 8 and 12 for L = 400 and
o = 45°,
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Fig. 14, which shows that ALG1 performs in general better than ALG2 with
c>0.

Finally, we compare ALG1 and ALG2 with ¢ = 0.5 from a different point of
view. The measure is ||xgr(t)|], i-e., the distance between the center of robot R
and the corresponding endpoint of the ladder at time ¢. If an algorithm produces
a motion with small ||xg(t)||, then it might be said that the actions of the
two robots are coordinated well, and consequently, physical robots using the
algorithm can be expected to move smoothly. Figs. 15 and 16 show the ratio
o = 100 x (||xr(t)||/£)(%) taking time as the parameter, where £ = 100 is the
length of ladder. Fig. 15 shows the case L = 200 and a = 1° (motions in Figs. 10
and 13), and Fig. 16 the case L = 400 and a = 45° (motions in Figs. 8 and 12).
Clearly ALG2 performs better than ALG1 in both cases.

6 Conclusions

Time-optimal motion of two omnidirectional robots carrying a ladder can be
computed using optimal control theory in a off-line and centralized manner.
This paper has demonstrated that even without the complicated calculation of
such an approach, a motion that is sufficiently close to time-optimal can be
obtained using a simple distributed algorithm in which each robot decides its
motion individually based on the current and goal positions of the ladder.

We presented two such algorithms, ALG1 and ALGZ2, and using computer
simulation demonstrated that the former performs sufficiently well for large L
and a (two of the parameters describing a given instance), while for small L and
a the latter algorithm performs better. We also observed that the smoothness
of motion is another advantage of ALG2.

This paper has reported only the preliminary results of the authors’ ongo-
ing project on multi-robot coordination. Issues to be investigated in the future
include the following:

1. Implementing ALG1 and ALG2 on the RIKEN robots.
2. Coordination of robots having different capabilities.

3. Obstacle avoidance while carrying a ladder.

4. Extension to the problem of carrying an n-gon.
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