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Pattern recognition under the outdoor environment is
very difficult in general because of the change in the
brightness distribution of the object based on the
change in the lighting condition. Combining
distributed sensing with expanded template matching,
the technique for achieving effective pattern
recognition under the outdoor environment was
developed. We applied it to the detection of a relative
position of a spreader of a quayside gantry crane and
the target container, made a prototype machine, and
named Crane Vision. This paper details Crane
Vision’s measurement principle, system configura-
tion, experimental results, and demonstrates the
validity of pattern recognition under the outdoor
environment.
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1. Introduction

Quayside gantry cranes are specialized for container
handling on wharves of container terminals for loading
and unloading cargo containers for container ships.
Container handling is currently done by remote manual
operation by an operator in the crane’s cabin who relies
on visual observation. Container handling efficiency thus
depends more on operator skill rather than crane
performance. The growing shortage of skilled operators
necessitating the development of a crane that provides
sufficient container handling performance that operator
skill becomes less of a consideration.

We studied ways to improve crane container handling

efficiency by developing automated container handling
conventionally done by remote manual operation [1-3].
Advances in the technology for measuring the relative
positioning of the spreader, an integral quayside crane
component used for hoisting containers, and containers
are particularly important.

Pattern recognition under the outdoor environment is
very difficult in general because of the change in the

186

brightness distribution of the object based on the change
in the lighting condition. Combining distributed sensing
with expanded template matching, the technique for
achieving effective pattern recognition under the outdoor
environment was developed. We applied it to the
detection of a relative position of a spreader of a
quayside gantry crane and the target container, made a
prototype machine, and named Crane Vision.

This paper details Crane Vision's measurement
principle, system configuration, and experimental
results, and demonstrates the feasibility of this pattern
recognition under the outdoor environment. Section 2
outlines container handling and operational issues in real
environments. Section 3 describes crane vision measure-
ment principles. Section 4 presents the system con-
figuration. Section 5 discusses basic crane vision
performance based on experimental results. Section 6
presents our conclusions and projected work.

2. Container Handling and Operational
Issues in Real Environments

2.1. Container Handling

Figure 1 shows a quayside gantry crane. Fig.2 shows
the equipment used for container handling. A quayside
gantry crane lifts loads 30-40 m, has a span 20-30 m, and
reaches 40-50 m. It is 8 ft (2.4 m) wide, 8-9 ft (2.4-2.7 m)
high, and either 40 ft (12 m) or 20 ft (6 m) long.

Container handling involves inserting twist lock pins
at the four corners of the spreader, which is hung by wire
cables from the crane trolley, into inserts on upper corner
fittings of the container, then twisting them 90 degrees to
lock them.

The spreader is currently positioned relative to the
container by remote manual operation by an operator in
the crane cabin relying on visual observation. This is
difficult because the visual distance from the cabin to the
container is normally 20-40 m.

The container ship is moored to the quay wall, so
positioning depends on such factors as tide height and
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Fig. 2. Equipment relating to container handling.

container arrangement. Precise control of the crane
spreader’s position is also difficult because it is affected
by the trolley position on the girder, structural
deformation due to temperature changes, etc., and factors
such as eccentricity in the container’s center of mass and
wind disturbance.

Maximum positioning precision is thus generally
judged to be *300 mm between the spreader and a
container on the ship. Such precision levels make it
difficult to automate container handling. And sensors
suitable for directly measuring such relative positioning
have yet to be developed.

2.2, Operational Issues in Real Environments

Container handling normally begins when a container
ship docks alongside the wharf regardless of time and
weather with the exception of severe storms. It would
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(a) Daytime (b) Nighttime

Fig. 3. Image of container around corner fitting.

x: trolley travel
direction

v gantry travel
direction

z: hoist direction
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Fig. 4. Arrangement of cameras for distributed sensing.

thus be desirable to be able to measure relative
positioning by using pattern recognition.

Outdoor pattern recognition is generally difficult
because of the brightness distribution of targets varies.
This has two major causes:

(1) Changing lighting conditions, which vary with

time, weather, and changing local conditions.

(2) Variations in target surface features subject to

changes due to ultraviolet rays, peeling, rust, etc.,
that may be aggravated over time. Short-term
changes also include rain drops, dirt, etc., that
change a target’s brightness distribution.

Figure 3 shows the corner fitting seen from a camera
on the spreader: (a) was taken during the daytime and (b)
at nighttime.

Brightness distribution of the corner fitting varies
widely between day and night. Technology for
measuring relative positioning of the spreader and
container must be able to detect this positioning under
different brightness distributions.

3. Measurement Principles

To detect positioning in outdoor pattern recognition,
we combined distributed sensing with pattern
recognition by template matching. As detailed in the
sections that follow.
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3.1. Distributed Sensing

Since outdoor lighting conditions vary considerably,
images suitable for pattern recognition cannot be
necessarily guaranteed. With the camera on the spreader
to handle a container, the visual field varies with the
spreader’s vertical movement, i.e., camera distance. It is
difficult, for example, for a single camera to maintain
sufficient Smm pixel resolution and still keep the entire
container in the visual field.

Since corner fittings are at each of the four upper
corners of the container, a camera was positioned at each
to detect the opposing corner fitting by pattem
recognition of extended template matching to calculate
relative positioning — trolley travel gap Ax, gantry
travel gap Ay, and skew A®, that is, rotation about the
z-axis — of the spreader and container (Fig.4).

Each corner fitting is about 150 mm square and the
container is a maximum of 40 ft (12 m) long. A 1-to-80
scale reduction is achieved by using corner fittings
instead of the entire container for detection, making it
possible to maintain both the required visual field and
sufficient pixel resolution with variations of 5 m or less
in camera range.

The corner fitting has interconnecting inserts on the
top and both sides (Figs.2 and 4). Lighting condition for
each corner fitting thus differs except when the sun is
directly at the zenith, so the images of the four corner
fittings have different brightness distributions. This can
work to our advantage because the likelihood that
images suitable for pattern recognition are obtained
increases.

The relative position of the target container is
calculated from the positions of two of the four comer
fittings. The use of more than one camera increases the
likelihood that the relative position is measured. If the
positions of three or more corner fittings are known, any
arbitrary pair of corner-fitting positions can be used to
calculate the target container’s relative positioning and
used to evaluate the reliability of detected corner fitting
positions and discarding data with low reliability, thus
increasing measurement accuracy. Distributed sensing
thus serves the following purposes in this study:

(1) The use of more than one camera complements
image capture if one camera fails.

(2) Detection results from more than one camera are
integrated to improve detection accuracy and
reliability.

The likelihood of successful outdoor pattern
recognition increased through the implementation of
these concepts.

3.2. Expanded Template Matching

Template matching was used for outdoor pattern
recognition for the following reasons:
(1) Based on the visual representation of the
captured image, it has wide applicability.
(2) Error analysis is relatively easy compared to
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methods such as eigenspace in which dimensions
are reduced. :
Template matching detects the presence or

positioning of a target normally under the same lighting
conditions. An unknown input image is compared to a
template, a model used as the recognition target, by
evaluating their similarity using the normal correlation
coefficient or some other means. The normal correlation
coefficient R(x,y) is given by: [4]

S8 (fx +my +n) - F)(glm,m) - B)
R(xr}")= " 2%

S +m,y+n)-i)*,’ii(g(m)-§)’

where fx+m, y+n) is the_unknown input image, g(m, n)
the target template, and f and g their mean brightness.

The presence of the recognition target is determined
by evaluating normal correlation coefficient R(x, y)
using target judgment threshold j* as follows:

R(x,y)>j  — Successdetection } @

R(x,y)<j — Impossible detection

Under the outdoor environment, the target’s
brightness distribution varies widely, so simple gray
images are unsuitable for outdoor template matching.
Attempts have been made to employ edge images, which
are relatively robust under varying lighting condition, for
template matching outdoors, but they have yet to become
sufficiently practical. We improved template matching
to detect the target under the outdoor environment. The
binary edge image template is matched to an edge image
of an unknown edge image [S]. This features the
following:

(1) The primary basis of comparison is target
contours, similar to conventional edge image
matching, so it is relatively robust against
changing lighting conditions.

(2) It more robust against image deformation (size
changes or rotation) than edge image matching.
Because an appropriate threshold is chosen for
binarization [S].

Figure 5 shows examples of corner fitting templates.

‘ Fig.5(a) is produced by normalizing and averaging four

gray images captured on a cloudy day from different
distances. Processing this using a Sobel operator
produces the edge image in Fig.5(b) binarized using a
threshold of 52, yielding the binary edge image in
Fig.5(c) [5]. Images are 41X45 pixels with 1 pixel
equivalent to about 4 mm.

Figure 6 shows successful detection when the three
templates in Fig.5 were matched to 196 images of the
corner fitting. Binary edge and edge image templates
were matched to 196 edge images, and the gray image
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Fig. 5. Example of templates of corner fittings.
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Fig. 6. Relation between template type and successful
detection rate.

template was matched to 196 gray images. Successful
detection was 0.883 for the binary edge image template,
0.735 for the edge image template, and 0.592 for the gray
image template, demonstrating the feasibility of
expanded template matching and indicating that its use
would increase the likelihood of successful pattern
recognition under the outdoor environment,

3.3. Detection Algorithm

Figure 7 shows the algorithm flow for measuring the
relative positioning of the spreader and container. The
algorithm assumes that measurement begins when the
crane’s trolley reaches a position above the target
container within =500 mm of targeted trolley travel. At
image input, cameras on the spreader capture images of
opposing corner fittings and their location on the
container, at which time crane hoist motor encoder
values are recorded. Scale transformation preliminarily
normalizes the size of captured images for subsequent
template matching, i.e., affine transformation based on
camera range calculated from encoder values of the
crane hoist motor and approximate positioning data for
the container. In template matching, corner fitting
positions are detected as detailed in Section 3.2. In
position calculation, relative positioning of the spreader
and container is calculated based on position data for
corner fittings obtained from template matching. This is
repeated until conditions for termination are met.
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Fig. 7. Algorithm flow of relative position measurement.
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Fig. 8. System architecture.

4. System Configuration

Figure 8 shows the system architecture of the
prototype of Crane Vision incorporating the
measurement principles above. The system consists of
four cameras, four image processors, and an integrated
operation device. The present system has two cameras,
two image processors, and an integrated operation
device.

Figure 9 shows photos of the prototype camera.
Inside are the illumination and camera. The camera has
an electronic shutter with an automatic control to
maintain mean brightness of the designated image region
within a certain range.

The outside is a waterproof cover attached to a shelter
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Fig. 9. Camera device of Crane Vision.

Camera device

i B
Fig. 10. Crane equipped with Crane Vision.

mechanism consisting of a hydraulic cylinder and
parallel link to prevent collision with adjacent containers
during cargo handling. The camera is normally protected
by the shelter and projects from the spreader (Fig.9(b))
only when capturing images. The shelter is opeated by
commands generated automatically based on loading
information on containers on the ship and spreader
positioning data.

Image signals captured by the camera are transmitted
to the image processor, where scale transformation and
template matching (Fig.7) are executed to output corner
fitting positioning. Using position data for fittings, the
integrated operation device then calculates relative
positioning of the spreader and the target container. The
result is transmitted to the crane’s controller.

Figure 10 shows a spreader equipped with crane
vision. Cameras are installed on the spreader and the
image processors and integrated operation device are in
the crane’s electrical control room.
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(b) Detection result of original image 1

Fig. 11. Example 1 of detection by template matching.

5. Experimental Results

Crane Vision was installed on a gantry crane to test
basic performance.

5.1. Detection of Corner Fittings

Figures 11 and 12 show examples of detected corner
fitting images, obtained by matching against the binary
edge image template (Fig.5(c)).

Figure 11 is a daytime image captured in clear
weather, where detection was successful. The region
bordered by the white frame in Fig.11(b) is the detected
region. Fig.12 is a daytime image captured in clear
weather following rain. Corner fittings and the container
are wet, and detection was judged from equation (2) to
have failed.

Corner fitting template matching achieved a
detection precision of approximately +2 pixels, or +8
mm. Processing required for scale transformation and
template matching was under 30 ms.

5.2. Effect of Weather

Figure 13 shows the impossible detection rate for
different weather conditions, where data of images
captured  between  09:00  and 21:00 were
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(b) Detection result of original image 2

Fig. 12. Example 2 of detection by template matching.
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Fig. 13. Impossible detection rate depending on weather.

template-matched and categorized by weather. Results
are given using two evaluation criteria: “independent,”
where images captured by the two cameras are treated as
independent data, and “alternative,” where successful
detection with one of the two camera images captured at
the same time was considered sufficient, taking
advantage of the redundancy on which distributed
sensing is based.

Results show that impossible detection occurs in
ascending order of cloudy, clear, and rainy weather.
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(b) Detection result of original image 3

Fig. 14. Example 3 of detection by template matching.

Impossible detection is reduced when the redundancy of
images in distributed sensing is taken into consideration.
Relative positioning of the container is calculated
successfully for about 99% in cloudy and clear weather.

In rainy weather, however, measurement fails at
27.1%. Fig.14 shows an example of an image of the
corner fitting in rain. Although the positioning of the
fitting was accurately detected, it was judged a failure
because the normal correlation coefficient was below the
target judgment threshold of j*=0.414, as is seen from
the unclear coritours of the container and corner fitting in
the image.

Figure 15 shows the normal correlation coefficient
obtained over time under rainy conditions, where it
remains below target judgment threshold j* in accord
with the high impossible detection rate of the corner
fitting in rainy weather observed above.

Figure 15 also shows fluctuations in the normal
correlation coefficient, which results from changes in the
image pattern caused by rain. Note, however, that corner
fitting edges remains still. By averaging several images,
the signal-to-noise ratio (S/N) would be improved to
produce a clear edge for the corner fitting. Fig.16 shows
the normal correlation coefficient plotted against the
number of images used for averaging. The corner fitting
is detected in rain by using an average of 35 images. This
feature will be adopted in future Crane Vision systems.
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5.3. Detection of Relative Positioning

Figure 17 shows measurements of the trolley travel
gap, gantry travel gap, and skew when the spreader is
rotated horizontally, i.e., skewed. Results show that
Crane Vision is feasible for measuring the relative
positioning of the spreader and the target container
continuously.

6. Conclusions

To automate container handling currently done by
remote manual operation by an operator relying on
visual observation and thus improve container handling
efficiency of quayside gantry cranes, we studied
measurement of relative positioning of the crane
spreader and the target container. We developed pattern
recognition suited for outdoor environments by
combining distributed sensing and pattern recognition by
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template matching. A prototype of Crane Vision was
designed and fabricated, and its feasibility confirmed
through experiments.

We plan to continue experimentation using Crane
Vision consisting of four camera units that used
improved rain-use features and to investigate ways to
improve measurement reliability related to environ-
mental factors.
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