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Abstract - Path planning field for autonomous mobile robot is
an optimization problem that involves computing a collision-free
path between initial location and goal location. In this paper, we
present an effective improved artificial potential field based
regression search (Improved APF-based RS) methed which can
abtain a global sub-optimal/optimal path efficiently without local
minima and oscillations in the environment contains known,
partial known/unknown, static and dynamic environments. We
redefine potential functions to eliminate oscillations and local
minima problems, and utilize improved wall-following method for
robot to escape non-reachable target problem. Due to the planned
path by improved APF is not the shortest/approximate shortest
trajectory, we develop a regression search method (RS methed) to
optimize the planned path. The optimization path is calculated by
connecting the sequential points which produced by improved
APF. Amount of simulations demonstrate that the improved APF
method very easily escape from local minima, oscillations and
non-reachable target problem. Moreover, the simulation results
confirm that our proposed path planning approach could always
calculate a more shorter/near-optimal, collision-free and safety
path to its destination cempare with general APF. That proves
our improved APF-based RS method very feasibility and
efficiency to solve path planning which is a NP-hard problem for
autonomous mobile rebot.

Index Terms — Autonomous mobile robot. Path planning.
Artificial potential field. Bidirectional artificial potential field.
Regression search method.

I. INTRODUCTION

During the last few decades, mechatronics and automation
"has become an extremely quickly growing field that affecting
almost all aspects of our daily life. Especially, robotics have
become a major part of this trend, since robotic scientists have
investigated on service mobile robots which could be able to
operate  within  human-robot coexistent environments to
execute different complex works, such as transportation of
heavy objects, surveillance, rescue, and guiding people in
exhibitions and museums. Autonomous mobile robot path
planning or navigation is one of the most important
applications for intelligent robot control systems and has
attracted remarkable attention from number of researchers.
Path planning is aimed at enabling robots with the capabilitics
of automatically deciding and executing a sequence of

collision-free and safety motions in order to achieve a certain
tasks in a given environment. Therefore, the basic function of
path planning problem is to computer a valid and feasible
solution. Nowadays, path planning problem is transformed into
an optimization problem with the development of computer
technology and modern control methodology. That is robot
searches for an optimal or approximal optimal path with
respect to the problem objectives. As described in many
interesting researches, two importance features that distinguish
these algorithms are whether the environment is known or
unknown and whether it is static or dynamic.

Known environments are those in which all information
about obstacles and targets are known a priori, the motion of
robot is designed based on the given information. Examples of
successful algorithms for path planning in this kind of
environment include sub-goal network, cell decomposition, A*
and D* algorithm, traditional artificial potential ficld, and
many others. Usually, robot under known environment can
calculate an optimal/sub-optimal path. However, in unknown
environments, robot does not have any previous knowledge
about the environment or only partial information is available
about the obstacles and targets. Therefore, robot must plan a
path based on the available information or the only sense
information within the range of those sensors, in other words,
it cannot plan a global optimal path in a single attempt. In
recent years, lots of researchers have achieved important
investigation results in such environments, for instance, fuzzy
logic method, neural networks, rapidly-exploring random tree
algorithm, ant colony optimization algorithm, and so on.

As mentioned above, autonomous intelligent mobile robot
path planning in known environment is considered to be static.
In contrast, the following conditions that make environments
dynamic, e.g. the target moves continuously during robot
approaching, moving obstacles, dynamic obstacles appearing
randomly, and all of them. This paper presents a new approach
for autonomous mobile robot path planning/navigation in the
environment contains known, partial known/unknown, static
and dynamic environments. Herein, we propose an effective
improved artificial potential field based regression search
methodology (Improved APF-based RS method) for
autonomous mobile robot path planning which can program a
valid, feasible and shorter solution from the location of robot



to the position of target. We firstly modify the potential
functions of traditional artificial potential field and improve
the wall-following method to resolve the intrinsic fatal
problems of previous methods, and then utilize the proposed
regression search algorithm to shorten the planned path. At the
end of this paper, the validity and efficiency of our proposed
methodology is demonstrated by number of simulation
experiments.

The remainder of this paper is organized as follows. The
next section discusses related works, classic and heuristic
approaches for autonomous mobile robot path planning.
Mainly focus on discussing and analyzing the problems of
traditional and variable artificial potential field methods. In
section 1I1, we first introduce the conventional artificial
potential field method briefly, and then present our improved
artificial potential field (Improved APF) to deal with local
minima and oscillations problems by modifying potential
functions and applying improved wall-following method in
unknown/partial known environments. Finally, we utilize
regression search method to shorten the path which planned by
our Improved APF method. To demonstrate our proposed
method, amount of simulations are done in section 1V, we
prove the proposed Improved APF method can completely
resolve the problems of previous conventional methods. The
performance and efficiency of our proposed Improved APF-
based RS method and conventional methods are compared
under the same conditions of static environment, moving
target, dynamic obstacle, and local sensing information for
robot. In section VI, the influence of parameter setting under
our method is discussed. And we analyze the necessity by
implementing bidirectional Improved APF method to deal with
autonomous mobile robot path planning problem. Finally,
section V draws conclusions and sketches the future work.

II. THE RELATED WORKS

Large part of autonomous mobile robot path planning is
pertaining to scheduling and routing, and is well-known to be
NP-hard (NP-complete) problem. Path planning algorithms are
classified as classic and heuristic approaches (Masehian and
Sedighizadeh, 2007). Classic algorithms aim to calculate an
optimal solution if one exists, or prove that there is no feasible
path. On the other hand, heuristic algorithms attempt to find
search for a good quality solution in a short time. Classic
algorithms are usually computationally expensive. However
heuristic algorithms may fail to find a good solution for
difficulty problem. The following we will introduce certain
related works about classic and heuristic algorithms.

A. Classic Algorithms

Currently, the developed classic methods are variations of a
few general approaches, like roadmap, cell decomposition,
artificial potential fields, and mathematical programming.
Most autonomous mobile robot path planning problems can be
solved using classic algorithms. These approaches are not
necessarily mutually exclusive, but combination of them is
often used in developing a more reliable path. In roadmap

approach (Oh et al., 2004), feasible paths are mapped onto a
network of one-dimensional lines, and then search for a
desired path in such network. But the searched path is limited
to the network, and path planning becomes a graph-searching
problem. The well-known roadmaps include visibility graph,
voronoi diagram, and sub-goal network. Visibility graph
algorithm (Tarjan, 1981) can compute the shortest
distance/optimal path, this approach do not consider the size of
mobile robot that lead robot too close to the vertexes of
obstacle, even collision with obstacles, and the computational
time for path planning is toco long. Voronoi diagram
(Takahashi and Schilling, 1989) and sub-goal network
(Avneesh et al., 2008) algorithms are the improved methods of
visibility graph. Additionally, a number of researchers have
been demonstrated that the cell decompositions (Cai and
Ferrai, 2009) are the simplest methods for mobile robot path
planning, but are inefficient for computational memory and
planning time according to the size of cells.

However, most of classic approaches, such as roadmaps and
cell decomposition are based on the free configuration space
(C-space) concept. In addition to their lack of adaptively and
robustness, thus conventional approaches are not suitable for
dynamic environments because of utilizing a sequential search
algorithm to generate a single solution which may become
infeasible when a change in the environment, a new solution
has to be generated from scratch. Expect for, the greater the
dimension of free C-space, the more complex the path
planning problem will be.

B. Heuristic Algorithms

A* algorithm calculates a shortest path (with minimum cost)
in a given map by keep track of an open list and a closed list
(Nilsson, 2000). A* algorithm is a kind of classical heuristic
search algorithm, while applied A* algorithm for robot path
planning in the free C-space, due to the search space is too
large, that the search efficiency of A* algorithm is low and
planed path is relative optimal to cell decomposition. D*

. algorithm (Stentz, 1995) almost the same as A* algorithm, but

there is no heuristic, searches by expending out equally in
every direction, it may search much large area before the goal
is reached, thus D* is slower than A*, however, it performs
better when the goal is unknown.

Genetic algorithm can obtain the best feasible path for
mobile robot path planning in an uncertain environment after
number of iterations. While the structure of genetic algorithm
are very complex that result in taking a long time to process
and affecting the real-time performance of the robot during
path planning (Sedighi et al., 2004). When dealing with
dynamic environment most genetic algorithm does not control
the population diversity due to premature convergence, and it
is very casy fall into local optimization. Some researchers
suggest that combine genetic algorithm with simulated
annealing (Blackowiak and Rajan, 1995) can resolve these
problems, In paper (Elshamli et al., 2004), they develop a
genetic algorithm for dynamic path planning method which
takes into consideration path safety and smoothness.



In addition, some scholars have researched robot navigation
algorithms based on ant colony optimization algorithms
(Garcia et al., 2609) and improved ant colony optimization
(Dorigo and Gambardella, 1997) algorithms. While the
convergence speed of both algorithm is far from satisfying the
real-time requirement of global dynamic planning. Paper
(Zhua et al., 2011) develops a new robot navigation algorithm
for dynamic unknown environments by dynamic path re-
computation and an improved scout ant algorithm. The
simulation results indicate that their algorithm has good effect,
high real-time performance, and is very suitable for real-time
navigation in complex and dynamic environments.

Many other heuristic path planning methods, such as neural
networks, particle swarm optimization, fuzzy logic and Tabu
search algorithms are implemented. However, the time
complexity of all heuristic algorithms will increase greatly
when the environment becomes larger and more complex. For
example, the path planning algorithm based on the genetic
algorithm may produce many invalid paths and may fail when
the number of obstacles increases. Furthermore, deadlock and
oscillation happen easily in the rolling window method, and
stagnation is a general problem of ant colony optimization
algorithm.

C. Artificial Potential Field (APF)

The artificial potential field (APF) is firstly introduced by
Khatib (Khatib, 1986). The potential function can be defined
over free C-space as the sum of attractive potential pulls robot
toward the goal configuration, and repulsive potential pushes
robot away from obstacles. Artificial potential field is one of
the most important classic methods for autonomous mobile
robot, and nowadays there are still many researchers are
studying it all over the world. Artificial potential field has
often represented a good quality 10 achieve a fast and reactive
response to dynamic environment. However, this method has
been widely demonstrated that it suffer from unavoidable
drawbacks which are very likely for robot to get trapped into a
local minimum and oscillations. Paper (Sgorbissa and
Zaccaria, 2012) describes a hybrid approach, which integrates
a priori knowledge of environment with local perceptions in
order to execute the assigned tasks efficiently and safely. The
results indicate that this method guarantees the robot can never
be trapped in deadlocks even when operating within a partially
unknown dynamic environment. In spite of its good properties,
the navigation system described in this paper has typical
drawback that is the system is relying on local perceptions and
navigation strategies. Another improved artificial potential
field is proposed in (Zhang et al.,, 2011) utilizing quantum
particle swarm optimization for rapid global searching and
realizing the optimal path planning. They employ quantum
particle swarm optimization to modify the parameters of
artificial potential field to adapt different environment and
dynamical obstacles. To address the local minima problem in
the traditional artificial potential field, a method composed of
robot regression and potential field filling is proposed (Qi et
al., 2008; Shi et al., 2010). The similar methods propose in

(Zhang et al., 2006; Yu et al., 2011), before calculating the
resultant force that is put on an object in the potential field,
they build links among closed obstacles to optimize the planed
solution. Other kinds of improved artificial potential fields are
investigated, such as in (He et al., 2011), they introduce the
relative distance between robot and target into repulsive force
function and modify the repulsion direction to ensure the
global minimum is at the position of target. Donnant and
Meyer (1996) research the learning reactive and planning rules
into mobile robot path planning. The main distribution of
(Sheng et al., 2010; Yang et al.,, 2011) is that apply virtual
local target to guide robot escapes local minimum,

While the all mentioned above artificial potential field and
its improved metheds still suffer from many drawbacks, such
as high time complexity in high dimensions that result in these
methods could not deal with real-time path planning, and some
methods do not completely solve local minima, oscillations
and non-reachable target problem which makes them
inefficient in practice. Moreover, the path under previously
methods is not optimal/near-optimal, but only feasible for
autonomous mobile robot to adapt the given environment. In
other words, rabot move along the planed path will consume
more energy and costs. As described in (Elshamli et al., 2004),
the common path planning problem criteria may include the
distance of planned path, computational time, and robot
travelled energy. That means all these methods are not handle
the common criterions very well. In this paper, we present an
effective Improved APF-based RS method which can obtain a
shorter planned path without local minima, oscillatory
movements and non-reachable target problem. That is we
utilize the simplest path planning algorithm to very rapidly
plan an effective and shorter distance path for autonomous
mobile rebot.

111. THE PROPOSED PATH PLANNING METHOD

A. Traditional Ariificial Potential Field

The basic idea of artificial potential field method assumes
that robot as a point moves in an abstract artificial force field.
The antificial potential field in environment is composed of
attractive potential of target and repulsive potential of
obstacles. Attractive potential is produce by target and direct
to target point, while repulsive potential is the synthesis
repulsive potential of different obstacles and the direction of
the synthesis repulsive potential is away from obstacles.
Therefore, the potential function (1) is the artificial potential
field of robot which is defined as the resultant of attractive
potential and repulsive potential. Robot controls its movement
toward the target point along the direction of artificial
potential field. Under the method of artificial potential field,
robot could find a collision-free path by searching the route
along the decline direction of potential function.

The coordinate of robot is g=(x, )7, thus the artificial
potential field is defined as:

U(@)=U,@)+U,,(9) M
Where: U(g) is artificial potential field. U,(g) is attractive
potential. U,.(g) is repulsive potential.



The negative gradient of artificial potential field is defined
as artificial force which is the steepest descent direction for
guiding robot to target point. Attractive force is the negative
gradient of attractive potential, and repulsive force is the
negative gradient of repulsive potential.

Thus, the artificial force of robot is:

F(q)==VU(q) ==VU,(q) = VU, (@)= F,(9)+ F,,(g) (2)

Where: F(g) is artificial force. F,,(g) is attractive force.
Frep(q) is repulsive force,

The attractive potential between robot and target is
constructed to pull robot to the goal area. The attractive
potential created by the goal is given by

U, (q)= %k{q -q,)" = %i‘ﬂi_.;tfﬂ )

Where: k is a positive coefficient for artificial potential

field. g,~(x, »J' is the location vector of target.

pould)= E‘f“fxl is the Euclidean distance from the location of

robot to the position of target.
The attractive force on robot is calculated as the negative
gradient of attractive potential and takes the following form:

o 1 1
Fou(q) =-VU . (q) = ~=kVp}.(q)=~k(g-q,) 4

F.ufq) is a vector directed toward g, with magnitude linearly
related to the distance from g to q,. The components of F,(q)
are the minus directional derivatives of the attractive potential
along the x and y directions. Therefore, when the attractive
potential takes effect, the components can be written as:

Fmr—:{q] = "H-" =X )
F:n'r—_s (q)= _'“." = ,l‘g]

Where: F,,. is the attractive force on the x direction. Fy., is
the attractive force on the y direction.

Robot should be repelled from obstacles, but when robot is
far from obstacles, we do not want obstacles to affect robot’s
motion. Khatib uses Eq. (6) as the repulsive potential field.

0 Q2 P, (6)

U'rr (q): l ! _.l_ -
S PR ORL

Where: 77 is a positive scaling factor. Let g¢.~(x., v be

(3)

unique configuration in obstacle closest 0 ¢ . p(g)=|g—q.|

is the shortest distance between robot and obstacle. o, is the
largest impact distance of single obstacle. There is no impact
for robot when the distance between robot and obstacle is
greater than p,. Similarly, the repulsive force is the negative
gradient of repulsive potential function, as follows:

: i ppzp, (D
‘I.M‘[(“:—\f-“(q}z fj{-l——LK;}v;‘({”

o9 p, Q) datdete
0
) B o)z p, (8)
For @ = )l
p@) po P@) Ja-q] PPD=P

Frepe and F ., are the Cartesian components of the
repulsive force /.. When the repulsive potential acting on
robot takes effect, the components can be written as:

. A | 1 0 1 g Ag) =z p, (9)
'F'np-‘(ff)— ” —_— e <
g p P@ la-q] PD=P
0
5 ety Pz p, (10)
'!an__‘ (Q] = U[;_L)(_}_}# )<
o9 o, P@ a-q] PD=P

While there are many obstacles in the environment, the total
repulsive potential field is the sum of all obstacles' repulsive
potential field. The total artificial potential field can be
expressed as function (11).

f':q}:f-’aa[qhif-’_’r{:ﬂ (11)
=l
Where: i=/, 2, ..., n (nis the number of obstacles).
The total artificial force field is:
(12)

F(@)=F,(q)+ Y. F,,(q)
i=l

Figure 1 Problems of traditional antificial potential field, (a) and (b) are local
minima and oscillations, (c) is non-reachable target problem
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Notes: (a) When the position of robot and target are collinear or almost
collinear, and there is an obstacle between them, it is very easy to become
collinear reverse or almost collinear reverse of attractive potential/force and
repulsive potential/force. In such case, local minima and oscillations occur.
(b)  When the attractive potential/force and repulsive potential/force is
equivalent or almost equivalent and collinear reverse or almost collinear
reverse, the artificial potential/force field of robot is almost zero, then it will
cause robot to be trapped in local minima and oscillations. (¢) When the
position of target 1s very close to obstacles, the repulsive potential/force will
be much greater than the attractive potential/force, that means under this
condition, robot will never arrive at the location of target, e.g. non-reachable
target problem

Although the traditional artificial potential field method can
plan smooth path effectively. it has fatal problems. The
traditional artificial potential field method used in the path
planning may suffer from the local minimum and oscillations
problem instead of the desired global minimum. We definite
the local minima and oscillations problem as:

V@)=V @)+ U, (g) <& (13)
i=1
or
|F@)|=|Fu @+ 3 Fo @) s € (14)
i=}

Eq. (13) means that for any small ¢ greater than zero, the
resultant of attractive potential and repulsive potential at point
g is smaller than ¢. Similarly, Eq. (14) means that for any



small ¢ greater than zero, the resultant of attractive force and
repulsive force at point ¢ is smaller than ¢. If the artificial
potential field or artificial force field satisfies the Eq. (13) or
Eq. (14), robot is considered to be trapped in a local minima
and oscillations. That is, when the attraclive potential/force
and repulsive potential/force is equivalent or almost equivalent
and collinear reverse or almost collinear reverse, the artificial
potential/force ficld of robot is almost zero, then it will cause
robot to be trapped in local minima and oscillations (Figure 1
(a) and (b)). And when the position of target is very close to
obstacles, robot could not reach the target (Figure 1 (c)).

B. Improved Artificial Potential Field (Improved APF)

B.1. Redefine attractive potential function
As Eq. (3)/Eq. (4) presented, the attractive potential/force is
in proportion to distance Prt(@) (Shown in figure 2(a)). The

value of attractive potential/force is decided by their distance
between robot and target, which proposed by the traditional
attractive potential function. While when Pt (@ is very great,

the attractive potential/force will become very great too. In
other words, when robot is very far away target, it is casily
leading robot move 100 close toward the obstacles (Amato,
2004). Therefore, in the real environment shown in Figure 3,
robot has the risk of collision to obstacles when we take
account the error of path planning. Thus, the attractive
potential and attractive force are modified as function (15) and
(16) (Li et al., 2012).

1

: ] Sd ]
U (= 2"f’w(‘l) /’m:q;Zd (15)
kdpm(q) :l’,..,, q
and
-k(g-q,)
Ful@=1_4497%) Ja-af<da (16)
_q‘ ’[!q-q,ﬂzd

Where, d is positive coefficient for attractive potential and
force,

Figure 2 Attractive potential function, (a) Traditional attractive potential
furction, (b) Improved attractive potential function
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Notes: (a) Traditional anificial potential field define the relationship between
attractive potential/force and distance from robot to target is proportion. That
means the value of attructive potential/force increases linearly according to
the distance increasing. (b) In improved artificial potential field, we consider
the risk of collision and real robot path planning error, and modify the
attractive potential/force function: set a threshold 4, if the distance is less than

d, the value of attractive potential/force increases linearly according to the
distance increasing like traditional artificial potential field defined.
Otherwise, the attractive potential/force is a constant.

When the distance Pri(@) is less than d, the redefined

attractive potential and force are the same as conventional
defined. Otherwise, the attractive potential and force are a
constant which illustrate in figure 2(b). We redefined the
attractive potential function as Eq. (15) and (16) 10 guarantee
robot avoids collision toward obstacles, since when robot
moves near any obstacles, the repulsive potential/force from
obstacles is greater enough than kd to push robot away from
obstacles.

Figure 3 Attractive potential field, (a) At T=1, (b) At T=¢'
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Notes: When target is too far away from robot, result in the atiractive force is
too much greater than repulsive force even though robot is very close 10
obstacle. Then at the next step, robot moves along the direction of resultant
force 10 obstacle closer. In real path planning, robot has the risk of collision
toward cbstacles, especially take account ermor.

B.2.Redefine repulsive potential function

As many papers described, when target is very close to
obstacle, result in the repulsive potential/force is too much
greater than attractive potential/force:

WV @] <<|S V... () an
ta}
or
|Fa @] << 3 Fop () (18)
is)

such that robot impossible arrive at the position of target in
such circumstance, this condition named non-reachable target
problem (shown in figure 1(c)) which is undesirable for robot
path planning problem. In this paper, we redefine potential
function and utilize function (19) and (20) to resolve robot
non-reachable target problem, we named this redefined
potential function as repulsive potential/force instantaneous
disappearance if (a) and (b) as follows is simultaneously
satisfied:

(a) Pl)sd,,

(b) Ppa Sd,,

Where dj;; and d, are positive coefficients, respectively.

That is, once robot detects the distance between target and
obstacle is less than di;, and simultaneously the distance



between target and robot is less than dy,, robot only move
along the attractive potential/force instead of considering the
resultant  of  attractive  potential/force  and  repulsive
potential/force until robot arrives at the location of target (As
shown in figure 4). Since when (a) and (b) are satisficd, there
is no repulsive potential/force, robot is only attracted by target.
V()= { U_lq) g sd,, and p_,<d, (19)
U g+ U, (q) ,Otherwise

and
Ula) = Falq)
D)+ F @

P sdy, and p,sd,  (20)
Otherwise

Figure 4 lllustration of redefined artificial potential field, (a) At 7=, (b) At
T=t;, ()AL T=13, ()AL T=1;
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Notes: (a) plg) 15 greater than Do the artificial potential field of robot is
only attractive potential, while repulsive potential is zero. Robot moves along
the direction of attractive force. (b) pfg) is less than p . the artificial

potential field of robot is the resultant of attractive potential and repulsive
potential. Robot moves along the direction of resultant force. (¢) pfgy) 15 less

than p, and dos, but pfg) is greater than dp, this does not satisfy
requirement of non-reachable target problem. Thus, the artificial potential
field of robot is the resultant of attractive potential and repulsive potential
Robot moves along the direction of resultant force. (d) pfg) is less than o,
and dos, simultancously p(g) is less than dg, the requirements of non-
reachable target problem are satisfied, as a result, non-reachable target
problem emerges. Thus, in this condition, the repulsive potential
instantaneous disappear, the anificial potential field of robot i1s only the
attractive potential. Robot moves along the direction of resultant force to
ammive at the location of target This modified artificial potential field is very
effective to deal with such non-reachable target problem.

All previous proposed artificial potential field and improved
artificial potential field methods do not explicitly define the
repulsive potential/force about vertex of polygonal obstacles.
As described by general artificial potential field, the direction
of repulsive potential/force for polygonal obstacles is the
perpendicular of polygon side and away from the obstacles as
Figure 5 (a) shown, thus it will be unreasonable due to there is

no repulsive potential/force near the area of vertex of
polygonal obstacles (Zhang et al.. 2006). Therefore, we define
the repulsive potential/force about vertex of polygonal
obstacles like Figure 5 (b) and the direction is the tangential
line of semicircle (Uyanik, 2010). Similarly, we change the
direction of repulsive potential/force which is caused by
circular obstacles (Figure 6) to solve the problems of general
artificial potential field: local minima and oscillatory
movements.

Figure 5 Repulsive potential of polygonal obstacle, (a) Repulsive potential

defined by traditional artificial potential field, (b) Repulsive potential defined
by our Improved APF
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Notes: (a) Traditional artificial potential field define the repulsive potential of
polygonal obstacle 1s vertical polygonal side and away from obstacle. Near
the vertex, there is no repulsive potential, this is unreasonable. (b) Improved
APF, We redefine the repulsive potential, and its direction is the tangent of
semicircle.

Figure 6 Repulsive potential of circular obstacle, (a) Traditional artificial
potential field, (b) Our Improved APF
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Notes: (a) Traditional artificial potential field define the direction of repulsive
of circular obstacle is vertical and away from obstacle. Such defined repulsive
potential 1s easy to cause local minima and oscillations. (b) Improved APF,
we change the direction of repulsive potential for circular obstacle, is the
tangential of the circle.

B.3.Improved wall-following

The artificial potential field method used in the robot path
planning may suffer from the local minima and oscillations
problem when the Eq. (13) or (14) is satisfied as the above
mentioned. During path planning, once the local minima and
oscillatory movements occurs like Figure | (a) and (b) shown,
we employ wall-following method which was presented in
(Sheng et al., 2010) to guide robot escapes from local minima,
and this method can resolve oscillations. However, the
previously proposed wall-following method need detail
information of each obstacle that is this method only can solve
local minima and oscillations in known environment. The
illustration of wall-following method in figure 7(a), since robot
has the information about obstacles, robot compares the



distance from the location of robot to the two sides of obstacle,
if b<a, then robot moves along A-B-C-D toward the position
of target to eliminate local minima and oscillatory movements.
Similarly, as presented in figure 7(b), robot moves along A-B-
C-D-E-F toward the position of target to escape local minima
and oscillatory movements. The wall-following method can
successfully resolve the two key problems: local minima and
oscillations which caused by general artificial potential field
method in known environment, nevertheless, for the partial or
unknown environment, robot has not the complete information
about obstacles, result in robot cannot know which side is
closer. In other words, the wall-following method is not
suitable for the partial/unknown environment, thus we should
modify the previous wall-following meth to  adapt
partial/unknown environments.

Figure 7 The wall-following in known environment, (a) polygonal obstacle,
(b) U-shape obstacle
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Notes: In complete environments, robot knows information about obstacles,
when local minima occurs, robot compares the distance from the location of
itself and two sides of obstacle, then selects the shorter distance side to wall-
following.

Herein, we improve the wall-following method to deal with
local minima and oscillations problem of Improved APF when
robot moves in a partial/unknown environment. We utilize the
latest five steps to determine the moving tendency of robot,
and combine the wall-following method to assistant robot to
move out of local minima and oscillatory movements. The
orders of our proposed improved wall-following method are as
follows.

(a) One side of obstacle is in the sensing range of robot.
Robot moves toward the visual side and follows the
wall of obstacle until escape out of the local minima, as
shown in figure 8(a).

(b) Both two sides of obstacle are in the sensing range of

robot. Robot compares distance to the two sides, and
moves toward closer side and follows the wall of
obstacle until escape out of the local minima, as shown
in figure 8(b).

(c) Non-side of obstacle is in the sensing range of robot.
Robot continues to move toward the previous moving
tendency and follows the wall of obstacle until escape
out of the local minima, as shown in figure 8(c), (d)
and (e).

(d) Non-side of obstacle is in the sensing range of robot,
and the previous moving tendency is the perpendicular

of obstacle side, then robot randomly selects one side

to move along and follows the wall of obstacle until

escape out of the local minima, as shown in figure 8(f).
Figure 8 The improved wall-following method, (a) One side in robot’s
sensing range, (b) Both sides in robot’ sensing range, (c) No side in robot’s
sensing range: example 1, (d) No side in robot’s sensing range: example 2, (e)
No side in robot’s sensing range: example 3, (d) No side in robot's sensing
range: example 4
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Notes: (a) One side is in the robot’s sensing range, robot does not know the
distance from its location to another side, then robot selects the visual side to
wall-following, e.g. A-B-C-D. (b) Both two sides are in robot’s sensing, robot
selects the closer side to wall-following, e.g A-B-C-D. When there is not side
in the sensing range of robot, robot continues to move toward the previous
moving tendency and follows the wall of obstacle, for examples, (c) The
previous of latest five steps moving tendency is lower right, robot follows the
A-B-C-D-E-F 1o move out of local minima. (d) The previous of latest five
steps moving tendency is upper right, robot follows the A-B-C-D to move out
of local minima. (e) The previous of latest five steps moving tendency is
upper nght, robot follows the A-B-C-D-E-F to move out of local minima. ()



The latest five previous moving tendency is vertical the side of obstacle, then
robot randomly selects one side to wall-following.

C. Regression Search Based Method (RS Method)

Although our Improved APF method which could resolve
the local minima. oscillations and non-reachable problem
successfully, but the key problem is that apply all artificial
potential field methods including our method could not plan an
optimal/near-optimal path in complete known environments,
partial known environments and unknown environments. This
shortcoming makes the applications of such methods are very
limited. especially for the time/energy constrain robot. While
another important contribution of this paper is that we develop
a regression search (RS) method to optimize the planned path.
The optimization path is calculated by connecting the
sequential points which produced based on our Improved APF
method.

From the location of robot to destination, the inter-start
point connects with the latter point as a straight line
sequentially. If the connected line doesn’t across any
obstacles, then from the inter-start point re-connects with the
next latter point as a new straight line until this connected line
across an obstacle or the distance between the connected line
and the closest point of obstacles is less than D;. Saving this
connected line as robot local sub-path from the inter-start point
to the terminative point. Afier that system produces the next
new straight line from the last terminative point as the next
inter-start point to the latter point as the above mentioned
does.

We use Figure 9 as an example to illustrate the RS method
based on our Improved APF. Assumption that 7, &/ 7}, T5, T;

e« o T, T.; « + « T, are the sequential points which
planned by our Improved APF (as shown in figure 9(a)), that is
robot moves along the sequential points can reach the target
point without colliding obstacles. Based on the RS method.
firstly. the initial point 7; as inter-start point connects the next
point 7> as a straight line L, ;(as shown in figure 9(b)). Then
this method judges L, ; is crossing any obstacles or not, or the
shortest distance D between L; » and obstacle is or not less
than Dy. If L, , does not cross any obstacles or D is greater
than Dy, then system re-connect 7 with Ts as L, ;. and do the
similar step mentioned above (as shown in figure 9(c)). Until
L ,.; because of L; ,., is crossing obstacle (as shown in figure
9(d-0)). so the feasible local sub-path is L, ;(as shown in figure
9(g)), that means 7, is the terminative point. Due to 7;., is not
the last point, so the next inter-start point is 7; and connects
with the next point 7;.; similarly (as shown in figure 9(h)).
Therefore, the optimal path of this example is the line £, , and
L; » (as shown in figure 9(j-m)). In other words, robot move
along L, ; and L, , will consume the least energy, the distance
of L, ,and L, , is the shortest (as shown in figure 9(n)).

Figure 9 Regression search method (RS method), (a) Planned path by
Improved APF, (b) Step / of RS method, (c) Step 2 of RS method, (d) Step i-
1 of RS method, (e) Step i of RS method, () Step i+ /1 of RS method, (g) Step

i+2 of RS method, (h) Step i+3 of RS method, (j) Step n-/ of RS method, (k)
Step n of RS method, (m) Step n+ / of RS method, (n) Obtain optimal path
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Notes: (a) From location of robot to the position of target, using Improved
APF to produce a sequential point set. According to the sequential point set,
we use RS method to optimize the planned path by connecting two point as a
straight line and judging the connected line is crossing any obstacle or not,
the shortest distance between this connected line and obstacle is less than we
set threshold or not. (b) The location of robot 77 as the first inter-start point
connects with the next point 72, due to L 2 i1s a feasible line, and then
continues to (¢). (¢) Connect 71 and 73, and judge whether L1 3 is a feasible
line. If it is, then continue to (d-¢). (f) Because of L1 i/ is crossing an
obstacle, that means L/ :+/ is not a feasible line. Therefore, the first sub
optimal path is L1 as (g) shown. (h} Then point Ti as the next inter-start
point and connects with its next point 75/, and does the similarly judgment
as mentioned above. Through (j) and (k), we can obtain the second sub
optimal path is L. » in (m). (n) Finally, the optimal path is planned by our
Improved APF-based RS method. The distance of optimized path is much
shorter than only using Improved APF.

The entire algorithm of our proposed effective Improved
APF-based RS method is as follows, the illustration of our
proposed method shown in figure 10.

“* Improved APF Method **

Compute the artificial force F(q) at current configuration under our
proposed improved artificial potential field,

Take a small step in the direction indicated by ariificial force.

Save the coordinate as T,

Repeat until reach goal configuration.

The sequential points T, ={ T}, T, +, Iy} are the planned path
by improved artificial potential field method.

** Regression Research (RS) Method **

6. The location of robot Ty as the start point connects with the next paints.
7. FromTy&{T; Ty *» =+, Tal:

If the connected line L, ; does not cross any obstacle, then j=j+1.
Otherwise, turn to step 12.
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9. If the distance from the connected line L ; toward any obstacle is
greater than Do, then j=j+ 1. Otherwise, turn to step 12,
10. Ifj is not the last point of T,. Otherwise, turn to step 19.

11, Return to step 7.
12. T, as the next start point, e.g. inter-start point, and connects with the

next point.
13. FromTiE{TinTiea 2 v oy =+ o, Tal:
14. If the connected line L, i does not cross any obstacle, then k=k+ 1.
Orherwise, turn to step 18.
15. If the distance from the connected line L, ; toward any obstacle is
greater than Do, then k=k+ . Otherwise, turn to step 18.
16. If k is not the last point of T,. Otherwise, turn to step 19.

17.  Retwrn to step 13.

18, j=k, and return to step 12.

19. Until the final point.

20, Obtain the optimal path.

21, Robot moves along the optimal path.

Figure 10 llustration of our proposed method
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Notes: In the Improved APF-based RS method, firstly, using Improved APF to
calculate a valid path, and then utilize RS method to shorten the distance of
planned path
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IV. EXPERIMENTS AND RESULTS

This section describes the results obtained in various
experiments performed under our proposed Improved APF-
based RS method to resolve the key problems of artificial
potential field method: local minima, oscillatory movements
and non-reachable target, and shorten the planned path. These
experiments confirmed the truth that the Improved APF
method solved all important problems by using very simple
orders, such as: redefined attractive and repulsive potential
function, redefined the artificial potential field of nearby
vertexes of polygonal obstacles, change the direction of
repulsive potential field for circular obstacles and improved
the previous wall-following method to extend this method to
be applicable for partial /unknown environments, in spite of
the wall-following method is very good at deal with local
minima and oscillations in the known environments.

Although our Improved APF method can calculates a valid
path for robot, as many conventional artificial potential field
methods, the planned path is not optimal/sub-optimal
compared with almost other classic methods and most heuristic
approaches. This is the vital restrain that such method applies
to robot systems, especially for the real robot system when we
consider the common path planning problem criteria: distance



of planned path, computational time and robot travelled
energy. Thus, we proposed a regression search method to
reduce the distance of planned path by our Improved APF
method. The experiments results also proof that the final
obtained path under our proposed method is optimal or
approximative optimal path. That is we utilize the simplest
method to solve the one of the most difficult domains for
intelligent robot systems. We believe this method is very
useful for autonomous distributed multiple robots systems, due
to the computational time and complexity are the most two
important problems for such systems.

A. Simulation Environment Settling

Numbers of simulation experiments are carried out for
proving the validity and feasibility of our proposed algorithm
using VC++, intel(R) CORE(TM) i5-2.52GHz CPU with the
OS of Windows 7 Professional. The environment is setting as
square with width of 20 m, a free configuration space (free C-
space) which shown in Figure 11. The coefficient & for
calculating attractive potential/force is 0.3. To prevent the
planed path is far away obstacles enough, we set the positive
coefficient d is 3. The positive scaling factor of repulsive
potential/force n is 2.0. The largest impact distance for

mobile robot from obstacles o, is 0.5. The distance dp,

between obstacles and target is 0.4 and d, is 0.6, which is
settling to solve the target non-reachable problem. For
obtaining an optimal collision-free path based on the Improved
APF method, the D=0.2 is utilized. We assume that the
moving step of robot is 0.1. Table | presented the detail
parameters. And robot is omni-directional.

Figure 11 Simulation environment

'

Table I Parameters of our algorithm
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20x20m 0.3 3.0 20 0.5 04 06 02 0.1

B. Improved APF Method
Local minima, oscillations and non-reachable target
problem are the three fatal problems for conventional artificial

potential field methed. Herein, we presented the results
obtained in various experiments performed under our
Improved APF methed in completely known environments,
and next section we will discuss robot path planning in
partial/lunknown environments.

Figure 12 Solving problems by Improved APF method, (a) Resolving local
minima, (b) Resolving oscillations, (¢} Resolving non-reachable target
problem, (d) Resolving repulsive potential for vertex of polygonal obstacle,
(¢) Resolving repulsive potential for circular obstacle, (f) A complete planned
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Notes: (a) We utilize improved wall-following method to deal with local
minima, the distance from robot to right side is shorter than left side, and
thus, robot follows the right side wall of obstacle. (b) When both sides of
obstacle is out of robot’s sensing range, robot determines the previous moving
tendency according to the latest five steps. Therefore, robot follows the lefl
side wall 10 escape oscillations. (c) Because of target is very close with
obstacle, once the requirements are satisfied, robot moves along only
attractive potential. (d) We redefined the repulsive potential for vertex of
polygonal obstacle. (e) We changed the direction of repulsive potential for
circular obstacle. (f) Robot can plan a path without any problems by our
Improved APF method.

As Figure 12 shown, when the attractive potential and the
repulsive potential is collinear reverse (Figure 12(a)), robot
will fall into local minima using conventional methods. This is
a kind of undesirable solution for autonomous mobile robot.
However, the proposed Improved APF method is very good at
handling such local minimum problem by using improved
wall-following method. Additionally, when artificial attractive
potential and repulsive potential satisfied the Eq. (13) or (14),
robot will suffer from the oscillations and local minima



problem that result in robot never arrives at desired goal
position. As illustrated in figure 12(b). the improved wall-
following method could assistant robot to move out of these
problems once the difference between attractive potential/force
and repulsive potential/force is less than ¢.

According to the traditional defined artificial potential
functions, along with the increase of distance from robot to
target and the value of attractive potential/force is increased,
on the other hands, the more robot close to target, the smaller
attractive potential/force is, in the desired position of target,
the value is zero. By contrast, the repulsive potential/force is
inversely proportional to the distance between robot and
obstacles. The value of repulsive potential/force exponentially
increases along with the distance reducing. That cause when
target close enough to obstacles, robot never approaches to
target, e.g. non-reachable target problem. Figure 12(c)
indicates that our method can plan a collision-free and safely
path to target even the target is close enough to obstacles.

We mentioned above that conventional methods did not
discuss the repulsive field about vertex of polygonal obstacles
which is one of the normal reasons lead robot to local minima
and oscillations. In this paper, we implement tangent of
semicircle for changing the direction of repulsive potential to
eliminate it as shown in Figure 12 (d) and change the direction
of repulsive potential for circular obstacle which indicated in
Figure 12 (e). Figure 12(f) indicated a completely path without
local minima, oscillations, non-reachable target and any other
problems by using our proposed Improved APF method.

C. Optimization of the planed path for static target

As we know that the most three important evaluations of
path planning method are distance of planned path,
computational time and robot travelled energy. To reduce the
distance of planned path, many kinds of classic and heuristic
path planning methods are proposed, but the costs of these
methods are greatly time computation and complex structure,
On the contrary, artificial potential field methods are less
computational time and simplest mechanism, while the
computed path of artificial potential field methods is not
optimal/near-optimal which limits these methods to apply to
time/energy constraint robot. In this paper, we proposed a
regression search method under Improved APF method to
optimal the planed path. The results are shown in Figure 13,
Figure 14 and Figure 15.

In Figure 13, blue line is the path which planned by our
Improved APF method, while red line is the optimal path
utilizing RS method. In Figure 13(a)-(d) are the path planning
problem in known environments, the completely information
of obstacles and environment are known for robot. When robot
encounters local minima and oscillations, robot can select the
shorter distance side to wall-following, ultimately, robot
computer a valid and safety path. Figure 13(e) and (f) is robot
working in partial/unknown environments. Robot only knows
the position of itself and target, while the information about
obstacles is unknown for robot. Once robot senses obstacles
and judge whether it is tramping in local and oscillatory

movements, if it is, then implements our improved wall-
following method to guide robot escapes these problems. As
Figure 13(¢) and (f) shown, robot moves along the tendency of
the latest five steps and then follows the wall of obstacle.

In the figures, the red paths are obviously shorter than the

blue paths in various kinds of conditions. Moreover, the
optimal paths have non-oscillations which could save robot
travelled energy. The experiment results indicated that our
Improved APF-based RS method conforms to the criteria:
distance of planned path and robot travelled energy.
Figure 13 Planned path using Improved APF-based RS method, (a) Path
planning in known environment, example /, (b) Path planning in known
environment, example 2, (¢) Path planning in known environment, example 3,
(d) Path planning in known environment, example 4, (¢) Path planning in
unknown environment, example 7, (f) Path planning in unknown environment,
example 2

=T

(a) (b)
SRR Jenlominr o st
L esiidai)
L 8]
(c) (d)
F e ¥ T e e L e
et @D (e )
Lol
5|
(e) (n

Notes: Blue hine is the path which planned by our Improved APF method,
while red line i1s the optimal path utilizing RS method. (a)-(d) Path planning
in known environments. (e)}{f) Path planning in partial/unknown
environment. The distance of red path based on Improved APF-based RS
method is obviously shorter than blue path under only Improved APF in each
condition

Figure 14 shows the distance of planned path by only
Improved APF method and Improved APF-based RS method,
the black rectangle point indicated the distance of planned path
by Improved APF method, while the red circle point is the
distance of optimal path based on Improved APF-based RS
method. From the figure we can see that each case our
proposed algorithm greatly reduces the distance of planned



path from the location of robot to the position of target, the
average distance of this ten cases is 32./2 m and 20.06 m using
only Improved APF method and Improved APF-based RS
method, respectively. Therefore, the results demonstration that
the regression search method is very efficiency to optimize the
planned path by general artificial potential field method.

Figure 14 Distance of planned path
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Improved APF-based RS method consumed 3.6 milliseconds
in average, only /.5 milliseconds more computational times (as
Figure 15 shown) compare with Improved APF method. The
little computational time fulfil also satisfy the common path
planning problem criteria: computational time. This is very
important for large scale distributed multi-robot systems.
Figure 16 Path planning for dynamic target, (*-1) Path planning based on
Improved APF method, (*-2) Path planning using Improved APF-based RS
method, (a), (b) and (c) are the different trajectory of moving target and initial
position of robot

Case | Case 2 Case 3 Cased Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Aves

Notes: The black rectangle point represented distance of planned path by
Improved APF, Red circular point indicated distance of planned path based
on Improved APF-based RS method. Each condition, Improved APF-based
RS method can reduce the distance of Improved APF, that means the
Improved APF-based RS method can save more energy for robot. The nghtest
are the average distance of 10 simulations. The average distance of ten cases
15 32.12m and 20.06m using only Improved APF method and Improved APF-
based RS method, respectively.

Figure 15 Computational time
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Notes: The black rectangle point represented computational time of planned
path by Improved APF, Red circular point indicated computational time of
planned path based on Improved APF-based RS method. Each condition,
Improved APF-based RS method need a little more computational time than
Improved APF. The rightest are the average distance of 10 simulations. The
average computational time of ten cases is 2.1 milliseconds and 3.6
milliseconds using only Improved APF method and Improved APF-based RS
method, respectively.

Since the structure of Improved APF method is very
compactness and the algorithm is not so complex, this method
only consumed 2./ milliseconds in average, while our

(c-1) (c-2)

(1) Using Improved APF (2) Using Improved APF-based RS method

Notes: Red s represented the trajectory of moving target, while blue is
represented the trajectory of robot. We used Improved APF method and
Improved APF-based RS method to plan path for dyvnamic target at the same
conditions. (a) The initial position of robot and target are (19, 16) and (5, 19).
(b) The imitial position of robot and target are (17, 13) and (10, 19). (c) The
initial position of robot and target are (1, 1) and (10, 19.5).

D. Dynamic target in known environments

The little computational time of Improved APF and
Improved APF-based RS method make them very suitable to
plan path for dynamic target in known environment. Every
step, target changes its position and robot should re-plan path
to target, if the computational time is very long, such as almost
classic path planning algorithms and most heuristic methods,
these methods cannot real-time path planning for robot. Figure
16 (*-1) are the trajectory that robot approaches toward



moving target by Improved APF method, while Figure 16(*-2)
are the trajectory that robot approaches toward moving target
utilized our Improved APF-based RS method in the same
condition. We simulated 8 different cases and compared the
consumed time steps using the two methods. The results are
presented in Figure 17. The figure clear that even though for
dynamic target in known environments path planning problem,
our proposed Improved APF-based RS method distinctly
reduced the consumed time steps which robot approach the
position of target compare to only using Improved APF
method.

Figure 17 Consumed time steps
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Notes: The black rectangle point represented consumed time steps by
Improved APF, Red circular point indicated consumed time steps based on
Improved APF-based RS method. Most conditions, Improved APF-based RS
method consumed less time steps to approach moving target than Improved
APF, that means the Improved APF-based RS method can save more energy
for robot.

E. Dynamic target and moving obstacle in partial known
environments

All conventional artificial potential field methods and its
variational methods are not fit with partial known
environments. Fortunately, the proposed method can solve any
condition in partial known environments by our improved
wall-following method. As section 111 B.3 described, we
employ the latest five steps moving tendency to assistant robot
approaches to the location of target. Figure 18 indicated the
results in simulation based on our Improved APF method and
Improved APF-based RS method, which the information about
static obstacles, position of robot and target are known for
robot, while the information of moving obstacle is unknown.
The sensing range of robot is omni-directional 3m.

F. Local sensing range, dvnamic target and moving obstacle
in unknown environments
To demonstration the more applications of our proposed

method, we simulated path planning for local sensing range of

robot, dynamic target and moving obstacle in unknown
environments, respectively. Path planning in  unknown

environments is impossible for classic path planning
algorithms, and very difficult for heuristic path planning
algorithms. We assumed that the only locations of robot and
target are known for robot, and the sensing range of robot is
omni-directional 3m. Figure 19, 20 and 21 shown local sensing
range robot path planning for static target, dynamical target
and dynamic target and moving obstacle, respectively.

Figure 18 Path planning for dynamic target and moving obstacle, (a)
Improved APF method, (b) Improved APF-based RS method

(a) Our Improved APF method

(b) Our Improved APF-based RS method

Notes: Partial known environment means the information about static
obstacles, coordinates of target and robot are known for robot, but robot does
not know the information of moving obstacles. Red is represented the
trajectory of moving target, while blue is represented the trajectory of robot.
The initial position of robot and target are (1, 1) and (12, 19). We used
Improved APF method and Improved APF-based RS method to plan path for
dynamic target at the same conditions

Figure 19 Path planning of local sensing range for static target



Notes: Unknown environment, robot only knows its position and target’s
position, information about obstacles are not known for robot. The robot's
sensing range is omni-directional 3m. Robot detects its working environment
by equipment sensor. The initial position of robot and target are (19, 1) and
(8,19)

Figure 20 Path planning of local sensing range for dynamic target

Notes: Unknown environment, robot only knows its position and target's
position, information about obstacles are not known for robot. The robot’s
sensing range 1s omni-directional 3m. Robot detects its working environment
by equipment sensor. The initial position of robot and target are (1, 1) and
(12,19)

Figure 21 Path planning of local sensing range for dynamic target and
moving obstacle

Notes: Unknown environment, robot only knows its position and target's
position, information about obstacles are not known for robot. The robot’s
sensing range 1s omni-directional 3m. Robot detects its working environment
by equipment sensor. The initial position of robot and target are (1, 1) and
(12, 19)

V. DISCUSSION

A The influence of parameters setting

Parameter setting is a very trouble problem for variety of
path planning methods, and it is crucial for influence of its
capability and applications, such as the size of cell is the key
parameter setting for A* algorithm and D* algorithm. When
the size of cell is large, the computational time will become
very quickly, while the distance of planned path and robot
travelled energy are not exactly. On the other hand, it will take
an unacceptable long computational time to obtain an optimal
path. Similarly, genetic algorithm, colony optimization
algorithm, neural network, particle swarm optimization and
many others, the parameters setting is the most difficult
problem and very impact of these methods’ performance and
practicality. To reduce the computational time and obtain
optimal planned path, some methods need using learning
method to determine the value of parameters before path
planning.

As others path planning methods, we should in advance set
several parameters for our Improved APF-based RS method.
The main parameters which affect the performance of our
method are & for uttractive potential, 7 and g, for repulsive
potential. Other parameters are set to guarantee robot avoids
obstacles and approaches to target, the changing of these
parameters are not affect the performances: distance of
planned path, computational time and robot travelled energy.
Due to the very simple characteristic of such method, the
changing of parameters are almost not affect the computational
time, only change the distance of planned path and robot
travelled energy. As a result of we assumed robot in simulation
experiment is an omni-directional robot, we consider the robot
travelled energy is the same as distance of planned path. Thus,



we analysed the changing of k, 7 and P0 affect the distance
based on our Improved APF method and Improved APF-based
RS method, which are presented in figure 22, 23 and 24. From
the results we can concluded that the changing of such three
parameters a little affect the distance of Improved APF
method, but there is almost no influence of Improved APF-
based RS method. The figures indicate that although we
should carefully choose parameters for Improved APF method
to acquire a better path, we need not excessively consider how
to select suitable parameters for our Improved APF-based RS
method. The facts further demonstrate the simplicity and
practicality of our proposed method, and it is very easy 1o
extend our method to many other kinds of path planning
problems.

Figure 22 The influence of k, (a) Case 7, (b) Case 2, (¢) Case 3
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Figure 23 The influence of 77, (a) Case /, (b) Case 2, (c) Case 3
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Figure 24 The influence of ,(')“ ,(a) Case [, (b) Case 2, (c) Case 3
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Notes: Other parameters are set as follows:
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() The initial position of robot and target are (4, 19) and (12, 1). (b) The
initial position of robot and target are (3, 2) and (17, 17). (¢) The initial
position of robot and target are (2, 10)and (13.2, 4)

B. Bidirectional Improved APF

Researchers (paper (Zhang et al., 200) and (Uyanik, 2010))
have proposed a bidirectional artificial potential field method
for robot path planning. The bidirectional artificial potential
field method has three steps: Firstly, plan a path from the
location of robot to the position of target. Secondly, plan
anther path from the position of target to the location of robot.
Finally, compare the distance of the two paths, and then selects
the shorter one as the planned path. They have demonstrated
that this method can always selects a shorten distance path.
Therefore, in this paper, we utilize the bidirectional path
planning method based on our Improved APF method to
discuss the performance. Figure 25 and figure 26 are the
simulation results, from the figures we can see that the
bidirectional Improved APF method can select the shorter
distance path every condition as (Zhang et al., 200) and
(Uyanik, 2010) mentioned, while the computational time is too
long to obtain a better path. As the former described (Figure
15), our proposed Improved APF method only consumes a few
milliseconds to computer a valid path. In contrast, the
bidirectional Improved APF method spends 10 times
computational time to calculate a better path compare to
Improved APF method. This is a acceptable computational
time for small scale multiple robots systems, but for the real-
time middle/large scale distributed multi-robot systems, too
long computational time is a undesired according to common
path planning problem criteria.

Figure 25 Bidirectional Improved APF method
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target. The second path 1s planned from the position of target to the location
of robot. There is a difference between the first and second path in all

conditions. Bidirectional Improved APF method can always select the shorter
path.

Figure 26 Computational time of bidirectional Improved APF method
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Notes: As mentioned above, Improved APF spends only a few milliseconds to
plan a valid path, while bidirectional Improved APF need 10 times of
Improved APF to computer a better path. This is a acceptable computational
time for small scale multiple robots systems, but for the real-time
middle/large scale distnbuted multi-robot systems, too long computational
time 1s a undesired according to common path planning problem criternia.

VI. CONCLUSION

Path planning problem is one of the most important robotic
problems for autonomous mobile robot to accomplish given
tasks. An effective Improved APF-based RS method was
proposed to obtain a global sub-optimal/optimal path without
local minima, oscillations and non-reachable target problem in
variety of environments contain: completely known, partial
known, unknown, static and dynamic environments. Redefined
potential functions and improved wall-following method
utilized to eliminate problems which are the fatal three
problems for artificial potential filed. Due to the computed
path by Improved APF method is not the shortest distance, we
developed a regression search (RS) method to optimize the
planned path, and proved that a safely. optimal and collision-
free path for autonomous mobile robot could be produced by
amount of simulation experiments. The results demonstrated
that our Improved APF-based RS method is very feasibility
and efficiency to solve mobile robot path planning problem.
Moreover, we verified that our method can apply for real-time
path planning: dynamic target, moving obstacle and local
sensing range of robot.

In the future works, we attend to smooth the planned path,
improve our method for more complex environment and make
it suitable for large scale distributed multi-robot coordination
systems. And reduce the consumed computational time of
bidirectional Improved APF method.
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