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Standing up is fundamental to daily activities of the el-
derly. It is necessary both to enhance muscle strength
and to strengthen muscle coordination for improve-
ment of their motor function. In this paper, we ex-
tract important data related to muscle coordination,
called synergy, to perform standing motion by young
and elderly participants. The contribution of mus-
cle synergy to body kinematics is calculated through
neural networks that estimate joint torque and body
kinematics. To explain deficient motor function in el-
derly persons, extracted synergy is classified into 4
clusters based on how synergy contribute to body kine-
matics. Cluster analysis explains that elderly partic-
ipants have weaker synergy than young persons in
bending their backs to generate momentum. Com-
pared to younger persons, older persons require ad-
ditional muscle coordination to stabilize posture after
standing-up in order to avoid falling.

Keywords: standing-up motion, muscle synergy, aging,
neural networks

1. Introduction

The aging society has raised severe healthcare issues in
developed countries. As life expectancy increases, the ra-
tio of elderly to young individuals has increased rapidly,
potentially decreasing the quality of life for both old and
young persons. For the elderly, activities of daily living
(ADL) – getting up from a bed or chair, dressing, or us-
ing the toilet – often become more difficult with age [1].
Similarly, informal family caregivers suffer physical and
mental stress due to the unfamiliar tasks [2]. To improve
this situation, preventive medicine has been suggested to
enable the elderly to take more care of themselves. Many
assistive systems, such as care beds or external exoskele-
tons, have been developed to enhance ADL for the elderly.
Assistive robotics, in fact, can aid deficient body func-
tions, but preventive medicine has not been widely imple-
mented yet. In this study, we focus on standing up motion
because the elderly who are not able to perform this basic
action have difficulty in mobility necessary for ADL [3,
4]. Preventing individuals from becoming bedridden re-

quires both supplementing their insufficient strength and
retraining their motor control. There are many previous
studies which focus on training methodology to train mo-
tor control of elderly persons. It is known that the elderly
can enhance muscle strength [5], but training a single
muscle may not improve functional ability. Motor func-
tion performance decreased only when muscle strength
was below a certain threshold [6, 7]. It is therefore implied
that as long as the elderly persons have a certain amount
of muscle strength, training a single muscle would not im-
prove motor function.

On the other hand, it has been reported that training
should examine the activation of different kinds of mus-
cles specifically to improve motor ability [8]. Complex
human motion usually consists of moving different mus-
cles and joints, so the effect of training a single muscle
is limited. To enhance motor function – as opposed to
muscle strength – it is important to know what groups of
muscles are activated together to generate motion.

In this study, the synergy hypothesis is used to extract
necessary groups of muscle activation from the stand-
ing. The idea was originally introduced by Bernstein,
who suggested that complex human motion be divided
into simplified modules of coordinated muscle activation
called synergy [9]. Some recent studies have shown that
complex human motor tasks are simplified by small sets
of muscle coordination [10, 11]. If muscle coordination
(synergy) differs between the elderly and younger per-
sons, it would be useful to develop training methodology
specifically for the deficient synergy of the elderly.

Our objectives in this paper are thus to extract synergies
necessary to achieve standing-up from both the elderly
and the young. Synergies are also classified into several
groups based on its contribution to standing-up motion,
and how muscle synergy differs between the elderly and
the young is explained.

2. Methods

2.1. Overview

A synergy is focused to elucidate the different mo-
tor functions between elderly and young people. An
experiment is conducted to measure body kinematics,
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ground reaction force, and muscle electrocardiography
data (sEMG) from young and elderly people during
standing-up motion. From the obtained sEMG patterns,
necessary synergies to achieve the motion are extracted.
In addition, two relationships between sEMG patterns and
joint torque and between joint torque and body kinematics
are developed for individuals to test how muscle syner-
gies contribute body kinematics. Furthermore, extracted
synergies are classified into different clusters according to
the contribution of synergies to body kinematics. Finally,
contribution of synergies and the weaker motor functions
of elderly people are clarified.

2.2. Muscle Synergy Analysis
The synergy model in this study regards sEMG patterns

as linear combinations of small sets of different syner-
gies [12]. Let d in the model be the number of measured
muscles, tmax the maximum time steps of obtained sEMG
data, and m(t) a matrix indicating activation of d muscles
during motion at time t(0 < t ≤ tmax) as shown in Eq. (1).
Muscle activation m(t) is expressed as a vector mmm. Ele-
ment of mmm is (m1(t),m2(t), . . . ,md(t))T where m( j=1,...,d)

represents muscle activation of the j-th muscle.

m = [mmm(1),mmm(2), . . . ,mmm(tmax)]

=

⎛
⎜⎝

m1(1) · · · m1(tmax)
...

. . .
...

md(1) · · · md(tmax)

⎞
⎟⎠ . . . . . . (1)

m(t) is approximated using the linear summation of
time-varying synergies wi=1,2,...,N(t) with non-negative
coefficient ci and onset time delay ti as shown in Eq. (2).
N is the total number of extracted synergies. Synergy is
expressed as shown in Eqs. (3)–(4). Elements of wi(t)
is also expressed as a vector of (w1

i (t),w
2
i (t), . . . ,w

d
i (t))

T

where w( j=1,...,d)
i represents muscle activation of j-th

muscle in i-th synergy and Tw is the duration of muscle
synergy.

m(t) ∼=
N

∑
i=1

ciwi(t − ti). . . . . . . . . . . (2)

wi =

⎛
⎜⎝

w1
i (1) · · · w1

i (Tw)
...

. . .
...

wd
i (1) · · · wd

i (Tw)

⎞
⎟⎠ . . . . . . . (3)

wi
j(t) =

⎧⎪⎨
⎪⎩

0 (t ≤ 0)
w j

i (0 < t ≤ Tw)
0 (Tw < t).

. . . . . . . (4)

Figure 1 shows the schematic design of the synergy
model. Three muscle synergies are shown in solid lines,
dashed lines, and solid lines with circle markers respec-
tively (Fig. 1(a)) and observed d muscle patterns are dis-
played in gray graphs (Fig. 1(b)). Observed muscle pat-
terns during human motion are expressed as a linear sum-
mation of 3 synergies with coefficient (c1,2,3) and onset
time delay (t1,2,3) shown as vertical solid black arrows and

Synergy2

Synergy3

(a)

(b)

(c)

Synergy1

Synergy1

Synergy2

Synergy3

Fig. 1. Synergy model: sEMG patterns are expressed as
a linear summation of 3 synergies with non-negative coef-
ficient (c1,2,3) and onset time delay (t1,2,3). (a) represents
3 sets of muscle synergies. (b) represents d muscle sEMG
patterns. (c) represents synergy onset time delay (horizontal
dashed arrows) and synergy weighting coefficient (vertical
solid arrows) of synergies.

horizontal dashed black arrows in Fig. 1(c).
Different strategies of motions are achieved by chang-

ing values of ci and ti for each synergy. When ci is
changed, the muscle excitation level in synergies is con-
trolled and the time for starting each synergy is adjusted
by the value of ti.

2.2.1. Muscle Synergy Extraction
A non-negative matrix factorization, i.e., a decomposi-

tion algorithm, is used to determine synergy patterns and
time delays for each synergy [13]. The algorithm uses the
multiplicative update rule to optimize elements of syner-
gies wi, non-negative coefficients ci, and time delays ti.

The decomposition algorithm assumes that muscle ac-
tivation m is expressed as linear summation of muscle
synergies wi with weighting coefficient ci and onset time
delay ti. The decomposition algorithm finds the muscle
synergies wi, weighting coefficient ci, and onset time de-
lay ti that minimize squared error (E2) between observed
muscle activation (m) and reconstructed activation from
muscle synergies as shown in Eq. (5).

E2 =

trace

(
m−

N

∑
i=1

wiHi(ci, ti)

)T(
m−

N

∑
i=1

wiHi(ci, ti)

)
(5)

In the equation, H(ci, ti) is the matrix (Tw × tmax) which
has the function of scaling muscle synergies with coeffi-
cient ci and shifting with time ti (Eqs. (6)–(7)).

H(ci, ti) =

⎛
⎜⎝

h1
1 · · · htmax

1
...

. . .
...

h1
Tw

· · · htmax
Tw

⎞
⎟⎠ . . . . . . . (6)
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hl
k =

⎧⎪⎨
⎪⎩

0 (l ≤ ti)
ci (ti ≤ l < ti +Tw, l = k)
0 (ti +Tw < l)

. . . . . (7)

The following steps are conducted in order to decide
muscle synergy pattern, weighting coefficient, and onset
time delay:

Step 1: Initial patterns of muscle synergy are determined
randomly in this study.

Step 2: In order to minimize E2, it is necessary to find
the onset time delay topt

i for muscle synergy wi that
maximize the following function (Eq. (8)):

ϕ =
tmax

∑
t=0

mmm(t)Twi(t − ti). . . . . . . (8)

All possible values for ti are tested to determine topt
i .

Step 3: Weighting coefficient ci is updated with calcu-
lated onset time delay topt

i by the following equation
(Eq. (9)):

cnew
i = ci

(
trace(mTm̃)
trace(m̃Tm̃)

)
, . . . . . . (9)

m̃ =
N

∑
i=1

wiH
(

ci, t
opt
i

)
, . . . . . . . (10)

where m̃ is the muscle activity pattern generated
from muscle synergies by Eq. (10).

Step 4: Component of muscle synergies w j
i is updated

from Eq. (11):

w′ j
i (t) = w j

i (t)
(

m j(t)
m̃ j(t)

)
. . . . . . . (11)

Repeat Step 2 to Step 4 until E2 converges. This de-
composition algorithm is repeated 10 times in order to
avoid finding only local minima. The best muscle synergy
wi and onset time delay ti to minimize E2 are selected as
a solution.

Cross-validation method is employed in order to evalu-
ate model accuracy. Synergy patterns are first calculated
from random selected trials of observed data, and model
accuracy is tested from applying these synergy models to
the rest of observed data. Coefficient of determination
(R2) is used for model accuracy. Cross-validation is re-
peated 20 times for different random data divisions.

The number of muscle synergies to be extracted is
determined from the cross-validation method because it
may be different among individuals or it depends on their
strategies of the standing-up motion. To ascertain the
number of synergies, the accuracy of the model is calcu-
lated for different numbers of synergies to test how many
synergies are superior for representing the standing-up
motion. In order to decide the number of synergies, one

factor analysis of variance (ANOVA) is performed to as-
sess the effect of the number of synergies on the accuracy
of the model. If there is a statistical significance, a post
hoc test (Tukey-Kramer) is performed for each neighbor-
ing numbers of synergies. Significance level (p) is set to
0.05 in this analysis.

2.2.2. Joint Torque and Body Kinematics Estimate
The model with 4 links and 3 joints (shown in Fig. 2)

is used to represent the human body. Planer movement
of standing-up motion is focused on because flexion and
extension of joint excursion mainly occur in the sagit-
tal plane of body. From our experiment, 3 joint an-
gles, θi{i=ankle,knee,hip}, are obtained. Three joint torque,
τi(i=ankle,knee,hip), are calculated using inverse dynamics
calculations as shown in Eq. (12),

M(θ)θ̈ +h(θ , θ̇ )+g(θ)+R = τ. . . . . (12)

M(θ) indicates an inertia term, h(θ , θ̇ ) indicates an
imaginary force term, g(θ) indicates a gravity term, and
R indicates a ground reaction term. Link length is mea-
sured in our experiment, and positions of center of mass
and weight of each links are determined by the statistical
data of individual body information [14].

To understand how human body motion is generated
from synergies, the relationships between sEMG and
body kinematics are developed for individual participants.
Two of 3-layer neural networks are used to create map-
ping between sEMG patterns and joint torque, and be-
tween joint torque and body kinematics (Fig. 2) [15].
In our neural networks, muscular tension generates joint
torque and torque activates joints to achieve motion, so
firstly sEMG patterns are used to estimate joint torque,
τi=ankle,knee,hip (NN1). In addition, joint torque and their
body positions θi=ankle,knee,hip(t) and θ̇i=ankle,knee,hip(t) at
time t are used to estimate body kinematics in the subse-
quent period θi=ankle,knee,hip(t +dt) and θ̇i=ankle,knee,hip(t +
dt) (NN2). The schematic design of motion estimation is
shown in Fig. 2. Input variables b1 and b2 indicate bi-
ased threshold that are added to neural networks, NN1 and
NN2. In order to train these neural networks and update
weight between nodes and biased threshold b1 and b2, all
data observed in our experiment – sEMG, joint torque,
and joint angles – are used. A cross-validation is used to
calculate model accuracy with coefficients of determina-
tion R2. A detailed configuration of the neural network is
shown in Table 1.

2.2.3. Synergy Classification
To compare synergies among individuals, all extracted

muscle synergies are classified into several groups based
on synergy contribution toward body kinematics of the
standing-up. To explain individual function of synergy,
changed muscle patterns are generated by weakening par-
ticular patterns of one synergy. Different body kinematics
are generated by putting these changed muscle patterns
through learned neural networks. This difference is at-
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Motion

Fig. 2. Estimation of joint torque and body kinematics and synergy effect computation: above figure shows methodology of joint
torque and body kinematics estimation and calculation of contribution of synergies toward body kinematics. (a) shows a synergy
model used in this study. In this example, eight muscle activations consist of two synergies (solid and dashed lines). The top patterns
(normal muscle sEMG) indicate observed sEMG in our experiment whereas the bottom patterns (synergy weakened sEMG) are used
to analyze the effect of particularly weakened synergy. (b) shows the neural networks which estimates body kinematics from sEMG
patterns. (c) shows the link model used in our study. Solid arrows indicate the normal motion generation, whereas the dashed arrows
indicate the changed motion caused by the synergy-weakened muscle patterns. Differences between normal motion and synergy
weakened motion are compared to elucidate the effects of synergies.

Table 1. Neural network configuration.

NN1 NN2
Number of Input Nodes 8 9

Number of Output Nodes 3 6
Number of Hidden Nodes 15 5

Transfer Function of
Tangent SigmoidHidden Nodes

Transfer Function of
Linear Tangent SigmoidOutput Nodes

Learning Rule Levenberg-Marquardt
Number of Training Iterations 20 10

tributable to the specific weakened synergy, which shows
the effect of synergies.

To prepare these changed muscle patterns, it is neces-
sary to change the coefficient of the extracted synergy.
Eq. (13) shows how synergy-weakened muscle patterns
are generated. In the equation, m′ j(t) represents synergy-
weakened muscle activation of the j-th muscle at time t,
c′i is the changed coefficient of i-th weakened synergy, ci
is the actually calculated coefficient, N represents the to-
tal number of extracted synergies, and ti is the time delay
for i-th synergy. c′i is set to 75% of original coefficient ci.

m′ j(t) =

N

∑
i

c′iw
j
i (t − ti)

N

∑
i

ciw
j
i (t − ti)

m j(t). . . . . . . (13)

Figure 2 shows normal muscle patterns and synergy-
weakened muscle patterns. This example includes mus-
cle activation of 8 muscles approximated by 2 syner-
gies (shown in solid lines and dashed lines). Synergy-
weakened muscle patterns, described at bottom of
Fig. 2(a), are generated by weakening one synergy shown
by dashed lines.

We calculate the percentage of changes using Eq. (14)
to evaluate synergy contribution. The degree of abso-
lute change between normal body kinematics and changed
kinematics is calculated for the whole duration of the mo-
tion. In the equation, θi=ankle,knee,hip(t) shows the joint an-
gles of the ankle, knee, and hip at certain time t which are
generated from normal muscle activation. θ ′

i (t) is calcu-
lated from weakened synergy muscle patterns. Changed
body kinematics are calculated from all trials of all partic-
ipant.

sci=ankle,knee,hip(t) =
|θi(t)−θ ′

i (t)|
θi(t)

. . . . . (14)

In this study, the synergy contribution to body kine-
matics is calculated as the average of sci=ankle,knee,hip(t)
between four phases of standing-up motion; the synergy
contribution vector in Eq. (15) is used to represent syn-
ergy contribution in four phases. In the equation, i signi-
fies the number of participants, and j denotes the ordinal
number of synergies extracted from participants. Hence,
sck=I,II,III,IV

θl=ankle,knee,hip
shows the average of synergy contribution

on a specific joint angle l during a particular phase k.
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Fig. 3. Experiment design: (a) Schematic design of experimental setup. (b) Motion capture sensor sites. Sensors were attached to
the shoulder, hip, knee, and ankle. (c) Muscle activation was obtained from 16 muscles described above.
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θankle
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θknee
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scIV
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]. . . . . . . . (15)

2.2.4. Cluster Analysis
In this paper, cluster analysis is used to classify ex-

tracted synergies based on contribution on body kinemat-
ics. Synergies’ effects on body kinematics are differ-
ent among synergies because body kinematics (θ(t + dt),
θ̇(t + dt)) is decided from both muscle activation gener-
ated by synergies and previous body kinematics (θ(t),
θ̇(t)). Each synergy therefore has different effects on
body kinematics although their patterns or time delays are
similar.

K-means cluster analysis is used to classify synergies
based on their contribution matrix. In the procedure, sim-
ilar synergies are distributed in the same cluster. To calcu-
late their similarity, the cosine of 2 synergy contribution
vectors, sc j

i , is used. In order to decide the number of clus-
ters in K-means cluster analysis, we test different numbers
of clusters from 2 to 5. The average of cosine of vectors
between data and a mid point of a cluster is used to evalu-
ate the classification performance based on the number. If
this average is small, there are many data far from the mid
point of clusters, so more clusters are needed. This K-
means cluster analysis is applied for 100 times with ran-
dom initial data divisions. One factor repeated measures
analysis of variance (ANOVA) is performed to assess ef-
fect of the number of clusters, with post hoc two sided
Tukey’s simultaneous tests when appropriate. The signif-
icance level is set to p = 0.05.

2.3. Experiment
2.3.1. Experimental Setup

Figure 3(a) shows our experimental system to mea-
sure participant body kinematics, ground reaction force,

and sEMG data during standing-up motion. MAC3D Sys-
tem (HMK-200RT; Motion Analysis) with 8 cameras was
used to measure body kinematics. Before recording start,
we performed calibration to confirm the accuracy of the
system. The body kinematics data were obtained at 64 Hz.
Four body parts were recorded during experiment to con-
struct a link model of participant: shoulder, hip, knee, and
ankle. Fig. 3(b) shows marker positions attached to par-
ticipants to express the link model. Joint angles were cal-
culated as angles between each link and a horizontal di-
rection.

In this study, 2 force plates were used to measure ver-
tical reaction force from the hips and feet at 4 Hz. We
originally built a force plate with a six-axes force sensor
system (IFS-90M40A; Nitta Corp.). These forces were
used to calculate ankle, knee, and hip joint torque of indi-
vidual participant from inverse dynamics calculation.

Personal-EMG (Oisaka Electronics Device Ltd.) was
used to record sEMG from 8 kinds of muscles (Fig. 3(c)).
These muscles were chosen as flexor and extensor of an-
kle, knee, and hip joints. Data were obtained at 1600 Hz,
and they were filtered with a 10 Hz hi-pass filter and 50–
60 Hz hum noise filter with a filter box of the system.

2.3.2. Data Processing
Measured 3-dimensional body kinematics data were or-

thogonally projected onto a sagittal plane of participants
in order to construct a 2-dimensional link model. Joint
angles, joint torque, and center of mass were calculated
based on inverse dynamics calculation, body kinematics
and ground reaction force data.

All sEMG data were centered and rectified. Both left
and right muscles were averaged to represent one mus-
cle. sEMG data were filtered by the smoothing filter cal-
culated using Eq. (16). In the equation, i is the number
of observed muscle and t is the discrete time step of the
data. sEMG data were averaged for 0.2 s (320 points of
data). Additionally, data of joint torque and angular ve-
locity were averaged as well.
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Phase I 
(Flexion Momentum Phase)

Phase II
(Momentum Transfer Phase)

Phase III
(Extension Phase)
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(Stabilization Phase)
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Duration of Standing-up Motion Extended  Data
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Fig. 4. Four phases division: the four pictures portray postures of participants during phases. Data were normalized based on the
start point of each phase.

mi
filtered(t) =

319

∑
t′=0

mi(t − t ′)

320
. . . . . . . . . (16)

2.3.3. Data Normalization
Because the duration of the standing-up motion dif-

fer among participants, it is necessary to normalize the
standing-up motion to compare different trials of partic-
ipants. It is also important to understand the effect of
synergies from the viewpoint of human body kinematics
because it has been reported that muscle synergy corre-
sponds to kinematic events in human motion [10]. Con-
sequently, 4 characteristic points of human standing-up
motion are chosen and each phase between points is ad-
dressed. These 4 phases are decided from the earlier
study [16], and they have been widely used to analyze the
human standing-up motion [17]. The start point of each
phase is defined as follows.

• Phase I (Flexion Momentum Phase)
It begins with first shoulder movement in the hori-
zontal direction.

• Phase II (Momentum Transfer Phase)
It begins with the first hip movement in the vertical
direction.

• Phase III (Extension Phase)
It begins when the ankle angle achieves the mini-
mum flexion.

• Phase IV (Stabilization Phase)
It begins when the vertical shoulder position
achieves the maximum height.

The end of Phase IV is determined by extending the
time series past the beginning of Phase IV by an additional
20% of the duration of Phases I–III. In addition to the
phase division, all data of the motion are normalized to
100% based on total movement time. For normalization,
the beginning point of the motion is determined at the start
of phase I. The end of the motion is chosen at the end of
Phase IV. Fig. 4 shows a description of each phase and
how we normalized data.

2.3.4. Participants
Ten persons with no noted impairments participated

in our experiment. The number of participants in this
study was sufficient for analysis compared to the number
of participants of previous studies (8, 9 and 10 people)
that conducted the similar experiments to measure body
kinematics, reaction force, and muscle activation [18–
20]. These participants (P1–P10) were divided into 2
groups: a younger group (N = 3, P1–P3; mean age =
24.0 years, standard deviation (STD) = 3.5 years) and an
elderly group (N = 7, P4–P10; mean age= 67.1 years,
STD = 7.3 years). During experiments, participants were
told to stand up in a way they found comfortable. The
number of trials they performed during our experiments
differed among participants ranging between 12 to 20 tri-
als. Before experiments were started, all participants were
confirmed to be able to stand up and maintain a standing
posture without any assistance. We have also explained
experiments in detail and obtained written consent from
all participants.

3. Results

3.1. Synergy Extraction
The number of synergies to be extracted from observed

sEMG patterns was clarified using the cross-validation
method. The measured trials of standing-up motion were
randomly divided into training and test data set for cross
validation as follows: 15 trials were obtained for P1 and
were divided into 12 training data and 3 test data, 12 tri-
als were obtained for P2 and were divided into 10 training
data and 2 test data, 16 trials were obtained for P3 and
P8 and were divided into 12 training data and 4 test data,
18 trials were obtained for P4, P5, and P7, and were di-
vided into 15 training data and 3 test data, and 20 trials
were obtained for P6, P9, and P10 and were divided into
16 training data and 4 test data.

Changes in coefficients of determination R2 based on
the number of synergies are shown in Fig. 5. Error bars
in the graph show standard deviation of coefficients of de-
termination. ANOVA showed a statistical significance of
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Fig. 5. Coefficient of determination for participants: cal-
culated averaged coefficients of determination based on the
change in the number of synergies are shown for all partici-
pants. Error bars show standard deviation.

P1, P2, P3, P4, P6, P7, P8, and P9. The post hoc test
was applied to neighboring numbers of synergies for data
of showing statistical significance in ANOVA. Statistical
significance was found between 1 and 2 and between 2
and 3 for P1, P2, P3, P6, P7, and P9. There was a statisti-
cal significance between 1 and 2 for P4 and P8. From this
statistical analysis, the number of synergies was deter-
mined from how additional synergies contributed to im-
proving performance, so the number of synergies was set
to 1 for P5 and P10, to 2 for P4 and P8, and to 3 for P1,
P2, P3, P6, P7, and P9.

Table 2. Number of synergies and time delay for participants.

Number of
Average Time DelaySynergies

P1 3 0 9 34
P2 3 0 10 43
P3 3 0 21 35
P4 2 29 53 –
P5 1 49 – –
P6 3 −1 12 36
P7 3 3 30 44
P8 2 33 73 –
P9 3 28 41 48
P10 1 46 – –

P1

P2

P3

P4

P6

P10

P9

P8

P7

P5

Young

Elderly

Phase
I      II        III       IV

Glu Max
Quad Fem

Bi Fem
Vas
Gast

Tib Ant
Sol

Lat Dor

Muscle 
Activation

Phase
I      II        III       IV

Fig. 6. Extracted synergy patterns: squares shown
above represent extracted synergies from young participants
(white) and elderly participants (gray). Each row indicates
different muscles and the X-axis shows time steps. The
brighter the color is, the more activated each muscle is. Off-
sets of each synergy indicate their time delays. Vertical
dashed lines show start points of 4 phases.

Table 2 shows the number of extracted synergies and
their time delays. Results of extracted synergy patterns
are shown in Fig. 6 with time delays. Each square in the
figure is an extracted synergy represented in a gray scale.
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Table 3. Mean distance between data and the mid point of
clusters.

Coefficient of Determination
τankle 0.75 ± 0.29
τknee 0.91 ± 0.16
τhip 0.81 ± 0.16

θankle 0.77 ± 0.21
θknee 0.95 ± 0.09
θhip 0.72 ± 0.16

θ̇ankle 0.74 ± 0.16
θ̇knee 0.88 ± 0.09
θ̇hip 0.76 ± 0.15

The brighter the color is, the more activated each muscle
is. The Y -axis depicts 8 measured muscles of different
types. Onsets for each square indicate time delays of the
represented synergy and vertical dashed lines show start
points of 4 phases.

3.2. Results of Cluster Synergies
The musculoskeletal model was expressed as 2 neural

network models to express relationships between sEMG
and joint torque and between joint torque and body kine-
matics. Cross validation was used to evaluate the accuracy
of neural networks. The same number of training and test
data set was used for participants as in validation of mus-
cle synergy extraction. Table 3 shows the average and
standard deviation of coefficient of determination, R2 for
estimating joint torque, joint angle, and angular velocity.

Synergy-weakened muscle patterns were put into
trained neural networks, and synergy contribution vectors
(sc) were calculated for all 24 synergies from 10 partic-
ipants. Body kinematics (θ(t + dt) and θ̇(t + dt)) were
recurrently determined from the past body posture (θ(t)
and θ̇ (t)), so although duration of some muscle synergy
was only seen in specific phases, they affected body kine-
matics in posterior phases. K-means cluster analysis was
applied to synergy contribution vectors. In this study, dt
was normalized time step.

Statistical analysis found statistical significance for all
neighboring number of clusters to be as follows: between
numbers of 2 and 3, 3 and 4, and 4 and 5. The average
distance between synergies and mid point of each cluster
is shown in Table 4. The number of clusters was set to
4. If the number of clusters was more than 4, then the
new cluster only included a single data. Consequently,
it seemed to improve the performance, but the additional
cluster caused segmentalization.

Figure 7 demonstrates the average synergy contribu-
tion of 4 clusters toward joint angles among 4 phases.
The X-axis shows four phases and the Y -axis shows the
mean percentage of contribution to each joint angle. Er-
ror bars indicate standard deviation of synergy contribu-
tion. White bars show contribution toward an ankle angle.

Table 4. Mean distance between data and the mid point of
clusters.

Number of Clusters Average Distance STD
2 0.395 0.023
3 0.522 0.057
4 0.532 0.039
5 0.553 0.020
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Fig. 7. Average contribution of synergies in clusters: bar
graphs show average contributions of synergies included in
4 clusters. Error bars show standard deviation. Contributions
to each joint angle was averaged during each phase. The Y -
axis shows their contribution based on original angles.

Gray bars show contribution to a knee angle, and the black
bars show contribution to a hip angle. Synergies involved
in each cluster was as follows: the i-th synergy of the j-
th participant is expressed as P j-i, e.g., P1-2 indicates the
second synergy of P1.

• Cluster I: P1-1, P1-2, P2-2, P3-1

• Cluster II: P6-1, P6-2, P7-3
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Fig. 8. Average synergy patterns in clusters: average syn-
ergy patterns are shown in each cluster. The brighter the
color is, the more activated each muscle is. The Y -axis shows
different muscles and the X-axis shows time steps during
synergies.

• Cluster III: P1-3, P2-1, P2-3, P3-2, P3-3, P4-1, P7-2,
P8-1, P9-1, P9-2, P10-1

• Cluster IV: P4-2, P6-3, P5-1, P7-1, P8-2, P9-3

Figure 8 shows averaged synergies in the 4 clusters.
The brighter the color is, the more activated muscle is.
Y -axis shows 8 different muscles.

4. Discussion

4.1. Synergy Extraction
Muscle synergies were extracted from observed sEMG

patterns during standing-up motion. After cross valida-
tion, synergy patterns were decided based on all observed
sEMG data. The decomposition algorithm was repeated
20 times for each subject, and a set of synergy was chosen
that showed the highest coefficients of determination. The
number of synergies to be extracted differed between par-
ticipants. Three synergies were extracted from all young
participants, whereas the number of synergies were 1–3
for the elderly. Among individuals, strategies of standing-
up motion might differ, which would account for differ-
ence in the number of synergies. Different standing-up
strategies indicate that muscles were activated differently
depending on the strategy. Specifically, low muscle acti-
vation was found in prior phases for those who used only
1 synergy (P5 and P10) whereas there was comparatively
higher muscle activation observed in the earlier phase for
young participants who had 3 synergies.

4.2. Body Kinematics Estimation
To estimate joint torque and body kinematics, 2 neural

networks were used in this study. Estimation results for
joint torque, angle, and angular velocity showed a high
value, which implied that it was able to estimate body
kinematics from sEMG patterns. Coefficients of deter-
mination, R2, differed in outputs of the neural networks.
Specifically, result for the knee and hip showed better es-
timation results than result for the ankle – a difference was
mainly attributable to sEMG input data. Among 8 inputs
of NN1, muscles of 4 kinds were attached to a knee and 5
attached to a hip to exert a force on it. This was more than
the number of muscles related to a ankle joint (3 mus-
cles), so inputs of NN1 contained more information about
a knee than an ankle joint. Even so, musculoskeletal sys-
tems were developed for all subjects. Neural networks
were trained with all observed data after cross validation
and trained networks were used for calculating the contri-
butions of synergies.

4.3. Contributions of Synergies
From cluster analysis, synergies in 4 clusters (Clus-

ters I–IV) were determined based on their effects on joint
angles in each phase. Since body kinematics was affected
by previous body postures in neural networks, extracted
synergies were classified based on their effects on body
kinematics although the time delay or patterns of syner-
gies in each cluster differed. Average muscle activation of
synergies in each cluster is discussed below (Clusters I–
IV Synergy).

4.3.1. Cluster I Synergy
All synergies included in the Cluster I were extracted

from the young group. Based on time delays, these syn-
ergies started from the beginning of the standing-up mo-
tion (mean time delay = 2.25, STD = 4.50). In terms of
contributions to each joint, synergies in Cluster I mainly
affected a knee joint in both Phases I and II and a hip joint
in Phase II. Specifically, in Phase II, which was the start
point of momentum transfer, a motion of lifting-up a hip
was distracted by weakened synergies belonging to the
Cluster I. Fig. 8 supports this perspective. The activated
muscles were the musculus soleus and musculus gastroc-
nemius, which were related to the ankle, and musculus bi-
ceps femoris and musculus gluteus maximus, which con-
tributed to the hip. This synergy was thus presumed to
work when participants flexed their feet and bent their
backs to lift the hip.

4.3.2. Cluster II Synergy
Synergies in Cluster II seemed to work similarly to syn-

ergies in Cluster I Synergy. Those synergies were ex-
tracted only from the elderly group, involving 2 partici-
pants, which implied that not all elderly participants had
this type of synergies. All these synergies started at the
beginning of the standing-up motion based on time delays
(mean time delay 4.67, STD = 6.66). Fig. 8 shows that the
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musculus gastrocnemius, musculus quadriceps femoris,
and musculus gluteus maximus were activated in the aver-
age synergy. The average activation of these muscles was,
however, weaker and its contribution to the hip angle in
Phase II was also smaller than that of Cluster I Synergy.

4.3.3. Cluster III Synergy
Cluster III included synergies extracted from most par-

ticipants (8 participants). Synergy patterns in Fig. 8
show that all muscles were activated, and those syner-
gies started from the middle of the motion (mean time
delay = 32.81, STD = 10.22). This synergy mainly con-
tributed to movement in Phase III, such as extension of
whole body. Results of synergy contributions in the Clus-
ter III (Fig. 7) show that Cluster III Synergy affected all
3 joint angles in the Phase III in which people moved all
3 joints to lift up their upper body vertically. Without this
synergy, people cannot lift up their hip during standing-up
motion.

4.3.4. Cluster IV Synergy
Synergies in Cluster IV were extracted from elderly

participants only. These synergies started at the lat-
ter phase of the standing-up motion (mean time delay =
50.39, STD = 13.64), and they contributed to the knee
in Phase III and all 3 angles in Phase IV. The average
synergy pattern in Fig. 8 shows that the musculus soleus,
musculus gastrocnemius, musculus biceps femoris, and
musculus gluteus maximus were activated in Cluster IV
Synergy. These muscles were attached and contribute to
all 3 joints. Synergies in Cluster IV presumably func-
tioned in stabilizing posture while compensating for the
large center-of-mass movement after the standing-up mo-
tion was achieved.

4.4. Different Muscle Synergy Between the Young
and the Elderly

Extracted synergies from young and elderly partici-
pants were classified into 4 clusters clearly showing dif-
ferences between the 2 groups. Synergies in Clusters I
and II functioned similarly; they flexed the ankle and bent
their backs. However, only two elderly people had this
type of synergies, although all young participants had a
synergy in Cluster I. These results implied that some el-
derly persons had deficient muscle coordination for flex-
ing the ankle and bending trunk to raise the hips. The
reason for this deficient motor function might be due to
fear avoidance action. Specifically, during Phase II, el-
derly persons must transfer the center of mass from the
hip to feet, which possibly caused them to fall. For such
reasons, not all of the elderly had this type of the synergy
(the Clusters I and II Synergy).

Cluster III Synergy was extracted from both young and
elderly participants and functioned as an extension of their
whole body to complete the action of standing-up motion.
This suggests that the elderly also coordinated muscles

when they extended the body after transferring the center
of mass on their feet.

Cluster IV Synergy, which helped stabilize posture,
was seen only in elderly participants. This suggests that
it was easier for elderly participants than for the young to
lose stability as they completed the action of standing-up.
Therefore, additional muscle coordination was necessary
to stabilize their posture to avoid falling.

5. Conclusions and Future Works

5.1. Conclusions
Synergies important to the standing-up motion were ex-

tracted from both young and elderly groups. The effects
of these synergies on body kinematics has been calculated
by estimating individual body kinematics estimation. Ex-
tracted synergies were then classified into several groups
based on its effects. Results have shown that muscle syn-
ergies were divisible into 4 groups (the Clusters I–IV Syn-
ergy). These synergies in each cluster functioned as fol-
lows:

1. Cluster I Synergy

Cluster I Synergy was extracted only from young
people and started at the beginning of movement. It
worked as flexing the ankle and raising up their hips
to move the center of mass from their hips to the feet.

2. Cluster II Synergy

Cluster II Synergy was extracted only from two el-
derly people. It functioned similarly to that of Clus-
ter I Synergy. However, muscle activation involved
in this synergy was weaker, so its contribution of
moving the center of mass was less than that of Clus-
ter I Synergy.

3. Cluster III Synergy

Cluster III Synergy was observed in both young and
elderly participants. This synergy mainly began at
the middle of the standing-up motion and affected
extending the upper body.

4. Cluster IV Synergy

Cluster IV Synergy was obtained only from some el-
derly participants. This synergy began at the latter
phases of the standing-up motion. It stabilized pos-
ture after standing-up motion was completed.

Cluster analysis explained the difference between the
young and the elderly in terms of synergies. Compared
to the young, some elderly persons had weaker synergy
(Cluster II Synergy) or had no synergy at all for flexing
their ankle and bending to raise their hip from a chair.
Results also showed that some of the elderly needed addi-
tional synergy to stabilize their posture after the action of
standing-up had been completed.
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5.2. Future Works
This study has clarified the difference between the

young and the elderly people in terms of synergy. De-
ficient or additional synergies were found from some of
the elderly but not in the young. Experiments and syn-
ergy analysis were performed only on the healthy elderly
people, so it would be an interesting to conduct additional
analysis on those with specific disorders, e.g., brain in-
jury. If synergies is related to disorders or injuries, such
knowledge could be useful in rehabilitation or assistive
device to support and enhance body function.

Another future direction of our study is to implement
these findings in new training methods strengthening the
weaker synergy and corresponded body movements. Es-
sential muscle synergies to perform the standing-up mo-
tion have been extracted in this study. Results reported
from previous research suggest that individuals should
train their motor functions in the context of motion to
coordinate joint and muscle movements [21]. In train-
ing motor functions involving bending forward to raise
their hip, they should work on exercises involving the
same muscle activation as the extracted synergies. Squat-
ting, for example, is one choice in training that trains al-
most all muscles involved in Cluster III Synergy. It surely
strengthens muscles and enhances the ability of extending
the joints. However, squatting requires keeping the back
straight up, and the exercise is usually conducted in the
static position, which differs from the posture used during
Phase III. Therefore, it is necessary to train deficient mo-
tor control in the same context of the standing-up motion.

Individuals who lose or otherwise lack synergies be-
cause of injury or disease must regain or relearn them.
Results of one study have implied that for those who want
to learn a new synergy, it would be the best to firstly try to
use another existing synergy from different tasks [22]. For
those who have a similar synergy, they should just train it
intensely. If no synergy is appropriate for the standing-up
motion, then they must train and reconstruct it again. As-
sistive robotics should thus specifically examine this lost
synergy for support or for training.
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