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Abstract— We present a novel rough terrain traversability
analysis method for mobile robot navigation. We focused on the
scenario of mobile robot operation in a disaster environment
with limited sensor data. The robot builds a map in real
time and analyzes the terrain traversability of its surrounding
environment. The proposed method is based on fuzzy inference
so that it can handle uncertainties in the sensor data. Two
values associated with the terrain traversability, roughness and
slope, are calculated from an elevation map built by a laser
range finder mounted on the mobile robot. These two values
are inputted to the fuzzy inference, and the traversability is
analyzed. Based on the traversability output from the fuzzy
inference, a vector field histogram (VFH) is generated. The
mobile robot course is determined according to the VFH. We
demonstrated our algorithm on an artificial environment. The
experimental results showed that the mobile robot was able to
reach the target position safely while avoiding untraversable
areas.

I. INTRODUCTION
Robots have attracted the attention of a large number

of researchers and are becoming capable of dealing with
complex environments [1]. Innovations involving the ap-
plication of mobile robots to investigating disaster sites
and assisting with agriculture have increased [2]. In these
situations, the navigation and obstacle avoidance of mobile
robots is a major challenge. In the last few years, some
breakthroughs have been made to solve these problems.
The Defense Advanced Research Projects Agency (DARPA)
Grand Challenge showed that unmanned ground vehicles
(UGVs) can navigate a highly controlled desert area [3]-
[5]. In this challenge, one of the main problems was mobile
robot navigation on rough terrain. For most mobile robot
operations in an outdoor environment, rough terrain is a
problem. Terrain negotiation becomes a particular problem
when operating robots at disaster sites. One of the main
reasons for the difficulty is the uncertainty over the terrain
state caused by limited sensor data. In a messy environ-
ment, sensors commonly go out of order, and acquired
information becomes uncertain or noisy. Because of the
limited sensor configuration, perfect understanding of the
surrounding environment may be impossible. In order to
complete investigations or rescue tasks, the operator or robot
itself has to compensate for the limited sensor data and
proceed over unstructured inaccessible areas [6].

With regard to traversal over rough terrain, selecting the
appropriate course and direction of the mobile robot is vital.
The mobile robot has to avoid untraversable areas and select
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only traversable areas while making its way to the target
position. In order to appropriately judge the course direction,
terrain traversability analysis (TTA) is important. In short,
accurately representing the terrain state and analyzing it in
real time is a challenge for most mobile robots.

II. RELATED RESEARCH

Because of the importance of robotic vehicle mobility,
many studies have examined obstacle avoidance and TTA
for mobile robots. Borenstein et al. proposed the vector
field histogram (VFH) method along with improved versions,
where the risk around the mobile robot is expressed in the
form of a histogram, and the robot selects a safe course
and direction [7]-[9]. In this method, the distance between
the mobile robot and obstacles is measured by an ultrasonic
sensor or laser range finder (LRF) mounted on the mobile
robot. A binary expression grid-type map of the environment
is built based on the measured distances. The VFH generats
risk values for the environment that are converted from the
distance information. The VFH is less likely to get trapped in
local minima and allows mobile robots to move stably [10].
However, this method is limited because of the environment
is expressed in binary form. Therefore, the traversability state
of the terrain cannot be considered. In order to overcome
this shortcoming, Ye et al. proposed the TTA method, which
is based on an elevation map and its transformation into
a traversability map [11]-[13]. In this method, an elevation
map of the environment is built from laser range finder
measurements. The elevation map is called a “2.5-D map”
and represents the height information in grid-type cells.
The constructed elevation map is then transformed into a
traversability map where the traversability value is expressed
in the form of grid-type cells. In this method, a relatively
large amount of height information is needed to provide
reasonable performance [14].

Some researchers have employed the terrain classification
approach based on principal component analysis [15], [16].
In these methods, point cloud data of the environment are
gathered and grouped for classification into eigenvectors.
The eigenvector’s magnitude and orientation give the point
cloud’s shape, inclination and unevenness. From this infor-
mation, the traversability of the surrounding environment can
be analyzed. This method is limited because it depends on
the amount of point cloud data. The classification results
become less reliable with less acquired point cloud data. For
successful classification and traversability analysis, a rela-
tively large amount of point cloud information is necessary.



The above methods lack viability with regard to their
application in messy environments such as disaster sites. In
such an environment, the sensing range is limited, and the
sensor measurement data are not precise. In order to deal
with the TTA problem using limited sensor data, new kind
of approach is necessary.

In this paper, we propose a novel TTA method for mobile
robot navigation that can work effectively with limited sensor
data. To overcome the limited sensor data problem, we
adopt fuzzy inference-based TTA. Fuzzy inference allows for
reliable traversability analysis from limited sensor data [17]-
[20]. With fuzzy inference, we can overcome the previous
method’s shortcomings and apply our method to disaster
environments where sensor measurement data are limited.
Our method uses fuzzy inference-based TTA to express the
risk around the mobile robot in the form of a VFH. The
paper is organized as follows. Section III gives a brief
overview of the proposed method. Senction IV explains
the terrain-related value calculations. Section V presents the
proposed fuzzy inference-based TTA. In Section VI, we
describe the VFH generation procedure and robot course and
direction judgment in detail. In Section VII, we present the
experimental validation of the proposed algorithm using a
physical robot. Section VIII presents the overall conclusions.

III. OVERVIEW OF PROPOSED METHOD

Figure 1 shows a system overview of our TTA method.
Our method can be divided into five main modules: elevation
map construction, roughness and slope calculation, fuzzy
inference, VFH generation, and direction judgment. In this
section, we present a brief explanation of the overall system.

The elevation map construction module builds an elevation
map from point cloud data which is acquired by a LRF. For
elevation map construction, only the height information of
the area surrounding the robot center point (RCP) is needed.

The roughness and slope calculation module calculates
these two values around the RCP. First, the elevation map
data are divided into rectangular areas. These rectangular
areas radiate from the RCP. The roughness and slope are
calculated for each rectangular area.

The fuzzy inference module integrates the two values
calculated in the previous module to output the traversability
value. The module has two membership functions, fuzzy rule,
and defuzzifier. These are all original designs for TTA.

The VFH generation module associates the traversability
value with the course direction of the mobile robot. During
this process, the traversability value is transformed into a
risk value for the environment surrounding the RCP.

The direction judgment module selects the course direction
of the mobile robot based on the generated VFH information.
The method described in the following sections was tested
with datasets gathered from an artificial environment. A real
robot and related instruments were used in the experiment.
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Fig. 1. System overview of proposed method.

IV. CALCULATION OF ROUGH TERRAIN
RELATED VALUES

A. Elevation map construction

The elevation map is constructed from range data acquired
by a LRF. All elements of the elevation map consist of x,
y, and z coordinates. Each position in the environment can
be expressed as (xi, yj , zij). xi and yj correnpond to cell
(i, j). zij can be a real value that expresses the height of
point (xi, yj). During map construction, the elevation value
of each cell is updated as follows:

e(t)
ij =

⎧
⎨

⎩
z(t)
ij (e(t−1)

ij < z(t)
ij )

e(t−1)
ij (otherwise)

, (1)

Here, e(t)
ij is the elevation value of cell (xi, yj) at time

t, z(t)
ij is the sensed elevation of cell (xi, yj) at time t.

This formulation means that if the newly-sensed elevation
value at cell (xi, yj) is higher than the previous one, then
the elevation value at cell (xi, yj) is replaced by this new
elevation value. Ye and Boresnstein [21], Lee and Ji [22]
give the details on construction based on range data.

B. Division of elevation map into rectangular areas

After the elevation map is constructed, the mobile robot
anterior region is divided into rectangular areas. These rect-
angular areas radiate from the RCP. Figure 2 shows the
elevation map division. Some parameters are set for dividing
the rectangular areas to align the traversability calculation
with the characteristics of the environment and robot. Two
values related to rough terrain, roughness α(k)

Roughness and
slope α(k)

Slope, are calculated for each rectangular area. In
Figure 2, L is the length of each rectangular area, W is the



width, and θk is the angle of the rectangular area’s direction
vector from the x coordinate of the mobile robot.

Mobile robot

Area k

Area l
Area 1

Fig. 2. Elevation map division into rectangular areas.

C. Roughness calculation
Roughness is defined as the standard deviation of the

height in each rectangular area. Each rectangular area is
expressed with the index k. The roughness α(k)

Roughness is
calculated as follows:

α(k)
Roughness =

√
1

Nk

∑

i,j∈Area k

(z(k)
ij − zk)2, (2)

where
zk =

1
Nk

∑

i,j∈Area k

z(k)
ij ,

Here, Nk is the number of cells in each rectangular area,
z(k)
ij is the height information of cell (i, j) in the rectangular

area k, and zk is the average height in each rectangular area.

D. Slope calculation
The slope value of the rectangular area k is calculated

from the normal vector of the fitted plane and the direction
vector of the rectangular area. The plane fitting is calculated
by using all of the height information for the rectangular area
k.

The fitted plane in each rectangular area is expressed in
the form of the following function:

z(k) = akx(k) + bky(k) + ck, (3)

Here, nk = (−ak,−bk, 1) is the normal vector of the fitted
plane, and x(k), y(k), z(k) are the variances which are defined
on the rectangular area k. The plane fitting process involves
the following optimization:

fk =
∑
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(akx(k)
i + bky(k)

j + ck − z(k)
ij )2, (4)

(ak, bk, ck) = argmin
(ak,bk,ck)

fk, (5)

Here, x(k)
i , y(k)

j , z(k)
ij are the values of each cell. This opti-

mization problem can be solved by the following calculation:
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Through these calculations, the normal vector of the fitted
plane nk = (−ak,−bk, 1) can be acquired. The inner
product of this normal vector nk and the direction vector dk

of the rectangular area k generates the slope value α(k)
Slope:
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dk =
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V. FUZZY INFERENCE FOR TRAVERSABILITY
ESTIMATION

A. Fuzzy inference model

In our method, the terrain traversability is estimated with
a fuzzy inference framework. The roughness and slope from
the previous module are inputted to output the traversability
value of each rectangular area. We adopted the Mamdani
fuzzy model, which is a typical fuzzy inference model, for
our method [23].

B. Membership functions

We developed two original membership functions, one for
the roughness and the other for the slope, and tuned them for
traversability estimation. Figure 3 shows the two membership
functions.

Membership function (roughness)

FLAT MEDIUM ROUGH FLAT

Membership function (slope)

SLOPED STEEP

Fig. 3. Two membership functions.

Each membership function outputs the degree-of-
membership of the rectangular area for one real value input.
The extent of the roughness {FLAT, MEDIUM, ROUGH}
is estimated with the membership function. The extent of
the slope {FLAT, SLOPED, STEEP} is also estimated with



the membership function. We adopted trapezoid-shaped func-
tions for our method. Therefore, each membership function
has two intersection points for one input value. The degree-
of-membership and extent label are assigned to each inter-
section point. Each membership function eventually outputs
two degree-of-membership and extent label pairs.

C. Fuzzy rule

The fuzzy rule determines the degree of membership and
the extent label for the traversability. In the Mamdani fuzzy
model, the fuzzy inference process can be divided into
two parts: label integration and logical product. Figure 4
shows the fuzzy rule matrix. In the label integration part,
the traversability extent label is judged based on the rule
matrix. The inputs of the rule matrix are the roughness
and slope labels, and the output is the traversability label.
The traversability extent label is taken from the set {HIGH,
MODERATE, LOW, POOR}. In the logical product part, the
roughness and slope degrees of membership are compared,
and the smaller is adopted as the input of the defuzzifier.

Roughness

FLAT MEDIUM ROUGH

Slope

FLAT HIGH MODERATE POOR

SLOPED MODERATE LOW POOR

STEEP POOR POOR POOR

Fig. 4. Fuzzy rule matrix.

D. Defuzzifier

The defuzzifier outputs the traversability value τk as the
centroid of all input information pairs. Figure 5 shows the
defuzzifier. Each degree-of-membership and extent label pair
for the traversability is reflected by the trapezoids for the
defuzzifier. The centroid is calculated from these trapezoids.
The output traversability value τk is acquired from the
centroid point about the horizontal axis of the difuzzifier.

Defuzzifier (traversability)

POOR MODERATELOW HIGH

Fig. 5. Defuzzifier.

VI. COURSE DIRECTION JUDGEMENT FROM
VECTOR FIELD HISTOGRAM

A. Vector Field Histogram (VFH)

The VFH shows the risk value of the environment. In our
method, each rectangular area’s risk value is transformed
from the traversability value as follows:

rk =
1
τk

, (8)

These risk values are expressed on the vertical axis of the
VFH, and the horizontal axis represents the rectangular area’s
direction. Figure 6 shows an example of a generated VFH.
A rectangular area with a low risk value means that the area
can be traversed by a mobile robot. On the other hand, a
high risk value means that the area is hard to traverse.
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Fig. 6. VFH exmaple.

B. Course direction judgment

The mobile robot judges the course direction based on the
risk value threshold and distance between the target position
and rectangular area. First, the robot searches for rectangular
areas with risk values under the threshold. The rectangular
area under this threshold and with the shortest distance to
the target position is then selected as the course direction of
the mobile robot.

VII. EXPERIMENTAL RESULTS

To test our TTA method, we constructed the artificial en-
vironment shown in Figure 7b. We used a Pioneer 3DX mo-
bile robot with a HOKUYO UTM-30LX laser range finder
mounted on top of the robot. These instruments are shown in
Figure 7a. One of our main objectives with this new method
was to provide a system that can analyze the traversability
of rough terrain and make decisions about which direction
the mobile robot should go. In our experiment, all of our
results were based on real data collected from the laser range
finder. At critical instances that required correct traversability
analysis and course direction judgment, we confirmed that
the proposed method successfully selected a traversable
direction as the mobile robot’s course. On the other hand, we
implemented and tested another method explained in [11] as
the conventional method. During experimental operation, we
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Fig. 7. Experimental pictures: (a) a Pioneer 3DX mobile robot with a laser range finder, (b) constructed artificial environment, and (c) generated elevation
map and mobile robot’s path during experimental operation.
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Fig. 8. Comparison of generated VFHs during experimental operation: (a) VFHs generated by proposed method and (b) VFHs generated by conventional
method.

gathered two results from different methods and compared
them.

In our experiment, the values of each parameter were
as follows: L = 1.0 m, W = 0.5 m, number of all
rectangular areas l = 9, risk value threshold rlimit = 35. The
elevation map cell size was 50×50 mm. For the conventional
method’s parameter, we set 2.0 × 2.0 m square area patch
size. Histograms were generated from height information in
this patch. It should be noted that description in [11] said
appropriate patch size was 9.2 × 9.2 m.

In this section, we present the experimental results. Figure
7c shows the mobile robot’s path over the constructed rough
terrain. The run started at the start point and terminated at the
target position. Our entire algorithm was performed in real-
time. The yellow line shows the robot’s path as estimated by
odometry.

Figure 8 compares the VFHs generated during the exper-
iment. We compared two VFHs: one from our proposed
method and the other from the conventional method. As
noted before, our proposed method generated clear VFHs,
and the appropriate course direction for the mobile robot was
selected despite the limited sensor data acquisition area. The
limited sensor data acquisition area meant that our method

only needs the height information of the rectangular areas
to generate a VFH. On the other hand, Figure 8b (point 1)-
Figure 8b (point 4) show that the conventional method could
not produce a reasonable performance in terms of VFH
generation with limited height information. The height in-
formation in these figures was over almost the same area
size as that used for our proposed method.

The robot first steered and reached point 1. The VFH at
this point is Figure 8a (point 1). Since most of the rectan-
gular areas included relatively flat area, their risk values
were relatively low and some of them had risk values
under threshold rlimit. Among them, one which had the
shortest distance between the preset target position and the
rectangular area was chosen as a course direction. The robot
then moved to point 2. At this point, the VFH is depicted in
Figure 8a (point 2). At point 2, relatively steep height vari-
ances and inclinations were came into some rectangular areas
because of the existence of obstacles. In this situation, the
robot could choose traversable path between these obstacles.
According to VFH information, the robot correctly selected
the passage between obstacles (from point 2 to point 3). After
point 3, the robot steered to the passage between obstacles
again. Figure 8a (point 4) shows that the course direction



judgment at point 4 was over the direction of the traversable
rough terrain area.

VIII. CONCLUSIONS
In conclusion, we developed a novel terrain traversability

analysis method for mobile robot navigation. In the proposed
method, we introduce a new framework for TTA and VFH
generation. This approach allows TTA and judging a mobile
robot’s course direction when sensor information is limited
and a large area map of the environment is not available.

Our algorithm first extracts the roughness and slope from
an elevation map created from point cloud measurement data.
These two values are inputted to the fuzzy inference module,
and the traversability is calculated based on the fuzzy rule
and defuzzifier. This traversability value is transformed into a
risk value. The risk value is expressed in the form of a VFH,
which is a method developed for obstacle avoidance. The
mobile robot’s course direction is selected from the VFH.

The experimental results showed that our algorithm reli-
ably allows the mobile robot to navigate to the target position
while avoiding untraversable areas. During the experiment,
the robot selected traversable areas of the rough terrain to
make its way to the target position. The comparison of
our proposed method and the conventional method showed
the reliability of our method in spite of the limited sensor
data acquisition area. Currently, validation of the system is
ongoing with further experiments being performed with real
robots.
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