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To construct an intelligent space which has a 

distributed camera network, pre-calibration of all 

cameras (i.e., determining the absolute poses of each 

camera) is an essential task that is extremely tedious. 

This paper deals with automatic calibration method for 

the distributed camera based on 3D map information of 

an environment. Parameterized line features that are 

extracted from both a distributed camera image and the 

map information are transformed to Hough space and 

utilized for matching process in particle filter-based 

estimation. We evaluate the proposed method in a 

simulation environment with a virtual camera.  

  
1 Introduction 

In order to obtain reliable information from a camera 

network system, pre-calibration of distributed cameras (i.e., 

determining absolute positions and orientations of each 

camera) is an essential task that is extremely tedious. In this 

respect, automatic calibration methods for the camera 

network has been intensively studied in the past [1][2]. 

These approaches, however, mobile agents are needed, so 

that these cannot be applied where the mobile agents 

cannot use. To this end, we propose a novel approach to 

realize automatic calibration of external parameters using 

only map information of the environment. As shown in Fig. 

1, textured 3D map information can be utilized to generate 

virtual 2D images from arbitrary viewpoints (i.e., arbitrary 

6DOF camera pose) using 3D projective geometry when 

the internal camera parameters are known; thus, the 

external camera parameters can be determined by matching 

between virtual images generated at every viewpoint and a 

real image from the camera network. However, it is 

impossible to search a 6DOF solution without strong 

constraints because of a myriad number of local minimum 

solutions. Here, the 3D map information is very useful to 

reduce the solution space since the cameras are generally 

installed on the occupied region such as interior wall 

because of space limitations. We use line features which 

extracted from both the textured 3D map information and 

the real image data to make constraints. 

Proposed calibration scheme is divided into two steps: 

‘parameterization of 3D geometrical lines’ and ‘particle 

filter-based calibration’ step. During parameterization step, 

3D geometrical line parameters for the environment are 

automatically generated from the textured 3D map 

information. The calibration step determines the 6DOF 

camera parameters by matching between generated 3D 

geometrical line parameters and 2D photometrical line 

parameters that are generated from the real image from the 

camera sensor network. We focus on the consideration of 

expression of the line features and the design of its new 

measurement model to apply particle filter algorithm. 

2 Parameterization of 3D geometrical lines 

The parameterization process of the 3D line segments 

for the entire environment consists of two major steps: 

‘extraction of point cloud on line segments’ and ‘learning 

robust line parameters’ as illustrated in Fig. 2. The 

‘extraction of point cloud on line segments’ step involves 

generating point cloud on the 3D geometric line segments 

as shown in Fig. 2 (b). To generate the point cloud, 2D 

photometrical lines from virtual images from arbitrary 

camera poses are extracted and they are back-projected 

onto the 3D map information. The ‘learning robust line 

parameters’ step learns coefficients of the 3D geometrical 

line segments based on random sample consensus 

(RANSAC) algorithm. The parameterized 3D geometrical 

line segments can be represented only using 6 parameters; 

thus, the computational burden for particle filter-based 

matching process can be reduced significantly. 

 

3 Particle filter-based parameter calibration 

Particle filter is used for parameter calibration in this 

study. It is one of the popular methods to implement 

Bayesian filter that can estimate the probability distribution 

using a set of random particles. At each iteration, the 

probabilities of particles are updated using a prediction 

model and a measurement model, and then particles are 

resampled. The state (i.e., 6DOF camera pose in this study) 

is represented by the weighted sum of all particles.  

To estimate camera pose based on textured 3D map 

information, a novel feature comparison model (i.e., 

measurement model in particle filter) is required for the 

matching process. To this end, a novel descriptor based on 

quantized line parameters in Hough space (QLH) which 

represents the distribution of slopes and distances from the 

origin of the 2D image plane is proposed in this study, as 
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Fig. 1 Arbitrary camera poses and generated virtual images 

from textured 3D map information. 
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Fig. 2 Parameterization of 3D geometrical lines: (a) textured 

3D map information, (b) extracted point cloud on line 

segments, and (c) learned robust line parameters. 
 



  

shown in Fig. 3. The QLH descriptor is robust to 

illumination changes since they do not require any intensity 

information and they are always available as long as the 

edge information is detected.  

2D photometrical lines in the image plane are uniquely 

determined by two properties: a slope  and a distance  

from the origin as shown in Fig. 3 (a). They can be 

transformed into Hough space as shown in Fig. 3 (b). This 

signature can be a robust descriptor for line segment-based 

matching. The QLH descriptor for the real camera image is 

simply generated from the image including 2D 

photometrical lines that are extracted by Hough transform 

as shown in Fig. 3 (a). On the other hand, the predicted 

QLH descriptors from the arbitrary camera poses in the 3D 

map information can be obtained from 2D photometrical 

line segments that are generated by projecting 

parameterized 3D geometrical lines onto the virtual 2D 

image plane.  

Bayesian filter in this study determines the posterior 

probability of the 6DOF camera pose p(x | z, m) based on 

the measurement data from the camera image and the map 

information as follow:  

      ),|(),|(),|( mxmxzmzx pηpp        (1) 

where x=[x y z   ]
T is 6DOF camera parameters that 

should be estimated and is a normalization constant. 

p(x | m) refers to the prior distribution which means the 

map information m can provides constraints to the camera 

parameters x. p(z | x, m) denotes the measurement model 

which is defined by the likelihood function that should be 

newly designed for the QLH image descriptor in this study. 

Here, the proposed QLH descriptor can be exploited for 

criteria of similarity comparison. Thus, we design a novel 

measurement model as follow: 
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where z and h(x) refer to QLH descriptors extracted from a 

real camera image and predicted from an arbitrary camera 

pose x, respectively. EMD means the standard deviation 

associated with an uncertainty of the QLH descriptor. 

EMD(∙) denotes earth mover’s distance between two sets of 

the QLH descriptor. Earth mover’s distance is the most 

appropriate criteria for this problem on the ground that it 

calculates the similarity between lines’ distributions.  

 

4 Experimental result 

We simulated the proposed calibration method in a 

simulation environment (Fig. 2 (a)) with a virtual camera 

image (Fig. 3 (a)). The simulation environment includes 

various line features located on the sides of the walls, 

doors, and windows. As shown in Fig. 4, particles are 

initialized based on human observation and the prior 

information (i.e., constraints from the map information). 

The QLH descriptor-based similarities between the 2D 

photometrical line segments from the real camera image 

and those from all particles were computed. The results 

were then used in the probability update of each particle. 

The several stages of particle filter iterations and 

convergence process for the camera parameters are 

illustrated in Fig. 4 and Fig. 5, respectively. The simulation 

result shows that the complete 6DOF external parameters 

are estimated very accurately.  

 

5 Conclusion 

In this paper, an automatic calibration scheme was 

developed for the camera sensor network system. In order 

to realize complete 6DOF external parameter estimation, 

line segment-based QLH descriptor was designed for 

particle filter-based matching process and 3D map 

information was used for prior information. 

The proposed approach was demonstrated in a 

simulation of a virtual environment with a distributed 

camera system. We showed that our system is able to 

estimate 6DOF camera pose accurately. 
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Fig. 3 Generation of QLH descriptor: (a) extracted 2D 

photometrical lines from image data and (b) QLH descriptor 

consisting of quantized 2D lines in Hough space. 
 

1 2 3
Initial 50,000 

random particles

Converged 

particles
Estimated 

camera poses

Real 

camera poses

Fig. 4 Experiment result for particle-filter based camera 

parameter estimation. 
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Fig. 5 Convergence process of camera state variables. 


