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This paper describes a novel selection method of course
direction for a mobile robot. We focus on the scene when
a mobile robot cannot select an appropriate course direc-
tion by its own sensor information. The proposed method
enables appropriate selection of course direction for a
mobile robot by integrating measured data acquired by
multiple mobile robots. Experimental result shows that
the proposed method can decide appropriate course di-
rection for a mobile robot.

1 Introduction
Mobile robots are becoming capable of dealing with com-

plex environments. For most mobile robot operations in
complex environments, such as disaster sites, navigation on
rough terrain is one of the main problems. Various ap-
proaches about terrain traversability analysis (TTA) and nav-
igation of mobile robots on rough terrain have been studied.
Hata et al. proposed TTA method for outdoor mobile robot
navigation using linear support vector machine [1]. In this
method, support vector machine needs training data. The fact
that the quality of training data affects accuracy of classifica-
tion is well-known. Therefore, it is probably not possible
of this method to classify terrain traversability with adequate
quality under the existence of complex terrain because cor-
rect traversability labeling of complex terrain and generation
of training data from these labeling result tend to be difficult.
In order to overcome this shortcoming, the authors proposed
a novel TTA method [2]. In this method, selection of course
direction for a mobile robot is performed using measured
data which is acquired from mobile robot’s anterior region.
Although this method realizes appropriate TTA of complex
terrain without collection of training data, the sensing area
for TTA task is restricted to mobile robot’s nearest anterior
region. These prerequisite conditions cause inadequate se-
lection of course direction depending on the structure of ter-
rain area. Figure 1 shows an example of the situation when a
mobile robot cannot select appropriate course direction with
the conventional TTA method. In Fig. 1, the slope area of
mobile robot’s anterior region is selected as the course direc-
tion toward the goal position. However, this selection is not
adequate because the end edge of the slope is not-traversable.
This kind of problem happens due to limited sensing area of
mobile robot.

In this paper, we propose a novel approach for mobile
robot’s selection of course direction. To overcome the inade-
quate selection of course direction shown in Fig. 1, we adopt
multiple mobile robot system. Our approach integrates TTA
results generated by each robot independently, and outputs
appropriate selection of course direction eventually.

2 Proposed method
In our method, mobile robot’s selection of course direction

is performed based on the vector field histogram (VFH) [3].
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Fig. 1 Scene example of inadequate selection of course di-
rection.

VFH expresses traversability of mobile robot’s surrounding
area and mobile robot selects traversable direction in VFH as
its course direction. Our method is composed of two steps.
First step is VFH generation with conventional methodology,
second step is VFH integration.

2.1 Initial VFH generation
First, each mobile robot generates VFH independently.

The methodology of initial VFH generation comes from the
conventional method [2]. Here, mobile robot collects point
cloud data about their surrounding environment and these
measured data are used for TTA and VFH generation.

2.2 VFH integration
In our method, each mobile robot sends VFH to the envi-

ronment server and the environment server plays VFH inte-
gration role. VFH integration is based on weighting of risk
value and risk value updating. Under the circumstance such
as using two mobile robots, the environment server receives
two VFHs. Figure 2 shows data processing flow in this con-
figuration. Specifically, mobile robot A sends VFHA and
mobile robot B sends VFHB to the environment server. For
mobile robot A’s appropriate selection of course direction,
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Fig. 2 Illustration of data processing flow.



the environment server weights VFHB and integrates it with
VFHA. The final output is VFH′

A and it is sent to mobile
robot A. The weighting procedure is as follows:

w =

{
− 1

Lth
(LAB − Lth) (0 ≤ LAB ≤ Lth)

0 (otherwise)
, (1)

∀φ∈Measured direction set in VFHB , rB
φ

′
= wrB

φ , (2)

Here, w is the weight, Lth is the distance threshold which
controls weighting, LAB is the Euclidean distance between
mobile robot A and mobile robot B, and rB

φ are risk values in
VFHB. Weighted risk value rB

φ

′ is calculated as the product
of w and rB

φ .
Risk value updating is executed based on differences of

mobile robots’ relative attitude α which is measured in de-
gree unit. Risk values rA

φ in VFHA which satisfy specific
conditions for updating are replaced by risk value rB

max. rB
max

is the value found among rB
φ

′ which exist in weighted VFHB.
After updating risk value of VFHA, VFHA

′ is generated and
sent to the mobile robot A from the environment server.

3 Experimental result
To test our method, we had an experiment with the envi-

ronment shown in Fig. 1. In the experiment, we assumed that
there were two exactly same mobile robot and their TTA re-
sults were integrated in the environment server. These mobile
robots and environment server were implemented virtually
on the simulator. The values of each parameter were as fol-
lows: Lth = 20 m, rlimit = 70. Risk value threshold rlimit

is the value proposed in conventional method [2]. In our ex-
periment, VFHA and VFHB were integrated in the virtual
environment server. By integrating two VFHs, VFH′

A which
enabled appropriate selection of course direction for mobile
robot A was output.

Figure 3 shows two mobile robots in the experimental en-
vironment and mobile robot A’s selection of course direction.
In the experiment, calculated parameters’ values were as fol-
lows: LAB = 2.06 m, w = 0.897, α = −60.9 degree.
VFHs generated by two mobile robots independently and in-
tegrated VFH′

A are shown in Fig. 4. Based on the integrated
VFH′

A, mobile robot A selected appropriate course direction
toward the goal position shown as red rectangular in Fig. 3
and 4 (c). This selection is different from the inadequate one
shown in Fig. 1. Consequently, the proposed method made
it possible for mobile robot A to select appropriate course
direction.

4 Conclusion
In this paper, we proposed a novel approach for mobile

robot’s selection of course direction. Our approach is based
on multiple mobile robot system. The proposed method en-
ables a mobile robot to select appropriate course direction
under specific situation using integrated VFH information
generated by multiple mobile robots.

Experimental result showed that the mobile robot could
select appropriate course direction by our proposed method.
These results were achieved under the situation when a mo-
bile robot could not select appropriate course direction by its
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Fig. 3 Experimental result on the simulator.
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Fig. 4 Generated VFHs: (a) VFH from mobile robot A’s
measurement, (b) VFH from mobile robot B’s mea-
surement, (c) integrated VFH.

own sensor information only. Integration of multiple mobile
robots’ measured data could generate VFH which had appro-
priate risk values for a selection of course direction.

Future work will involve validation of the proposed
method with real multiple mobile robots. Furthermore, ex-
tension of the proposed method for different types of mobile
robots is also needed.
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