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Gaussian Processes have been previously used to
model wireless signals strengths and create location-
signal strength mappings. Such mappings can be used for
robot localization by computing the posterior probabil-
ity distributions of robot’s positions given signal strength
measurements. This work proposes the use of a dual
Monte Carlo Localization algorithm that uses such poste-
rior distributions as perceptual likelihood. Our approach
is assessed and compared with an argmax and a Monte
Carlo Localization algorithm in terms of accuracy and
computation time.

1 Introduction
Robot localization or position estimation is the problem

of determining a robot’s pose relative to a given map of the
environment. Most popular localization algorithms that use
map information are based on the Bayes filter. In general,
the Bayes filter addresses the problem of estimating any state
considering the robot state evolution as a partially observable
Markov chain (Hidden Markov Model - HMM). In the case
of robot localization such state is the location of the robot
l = (xx, xy, θ) with x being the robot’s position in an x-y
Cartesian coordinate and θ its heading angle.

Bayes filters estimate this pose using a probability density
estimation of the state space lt conditioned on the time series
data of robot actions a0:t, robot sensory measurement o0:t

and previous states l0:t−1. This posterior is called the belief
of l - Bel(l). Using Bayes’ rule and the Markov assumption
it is obtained that:

Bel(lt) ∝ p(ot|lt)
∫
p(lt|lt−1,at)Bel(lt−1)dlt−1 (1)

which is the basic equation for all Bayesian filters (see [4]
for full description of the algorithms and proofs).

In order to implement eq. (1), three things are required:
(a) a way to represent Bel(l) and a priori distribution for
Bel(l0), which is usually assumed to be an uniform distri-
bution; (b) the next state transition probability p(lt|lt−1,at);
and (c), the perceptual likelihood p(ot|lt).

In Monte Carlo Localization (MCL) and the dual MCL,
the belief Bel(l) is represented by a particle filter. Particle
filters represent any distribution by a set of s weighted sam-
ples also called particles, distributed according to that dis-
tribution. The next state transition probability p(lt|lt−1,at)
is implemented by a robot motion model - which varies de-
pending on the robot used. A complete description of these
models can be found at [4].

Finally, the perceptual likelihood p(ot|lt) depends on the
sensors used for the localization. This probability can be un-
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derstood as the likelihood of observing a measurement ot

at location pt. Works like [3, 1, 2] use Gaussian Processes
(GPs) to model location-signal strength mappings and com-
pute the perceptual likelihood by comparing incoming signal
strength measurements with the predictions generated by the
signal strength maps. Figure 1 shows an example of the map-
pings used - for the GP formulation it is required to generate
a mapping of the mean expected signal strength and one of
its expected variance.

Fig. 1 Signal strength mappings. Figure shows (left) the pre-
dicted mean and (right) the predicted variance maps.

2 Dual MCL using signal strength maps
Our proposed dual MCL first samples its perceptual like-

lihood and projects each sample into a possible predecessor.
For each sample it calculates its importance factor as the like-
lihood of the predecessor to have belong to the previous Bel
state. Using the predecessors set and its importance factors,
it uses importance sampling to generate a new predecessors
sample set. The new predecessors sample is projected back,
creating the new sample set. For enhancing the performance
of the dual MCL against the kidnapped robot problem, some
random samples obtained directly from the proposal distri-
bution are finally added to the set, which is used to generate
an updated Bel state using kernel density estimation (kde).
The pseudo code of the algorithm is shown at alg. 1.

2.1 Implementation details
Perceptual model
The specific implementation of the perceptual model used
for testing in this work is the one described at [1]. However,
all results can be extrapolated to any method using signal
strength mappings.
Motion model
Motion model used was the odometry model, which descrip-
tion can be found in detail at [4]. This model employs odom-
etry information to predict robot’s motion, and is widely used
as most modern commercial robots make odometry informa-
tion available in periodic time intervals or by request.
Sampling method
Sampling methods are employed to obtain a set of samples
x drawn independently from an arbitrary distribution f(·).



Algorithm 1 dual MCL: Dual MCL algorithm
1: Input: GP (perceptual model), m (motion model), s

(number of samples), z (stream of new measurements),
a (odometry information)

2: Bel := uniform . Initialize the Bel state as the
uniform distribution

3: i := {1, ..., s} . Initialize number of samples
4: while True do
5: x

(i)
t ∼ GP (z) . Sample from the perceptual model

6: x
(i)
t−1 := m(x

(i)
t ,−a) . Project samples back

7: w(i) = Bel(x
(i)
t−1) . Calculate importance factors

8: x
(i)
t−1 ∼ {x

(i)
t−1, w

(i)} . Importance sampling
9: x

(i)
t := m(x

(i)
t−1,a) . Project samples forward

10: x2
(i)
t ∼ RSS model(z) . Add random samples

11: Bel := kde(x
(i)
t ,x2

(i)
t ) . Generate updated Bel

state using kde

As it is possible to evaluate the function f(·) (our percep-
tual likelihood) the accept-reject method is used to sample
from this distribution. In a nutshell, the accept-reject method
draws a sample x at random from a known envelope func-
tion g(·), and if f(x) is lower than Mg(x) - with M being
a positive constant, the algorithm accepts the sample. This
process is repeated until all samples are obtained. M is used
so the envelope function upper bounds f(·) at all points -
i.e., ∀x Mg(x) ≥ f(x). The idea behind the algorithm is
that if samples are drawn from the envelope function, and all
those which probability is higher than that of the target func-
tion’s are rejected, what is left simulates samples taken from
the target function itself. For our implementation an accept-
rejection method with a uniform distribution as the envelope
function is used.
Kernel density estimation method
Kernel density estimation (kde) is used to estimate the prob-
ability density functions of a random variable given a set of
samples randomly taken from the function. It would be the
logical inverse of sampling methods, in the sense that in-
stead of obtaining random samples from a known distribu-
tion, it constructs an approximation of an unknown distribu-
tion based on random samples taken from it.

3 Tests and comparisons
Tests are performed using the same dataset described at

[2]. The environment is a office-like scenario of 60m× 40m.
The results obtained with the dual MCL are compared with
an argmax and a MCL algorithm.
argmax
The argmax is the naive approach, it divides the map in a
grids and calculates its likelihoods, then it outputs the loca-
tion of the one with the highest probability as the estimated
location. The main parameter that affects accuracy and com-
putation time is the grid spacing used.
MCL
MCL is more commonly used in practice than the dual MCL.
MCL starts by randomly generating samples and calculates
its importance factor for re-sampling from the perceptual

likelihood. As it does not need to sample directly from the
perceptual likelihood it is faster than the MCL. However, its
main weakness is that it relies heavily on its prior belief,
which may yield to estimation errors if its belief places high
confidence in a wrong estimation. Same as for the dual MCL
the main parameter that affects the accuracy and the required
computation time is the number of particles used.
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Fig. 2 (upper) Localization accuracy and (lower) required
computational time of each algorithm.

4 Conclusions and Future works
From the tests performed, unexpectedly, the usage of MCL

for this particular problem yielded the worst accuracy, even
compared to the argmax algorithm; while the best accuracy
was obtained using a dual MCL with more than 750 parti-
cles - the argmax accuracy for a grid spacing of 1m or less
has an accuracy of 2m, while the dual MCL with 750 has
an accuracy of 1.7m and with 5000 1.5m. However, the dual
MCL loses to both other methods in computation time. From
further testing we found that the main speed limitation is the
accept-reject algorithm. While this method was chosen as it
guarantees independence of samples, becauseMg(·) is often
not close to f(·) for signal strength mappings, many samples
are rejected, slowing down the algorithm. It remains as fu-
ture work to improve this sampling stage. Nonetheless, even
with this drawback, the use of dual MCL is recommended.
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