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Abstract—This paper presents a system which generates im-
ages to see through obstacles. For remote operation of robots
in dangerous situations such as disaster sites, visual information
affect the operational efficiency to a great extent. Diminished
reality, which has been proposed in the field of computer vision,
is a technique which generates images as if users saw through
obstacles. The proposed method uses RGB-D sensors (RGB-D
sensors can get not only RGB information as ordinary cameras
can get, but also information of distance between the sensor and
each point in the image) attached in front of and on the arm of
the robot and enables to see through obstacles, letting the sensor
move along with the arm. Using distance information from RGB-
D sensors, coordinate transform is performed to produce images
from arbitrary viewpoints. Since the method is simplified as much
as possible, it is suitable for more general situation and requires
smaller calculation cost than previous works. The experiments
on a manipulator robot show the ability to see through obstacles
from arbitrary viewpoints in real time.

I. I NTRODUCTION

Nowadays, there is increasing demand for remote control
robots to conduct dangerous tasks in construction sites, disaster
sites and so on. For instance, after a tsunami caused by the
earthquake in the East Japan Pacific Ocean hit Fukushima
Daiichi Nuclear Power Station in 2011, many kinds of robots
have been used for unmanned remote operation to make
reconnaissance, to clean up of rubble and so on [1].

However, it has been pointed out that operational efficiency
of remote operation is significantly lower than that of manned
operation. Providing operators with appropriate images plays
an important role in improving the operational efficiency [2]. If
target work objects are occluded by obstacles, operators have
difficulty confirming the shape or the position of the objects,
which leads to a drop of operational efficiency. Although
multiple cameras are mounted on the robot to expand the
field of view in conventional remote operation, operators have
to conduct tasks while comparing multiple images, which
requires highly skilled technique and the ability to concentrate
[3]. Thus, it is effective to integrate multiple images into one
image which enables operators to see the background (in this
paper, we define “background” as an area which can not be
seen in images because of obstacles).

In the field of computer vision, there is a technique called
Diminished Reality (DR), which enables to eliminate real
objects in images or see objects through obstacles [4]–[7]. This
technique is also called See-through [8]. It is widely studied
for entertainment [5] and services such as video completion [9]

and pedestrians removal from Google Street View images [10].
We propose a system in which users can see the background
through obstacles by applying DR.

II. RELATED RESEARCH

In DR, acquiring information of background is realized
by various methods like using prior knowledge of the shape
or the position of the background [11] or interpolating the
background by using information of the surroundings (this
technique is called Image Inpainting) [4]. However, it is not
always possible to get accurate information of the background
in unknown environment like disaster sites by these methods.
In case of static background and moving obstacles, it is
effective to use images in the past to acquire information
of the background [9], although using multiple cameras and
acquiring images from different viewpoints is suitable for more
general use [5]–[8], [10]. In paticular, systems which allow to
move cameras [5], [8], [11], produce less dead angle than those
with fixed cameras.

Robots work near the background (the target objects),
hence three-dimensional information of background is desired.
However, most studies mentioned above approximate the back-
ground as a two-dimensional plane because they assume that
the background is faraway enough from cameras. Actually,
very few studies deal with three-dimensional information of
the background [6], [7]. In paticular, Jarusirisawad et al.
proposed a system in which the viewpoint of the output images
can move (they placed a virtual camera in space to represent
the viewpoint) [6]. This helps users to confirm the shape or
the position of objects behind obstacles.

However, the system of Jarusirisawad et al. is not suitable
for real-time remote operation of robots. They use an algorithm
with high calculation cost called plane-sweep algorithm, which
requires many iteration to acquire three-dimensional informa-
tion. Sugimoto et al. used RGB-D sensors to acquire three-
dimensional information much faster [7]. RGB-D sensors can
get not only RGB information as ordinary cameras can get,
but also information of distance between the sensor and each
point in the image. Since the system of Sugimoto et al. does
not allow any RGB-D sensors to move, using movable RGB-D
sensors may be better approach to acquire three-dimensional
information of background at a low calculation cost.

Hence, our approach is as follows: using multiple and
movable RGB-D sensors, processing three-dimensional envi-



ronmental information, and defining an output view (a virtual
sensor) in space to see the environment from arbitrary view-
points.

III. PROPOSED METHOD

The outline of the proposed method is shown in Fig. 1. In
this research, we suppose a robot with an arm, which is often
used in disaster sites, and propose a system in which RGB-D
sensors are attached in front of the robot and on the arm, as
illustrated in Fig. 1 (a).

Figure 1 (b) shows the flow of the process. In order to
reduce calculation cost for real-time see-through, the method is
simplified as much as possible. First, images from the sensors
attached in front (we call it “front sensor”) and on the arm (we
call it “arm sensor”) are converted to three-dimensional point
cloud data. Second, point clouds are coordinate-transformed
to the coordinate system of “virtual sensor”, which is set in
arbitrary position in space. Then, point clouds are projected
on a two-dimensional output image. Finally, images generated
from the front sensor and the arm sensor are integrated by
alpha blending to present see-through-obstacles images.

Detailed explanation of the components of this method, con-
version into three-dimensional data, coordinate transformation,
projection and integration is provided in following sections.

A. Conversion from Two-dimensional Images into Three-
dimensional Data

By using internal parameters of the sensor and distance
information from the RGB-D sensor, three-dimensional point
cloud data are created.

Supposing that a certain pointppp is seen in an image at the
position of M ppp = (u,v,1)T. ΣM is a two-dimensional homo-
geneous coordinate system which unit is of pixels. The aim
of this section is to determine the coordinateSppp = (x,y,z,1)T,
which is the coordinateppp represented in a three-dimensional
homogeneous coordinate system which unit is of millimeters.
The origin of this coordinate system is the position of the sen-
sor. By using the internal parameters of the sensor calibrated
in advance and the distance informationz from the RGB-D
sensor, the relation betweenM ppp and Sppp can be described,
and the unknown valuesx and y, components ofSppp, are
determined.

B. Coordinate Transformation to Imaginary Sensor Coordi-
nate System

By multiplying rotation matrixes and translation vectors, the
front-sensor coordinate system and the arm-sensor coordinate
system are translated into the virtual-sensor coordinate system.

To transform coordinate system fromΣS to ΣS′ , a matrix
S′RS and a vectorS

′
tS→S′ are needed as (1).

S′ ppp =

[
S′RS

S′ tS→S′

000T 1

]
Sppp (1)

S′RS is a 3×3 rotation matrix which represents the rotation
from ΣS to ΣS′ .

S′ tS→S′ is a 3×1 translation vector which

(a) The schema of the system. The RGB-D sensor on the arm moves
along with the arm. The virtual sensor, which is set in arbitrary
position in space, represents the position of the viewpoint of output
images.

(b) The flow chart of the proposed method. Conversion from two-
dimensional images into three-dimensional point cloud data, coordi-
nate transformation, projection on the output image, and integration
of two images are performed sequentially in real time.

Fig. 1: The concept of the proposed method

represents the position of the origin ofΣS represented in
the coordinate systemΣS′ . We suppose that a position of
any coordinate systemΣS is represented by a rotation matrix
SRW and a translation vectorStW→S, where ΣW is a world
coordinate system fixed on the robot. Therefore, our main
idea is to useSRW,StW→S andS′RW,S′ tW→S′ to calculateS′RS

and S′ tS→S′ . In this method, since the destination coordinate
system ΣS′ represents the virtual-sensor coordinate system,
whose position can be set arbitrarily,S′RW and S′ tW→S′ can
also be set arbitrarily. Accordingly, the aim of this section is
to determineSRW andStW→S. There are two RGB-D sensors
in our system, soSRW,StW→S for each sensor are needed.



(a) (b)

Fig. 2: Updating the pose of the arm sensor. (a) The standard
pose. The position of the arm sensorS0RW,S0tW→S0 and the
relation between the end-effector coordinate system and the
arm-sensor coordinate systemR, t are calibrated in advance
for coordinate transformation. (b) After a movement from the
standard pose, the movement of the end effectorHRH0,

HtH0→H

are calculated to determine the new position of the arm sensor
SRW,StW→S.

If ΣS represents the front-sensor coordinate system,SRW

and StW→S are constant, because the front sensor is fixed on
the robot. Therefore, transforming the front-sensor coordinate
system into the virtual-sensor coordinate system is realized by
calibratingSRW and StW→S in advance.

However, ifΣS represents the arm-sensor coordinate system,
SRW and StW→S should always be updated, because the arm
sensor moves along with the arm. In the proposed method,
we define a standard pose illustrated in Fig. 2 (a), the pose
of the arm serving as a base, and calibrateS0RW,S0tW→S0

at the standard pose in advance. Since the arm sensor is
fixed on the arm, it is also possible to calculate constant
matrixesR and t in advance, which are the rotation matrix
and the translation vector from the end-effector coordinate
systemΣH to the arm-sensor coordinate systemΣS. The end-
effector coordinate system is represented asΣH0 when the arm
is at the standard pose, andΣH when the arm has moved to a
new position. A rotation matrixHRH0 and a translation vector
HtH0→H, which represent the movement of the end effector,
can be calculated by solving a forward kinematics problem of
the robot arm. Now, updatingSRW,StW→S is realized using
S0RW,S0tW→S0,

HRH0,
HtH0→H,R and t.

C. Projection on the Output Image

This section explains how to transform point cloud data
represented in the virtual-sensor coordinate system into a two-
dimensional image seen from the position of the virtual sensor.

Supposing that the coordinate of a certain pointppp is
S′ ppp = (x′,y′,z′,1)T. If ppp is projected on the output image at
the position ofM′

ppp = (u′,v′,1)T, the relation betweenM
′
ppp

and S′ ppp is similar to that betweenM ppp and Sppp mentioned in
Section III-A (in this case, internal parameters of the virtual
sensor, which can be set arbitrarily, is needed).

Fig. 3: A concept image of the missing pixels. The images
generated by this process often lack pixels partially because
point clouds exist discretely in space. For smoother images,
interpolation is needed.

By using the process stated from Section III-A to this
section, it is possible to calculate the position projected on
the output image,M

′
ppp= (u′,v′,1)T, from the position achieved

from the front sensor image and/or the arm sensor image,
M ppp= (u,v,1)T. However, the images generated by this process
often lack pixels partially, as illustrated in Fig. 3. The cause
of this problem can be explained as follows. This process
projects three-dimensional point clouds on two-dimensional
images. Since the points exist discretely in space, the gap
between points may appear in the image when seen from
a different position. A typical solution to such problems is
interpolation, which usually uses backward transformation to
calculate the RGB information of the gap areas. However, as
the proposed method does not use backward transformation
but forward transformation, the dimension of the output infor-
mation (two dimensional images) is smaller than that of the
input information (three dimensional point clouds), hence it
is impossible to determine a unique backward transformation.
Therefore interpolation is performed by assigning the same
RGB value to neighboring pixels in the output image for
forward transformation. This simple interpolation enables to
produce a certain level of smooth images at low calculation
cost. The effect of this interpolation is evaluated quantitatively
in Section IV-C.

D. Integration of the Output Images from the Front Sensor
and the Arm Sensor

The output images from the front sensor and the arm sensor
are made transparent and piled up to produce the final output
image. The proposed method uses alpha blending to calculate
the RGB values of each pixel. The opacity of the images
from the front sensor and the arm sensor areα and 1−α
respectively, where0 ≤ α ≤ 1. A pixel is filled in black if
information about the pixel is obtained from neither the front
sensor nor the arm sensor.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup

We conducted experiments on an actual machine to verify
the effectiveness of the proposed method. Figure 4 shows the



experimental setup. In this experiments, two RGB-D sensors
(ASUS: Xtion Pro Live) and a manipulator robot (YASKAWA:
MOTOMAN-HP3J) are used as illustrated in Fig. 4 (a). There
are an obstacle in front of the front sensor and three balls with
a diameter of 0.05 m which are the objects to be observed
(Fig. 4 (b)). The distance between the front sensor and the
obstacle is about 0.3 m and the distance between the front
sensor and the farthest wall is about 1.0 m. The information
of joint angles of the manipulator robot is acquired at a rate
of 30 Hz. The RGB-D sensors acquire 640×480 pixel images
at a rate of 30 fps. The movement of the end effector is set in
advance. The coordinate of the end effectorX , Y , Z is defined
in Fig. 4 (a). As Fig. 5 (a) shows, the end effector moves
about 0.15 m in theX , Y , andZ direction and returns to the
initial position. Figure 5 (b) shows the time series data of the
angle of the end effector. The angle is represented byZ-Y -X
Euler angles, which means that any angle is represented by a
first rotation aboutZ axis by an angleα, a second rotation
aboutY axis by an angleβ , and a last rotation aboutX axis
by an angleγ (if α = β = γ = 0, the end effector is parallel
to X axis). The internal parameters of the virtual sensor are
the same as those of the front sensor. The parameter for alpha
blendingα is set to 0.5.

B. Resulting Output Images

Images acquired by the experiments are shown in Fig. 6.
The two images in Fig. 6 (a) are input images from the front
sensor and the arm sensor at a certain moment. In the image
from the front sensor, the balls behind the obstacle can not
be seen. Figure 6 (b) shows the output image from the virtual
sensor at this moment. The position of the virtual sensor is the
same as that of the front sensor. Figure 6 (c) shows an image
of the front sensor when there are no obstacles. Comparing
Fig. 6 (b) and Fig. 6 (c), it turns out that the balls in the
background can be seen properly.

Figure 7 shows output images after moving the position
of the virtual sensor (The virtual sensor moved 0.15 m in
the X direction and -0.15 m in theY direction from the
position of the front sensor, and rotated 30 deg aboutZ axis).
Figure 7 (a) is an output image without interpolation which
was mentioned in Section III-C. Figure 7 (b) is the output
image after interpolation, which turns out to be smoother than
that without interpolation. The position of the virtual sensor
can be moved arbitrarily even while operating the manipulator
to see the environment from various viewpoints.

C. Evaluation and Discussion

We evaluated the error in the integrated image based on
the disparity of the brick patterns printed on the farthest wall
between the images from the front sensor and those from
the arm sensor (illustrated in Fig. 7 (b) as an example).
Throughout the movement in the experiments, it was observed
that the disparity was smaller than 0.05 m at a distance of
about 1.0 m from the front sensor.

The results of the other quantitative evaluations are as
follows. Using a 3.40 GHz Intel Core i7 CPU, the frame rate

(a) The manipulator and the RGB-D sensors. The distance between
the front sensor and the obstacle (dotted arrow) is about 0.3 m.

(b) An obstacle in front of the front sensor and three objects to be
observed. The distance between the front sensor and the farthest wall
(dotted arrow, although the front sensor is not in this picture) is about
1.0 m.

Fig. 4: The experimental environment

(a) (b)

Fig. 5: The trajectory of the end effector. (a) The time series
data of the coordinatesX ,Y,Z of the end effector during the
experiments. The coordinate system is defined in Fig. 4 (a).
(b) The time series data of the anglesα,β ,γ of the end effector
during the experiments. The angle is represented byZ-Y -X
Euler angles.

of the output images was 9.2 fps on average, with a standard
deviation of 0.6 fps. This processing speed was acceptable
within the experiments; the system worked in real time.



(a) Input images from the front sensor (left) and the arm sensor (right)
at a certain moment. In the image from the front sensor, the balls
behind the obstacle can not be seen.

(b) The output image at this moment. The balls can be seen through
the obstacle.

(c) The ground truth data. Comparing Fig. 6 (b) and this picture, it
turns out that the balls in the background can be seen properly.

Fig. 6: The images acquired by the experiments

(a) An output image after moving the position of the virtual sensor
without interpolation which was mentioned in Section III-C. The
virtual sensor moved 0.15 m in theX direction and -0.15 m in the
Y direction from the position of the front sensor, and rotated 30 deg
aboutZ axis. In this picture, information of about 40 % of the field
of view is missing.

(b) After the interpolation, the missing pixels improved by about 20 %
making the output image smoother. This process can be performed at
low calculation cost, which allows the whole system to work in real
time. Throughout the movement in the experiments, it was observed
that the disparity (illustrated in the picture as an example) was smaller
than 0.05 m at a distance of about 1.0 m from the sensor.

Fig. 7: Acquired images after moving the viewpoint

Next, we evaluated how precisely the output images repro-
duced the true images. We focused on not disparity of positions
but disparity of texture and used NCC (Normalized Cross-
Correlation) as a measure. The evaluation was performed
under a condition without the obstacle and the position of
the virtual sensor was the same as that of the front sensor.
The NCC between the images of the front sensor and those
of the virtual sensor resulted in 0.94 on average, with a
standard deviation of9.1× 10−3, which means that there is
high similarity between the output images and the real images.

We also evaluated the missing pixels which was mentioned
in Section III-C. The percentage of the number of the missing



Fig. 8: The percentage of the missing pixels during the exper-
iments. The evaluation was performed when the virtual sensor
was located at the position in Fig. 7. The percentage improved
after the simple interpolation explained in Section III-C.

pixels to the total number of pixels in the output images was
calculated. The evaluation was performed when the virtual
sensor was located at the position in Fig. 7. Then a com-
parison was made between the percentage before and after the
interpolation explained in Section III-C. Figure 8 shows the
result. The percentage of the missing pixels varied during the
movement. Especially, there was a big missing pixels during
the period of time between 20 s and 27 s. The cause of this rise
in the percentage can be explained as follows. As Fig. 5 (a)
shows, theX coordinate is big and theZ coordinate is small
during this period, which means that the arm sensor is close
to the environment and that the field of view is limited in
narrow area. In order to remove the effect of such kind of
outliers, we evaluated the percentage by calculating median.
The median was 37 % before the interpolation, and 17 %
after the interpolation. It turned out that information of about
83 % of the field of view can be acquired, in spite of not
small distance between the virtual position of the viewpoint
and the actual positions of the sensors. It also turned out that
the interpolation improved the missing pixels by about 20 %
making the output image smoother.

The whole experimental results suggest that our system
helps users to acquire information of objects behind obstacles
by moving the arm sensor and/or the virtual sensor while
operating the manipulator.

V. CONCLUSION

We proposed a system in which operators of remote control
robots can see the background through obstacles by applying
DR. The proposed method uses movable RGB-D sensors,
which enable to see the background according to positions
of obstacles. Information from RGB-D sensors, coordinate
transformation and other processes enable to produce images
from arbitrary viewpoints. Since the method is simplified as
much as possible, it is suitable for more general situation
and requires smaller calculation cost than previous works. The
experiments on the actual machine verified the ability to see

the background in real time and to acquire information of the
great part of the field of view, even if the viewpoint moved.

For future works, there are three issues:

1) Reducing errors in image integration
2) Reducing the missing pixels when the viewpoint

moves
3) Expanding the method for any numbers of sensors
For expanding the method, it is essential to reduce the er-

rors. Expanding the method may in turn contribute to reducing
the missing pixels.
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