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Abstract—Structure from Motion (SfM) is a technique for
3D reconstruction using a single camera. The absolute scale
of objects cannot be reconstructed by the conventional SfM.
Recently, a method of SfM that can reconstruct the absolute
scale has been proposed using refraction at the boundaries of
a transparent plate in front of an ordinary camera. In this
research, we develop a new method of scale reconstructable SfM
with a wide field of view using an omnidirectional camera and
a cylindrical transparent housing. After the essential equation
is extended for the system, simulation experiments assuming air
and underwater environments are conducted. The results show
the theoretical validity of this method.

I. INTRODUCTION

Structure from Motion (SfM) is a technique for 3D recon-
struction using image information. In SfM, 3D measurements
can be achieved by acquiring images of objects while a
camera moves from one viewpoint to another. SfM needs
only one camera, and therefore, its system is simpler than
that of methods with stereo cameras or conventional active
stereo vision methods because such methods require multiple
cameras or a projector other than a camera. SfM has been
actively researched in recent years [1], [2]. In particular, the
recently developed SfM using an omnidirectional camera [3]-
[5] with its wide field of view is suited to 3D reconstruction of
surrounding environments. However, unlike methods that use
stereo cameras or active stereo vision, SfM cannot reconstruct
the absolute scale of objects.

Other than SfM, there are methods in which the absolute
scale of objects can be obtained with one camera [6]- [8]. In
these methods, the light paths are changed by using optical
phenomena including refraction or reflection, and therefore
parallax images of objects can be obtained. However, such
methods have the problem that fields of view are small because
the acquired images are divided into two parts that each
contain a parallax image. In a similar study [9], the depth
map is obtained from an image captured through a transparent
plate between the scene and the camera and from an image
captured without the plate. However, the fields of view are
limited because an ordinary camera is used in the method.

In SfM, the camera motion and shapes of objects are
estimated simultaneously by using the information of corre-
sponding points in the acquired images. In conventional SfM,
it is necessary to solve an equation based on a geometric
relationship related to the directions from which the rays
originate and the unknown translational movement of the

camera in order to estimate the camera motion. Although
the rotation and the direction of the translational movement
of the camera are estimated uniquely from the equation, the
amount of the translational movement cannot be estimated by
the equation. This is because the epipolar geometry allows
for reconstructing the structure and motion up to an overall
scale. Therefore, the 3D shape of an object expressed in only
the relative size compared with the amount of translation of
the camera can be reconstructed. Shibata et al. proposed a
method of SfM that can reconstruct the absolute scale with
a transparent plate in front of an ordinary camera that causes
refraction [10]. However, since an ordinary camera is used in
the method, the field of view is small.

In this paper, an omnidirectional camera is used to secure a
wide field of view, and we solve the scale problem by means
of the following approach: First, as an approach related to
a measurement device, an omnidirectional camera is covered
by a cylindrical transparent housing to generate refraction
through a full 360 degrees. This refraction acts as a constraint
in a particular geometric relation. The constraint is used
to determine the amount of translational movement of the
camera. Second, we derive an equation from the geometric
relation. By solving it, the camera motion can be estimated
including the amount of the translation and thus the 3D shape
of an object can be reconstructed with the absolute scale.

The proposed method can be applied to measurements at
both land sites and underwater sites by generating refrac-
tion. In particular, the proposed method is more effective at
underwater sites than at land sites because the amount of
refraction is larger in water than in air. Our simulation results
demonstrate the validity of this method. They show that shapes
of objects are reconstructed with their absolute scale by the
proposed method.

II. 3D MEASUREMENT METHOD

A. Omnidirectional Camera

In this research, an omnidirectional camera [11] that has a
hyperboloid mirror in front of a lens is used. Rays directed to
one of the focal points of the hyperboloid mirror are reflected
to the other, and therefore, the mirror is positioned so that the
center of the lens and the focal point of the mirror are aligned.

In this research, the omnidirectional camera is covered with
a cylindrical transparent housing (Fig. 1). This housing is also
used for waterproofing in underwater environments.



Fig. 1. Omnidirectional camera with a housing. The omnidirectional camera
is covered by a cylindrical housing to generate refraction. The axes of the
mirror and the housing are in alignment.

Fig. 2. Schematic of ray vector. The ray is refracted at C2 and C1, and
reflected at the mirror before arrival at the image plane. The inner ray vector
rin is calculated from the image coordinate and known parameters. The vector
rout represents the outer ray vector and d the refractive disparity vector.

Fig. 3. Ray vectors and refractive disparity vector. The outer ray vector rout
and refractive disparity vector d are calculated from the inner ray vector rin
by using ray tracing.

B. Ray vectors

Rays are refracted at the boundary between the housing and
its outer surface (C2), and the boundary between the housing
and the inner surface (C1) as shown in Fig. 2.

First, an image coordinate (u, v)T is transformed into the
vector that is directed from the focus of the hyperboloid mirror
to the refraction point C1 on the mirror surface as shown in
Fig. 2. We define this unit direction vector as the “inner ray
vector” rin (Fig. 2). This vector is calculated as given by [3]:

rin =
1

(su)2 + (sv)2 + (sf − 2c)2

 su
sv

sf − 2c

 , (1)

s =
a2(f

√
a2 + b2 +

√
b2f2 + b2(u2 + v2))

a2f2 − b2(u2 + v2)
, (2)

where a, b, and c (=
√
a2 + b2) denote the hyperboloid

parameters, and f denotes the distance between the image
plane and the center of the lens of the camera (Fig. 2).

Second, the inner ray vector rin is transformed into the
vector that is directed from the refraction point C2 at the
outside surface of the housing to the object point in 3D space.
We define this unit direction vector as the “outer ray vector”
rout = (x, y, z)T. We define the start point of an outer ray
vector as the intersection point between two lines: the line
passing through the refraction point C2 and the object point
in 3D space, and the z axis (Fig. 2, Fig. 3). When there
is no refraction, the start points of outer ray vectors are
always the origin of the coordinate system C0. When there
is refraction, each start point of them varies based on the
amount of refraction. We define this position vector of the
start point of an outer ray vector as the “refractive disparity
vector” d = (0, 0, d)T, which contains information about
the absolute scale of objects. The vectors rout and d can
be calculated by ray tracing [12] using the information of
the shape of the housing and the refractive indices of each
medium, which are known parameters in this research. The
refraction occurring at each boundary is shown in Fig. 3.
In this figure, the housing is shown immersed in water as
a possible measurement environments in order to simplify
our understanding of the figure. The inner ray vector is
refracted at C1 and transformed into the vector rmid shown
in Fig. 3. Subsequently, the vector rmid is refracted at C2and
transformed into the outer ray vector rout. The vectors rout
and d are calculated as follows:

rout =
n2

n3
rmid −

n2

n3
cos θ2 −

√
1−

(
n2

n3

)2

sin2 θ2

N1,

(3)
d = (0, 0, R1 tan θ1 + (R2 −R1) tan θ2 −R2 tan θ3)

T, (4)

where

rmid =
n1

n2
rin −
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n2
cos θ1 −

√
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(
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n2

)2

sin2 θ1

N1.

(5)
The parameters n1, n2, n3 denote the refractive indices of the
inside of the housing, the housing itself, and the surrounding
water respectively, and θ1, θ2, θ3 denote the refractive angles
shown in Fig. 3. The parameter N1 denotes a unit normal
vector at the refraction points C1 and C2.



C. Extended Essential Equation in Proposed SfM

In this section, first, the conventional method of SfM and
the reason as to why the absolute scale of an object cannot
be reconstructed are explained. Subsequently, the proposed
method and the mechanism of reconstructing the shape of
an object with the absolute scale are described. In physical
terms, the key lies in the changes in the ray paths caused
by refraction. We effectively use the information related to
refraction, and we express it as the refractive disparity vector
and introduce a new equation using the vector.

There are several SfM techniques including the eight-point
algorithm that can estimate camera motion from at least eight
pairs of corresponding points in the acquired images [13]-
[15], and the five-point algorithm, which uses five pairs of
corresponding points [16]-[18]. In this paper, the conventional
method of SfM is explained based on the eight-point algo-
rithm, which is one of the standard methods of SfM.

A corresponding point observed from two viewpoints of the
camera before and after movement is considered. As shown in
Fig. 4, the coordinate system C is introduced, which is fixed
to the camera position before movement, and the coordinate
system C′ is fixed to that after movement. The origin of each
coordinate system is the focus of the mirror . In this paper,
variables in the coordinate system C′ are expressed using the
prime symbol “ ′. ” For simplification, the world coordinate
system is fixed to the coordinate system C.

In the conventional SfM, there is no refraction. Therefore,
the outer ray vectors are identical to the inner ray vectors,
and both are described as “ray vectors” in this paper. The ray
vectors r = (x, y, z)T and r′ = (x′, y′, z′)T are obtained as
described in Sec. II-B. The camera motion is expressed by the
rotation matrix R and the translation vector t:

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 , t =

 t1
t2
t3

 . (6)

In conventional methods of SfM, the geometric relation indi-
cating that the two ray vectors and the translation vector lie
on the same plane (Fig. 4) is represented as follows:

xx′

yx′

zx′

xy′

yy′

zy′

xz′

yz′

zz′



T 

r12t3 − r13t2
r13t1 − r11t3
r11t2 − r12t1
r22t3 − r23t2
r23t1 − r21t3
r21t2 − r22t1
r32t3 − r33t2
r33t1 − r31t3
r31t2 − r32t1


= 0, (7)

⇐⇒ bTe = 0. (8)

This equation is called the essential equation. By solving
a system of equations about more than eight corresponding
points, the rotation matrix R and the vector of the direction
of the translation t can be obtained [14]. The relative scale
of objects compared with the norm of the translation vector

Fig. 4. Geometry in the conventional SfM. The two ray vectors (r and r′)
and the translation vector t lie on the same plane.

Fig. 5. Geometry in the proposed method. The two outer ray vectors (r and
r′) and the vector between their start points (t + R−1d′ − d) lie on the
same plane. Unlike the geometry in the conventional method, this includes
refractive disparity vectors (d and d′), which are related to the absolute scale
of objects.

can be obtained. However, Eq. (7) is satisfied even if t is
multiplied by any constant, which means that the norm of the
translation vector cannot be determined uniquely. Therefore
the absolute scale of objects cannot be reconstructed.

In the proposed method, the essential equation (Eq. 8) is
extended by also considering refraction. In our method, r =
(x, y, z)T and r′ = (x′, y′, z′)T denote the outer ray vectors
belonging to a corresponding point while d = (0, 0, d)T and
d′ = (0, 0, d′)T denote refractive disparity vectors, which
are the position vectors of the start points of the outer ray
vectors. Unlike in the case of the conventional SfM, refractive
disparity vectors are generally not zero vectors, and they
contain information about the absolute scale of objects.

In the following explanation, the outer ray vectors and
refractive disparity vectors are assumed to have already been
calculated in the manner described in Sec. II-B.

In the proposed method, we use the following geometric
relationship shown in Fig. 5: the two outer ray vectors (r and
r′) and the vector between their start points (t+R−1d′ − d)
lie on the same plane. This relationship is transformed into
the following equation [10]:

((t+R−1d′ − d)×R−1r′)Tr = 0. (9)

It is to be noted that r′ and d′ are expressed in the coordinate
system C as R−1r′ and R−1d′, respectively.

In order to simplify the equation, an alternative matrix Q
is introduced, and it satisfies the following equation about any
vector x:

(t+R−1d′ − d)× x = Qx. (10)



Q is expressed as:

Q =

 0 −t3 − r33d
′ + d t2 + r32d

′

t3 + r33d
′ − d 0 −t1 − r31d

′

−t2 − r32d
′ t1 + r31d

′ 0

 .

(11)
Consequently, Eq. (9) is expressed as:

r′
T
RQ r = 0. (12)

This equation can be expressed as an inner product of a
vector with unknown components and that with known ones.
Using the orthogonality of the rotation matrix, we haver12r33−r13r32
r13r31−r11r33
r11r32−r12r31

=

−r12
−r22
−r32

,
 r22r33−r23r32

r23r31−r21r33
r21r32−r22r31

=

r11
r21
r31

. (13)

Consequently, Eq. (12) the equation is simplified as:
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r12t3 − r13t2
r13t1 − r11t3
r11t2 − r12t1
r22t3 − r23t2
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= 0, (14)

⇐⇒ uTg = 0, (15)

where ri,j and ti denote the (i, j)-th component of R and the
i-th component of t, respectively.

By comparing e of Eq. (8) with g of Eq. (15), it is confirmed
that the first to ninth components of u and g in Eq. (15) and the
corresponding components of b and e in Eq. (8) are common.
When d and d′ are 0, from 10th to 17th components of u are 0
and Eq. (15) is identical to Eq. (8). Therefore, it is confirmed
that Eq. (8) is a special case of Eq. (15) with the condition of
d = d′ = 0. In other words, the condition indicates that there
is no refraction, and the system of equations does not contain
information regarding the absolute scale of objects. We define
Eq. (15) as the “extended essential equation” because Eq. (15)
is the equation which Eq. (8) is extended into; Eq. (15)
subsumes Eq. (8).

Equation (15) is set up about each corresponding point, and
consequently, the following simultaneous equation about all
of the corresponding points is set up:

Ug = 0, (16)

where U is a matrix in which row vectors uT about each cor-
responding point are arranged. One of the unknown parameters
can be fixed because Eq. (16) is homogeneous, and therefore,
N ≥ 16 is a necessary condition.

In actual measurements, g, which satisfies Eq. (16) pre-
cisely, is not always obtained because errors can be caused by
various reasons. Therefore, an approximate solution of g that
satisfies the following equation is obtained:

∥Ug∥2 → min. (17)

Unlike e in Eq. (8), g has components consisting of only
components of R. Using relations among from the 10th to
17th components as constraints, Eq. (17) is solved with a least
squares method. From the orthogonality of the rotation matrix,
the constraints of Eq. (17) are written as:

g210 + g211 + g212 = 1, g213 + g214 + g215 = 1, (18)

where gi denotes the i-th component of g. The vector g that
minimizes ∥Ug∥2 is obtained by using the Lagrange multiplier
method with the constraints and with an initial solution derived
from an eigenvector belonging to the minimum eigenvalue of
UTU. Subsequently, the components of the rotation matrix
and the translation vector are calculated.

By the definition of g and the orthogonality, the estimated
rotation matrix Rest is calculated as follows:

Rest(1) = [g10 g11 g12], (19)

Rest(2) = [g13 g14 g15], (20)

Rest(3) = Rest(1)×Rest(2), (21)

where the i-th row vector of Rest is represented as Rest(i).
The estimated translation vector test can be obtained as:

test3 =
Rest23 g1 −Rest13 g4

Rest23Rest12 −Rest13Rest22
, (22)

test2 =
Rest22 g1 −Rest12 g4

Rest12Rest23 −Rest22Rest13
, (23)

test1 =
g10 test2 − g3

g11
, (24)

where Rest ij denotes the (i, j)-th component of Rest, and
test i the i-th component of test.

The parameters R and t are obtained as above, which
means the relationship between the coordinate system C and
C′ has been obtained. Therefore, the 3D coordinates of the
corresponding points can be obtained by using the outer ray
vectors r = (x, y, z)T, r′ = (x′, y′, z′)T, and refractive
disparity vectors d = (0, 0, d)T, d′ = (0, 0, d′)T belonging
to each corresponding point. The intersection of two lines
passing through the start points of the outer ray vectors in
the directions of each outer ray vector is the 3D coordinate of
a corresponding point. However, these lines do not always
intersect exactly because of errors due to various reasons
including numerical calculation. Therefore, the middle point
of the line segment that links the two lines at the shortest
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Fig. 7. The average errors in simulations in air (a) and water (b) for various
values of N are plotted. The errors reduce as the number of corresponding
points increases.

distance between them is regarded as the 3D coordinate of
the corresponding point.

As described above, the 3D coordinate of each corre-
sponding point surrounding the camera can be obtained, and
therefore, the shape of an object is reconstructed with the
absolute scale with a wide field of view.

III. SIMULATION EXPERIMENTS

We conduct simulation experiments of measurements in
air and water in order to verify that the 3D coordinates of
the corresponding points can be reconstructed by using the
proposed method. First, N corresponding points are arranged
randomly within a distance of 1.5 m from the camera, and
subsequently, the image coordinate of each corresponding
point is calculated by simulating the refraction and reflection
of rays. Second, based on the image coordinate obtained, the
3D coordinate of each corresponding point is estimated by
using the proposed method. The errors between the estimated
positions and true positions of the corresponding points are

calculated to evaluate the proposed method’s performance. We
apply the following simulation conditions: the thickness of the
the acrylic housing with refractive index of n2 = 1.49 is 3 mm,
the inside of the housing is in air whose refractive index is
n1 = 1.00, and the surrounding environment is air or water
whose refractive index is n3 = 1.33.

The result of a simulation (in air, N = 100) is shown in
Fig. 6 as an example. The red circles and the blue triangles
indicate the true positions of the corresponding points and their
estimated positions, respectively. The two data sets exhibit an
overlap, thereby indicating that the errors are extremely small.
The positions of the corresponding points surrounding the
camera are estimated precisely, and therefore omnidirectional
3D reconstruction with the absolute scale is achieved.

The average errors in simulations in air and water with for
various numbers of corresponding points are shown in Fig. 7
(a) and (b), respectively. From the results, we observe that
each 3D coordinate of the corresponding points is precisely
obtained. The results also indicate that measurement errors
reduce as the number of corresponding points increases. We
speculate that this error is derived from numerical calculations,
particularly in the stage of calculations related to refraction. In
the simulations, refraction is calculated in two different ways.
On the one hand, when calculating the image coordinates, a
minimization problem about the optical path length is solved
based on Fermat’s principle. On the other hand, when the outer
rayvectorsarecalculatedfromthe image coordinates, Snell’slaw
isused. Theseapproachesdiffer in termsofnumericalcalculation
although they are identical mathematically, and therefore,
differences between the 3D coordinates of the true positions of
the corresponding points and those of their estimated positions
can be finally generated. The results show that this error is
extremely small when the number of the corresponding points
is large. We speculate that when the number of corresponding
points is large the least squares fitting is performed more
precisely, and thus, the result is significantly less affected by
errors due to numerical calculations.

The result also indicates that errors in water are smaller than
those in air. This because the norms of the refractive disparity
vectors in measurements in water are larger than those in air.
In measurements in air, the directions of inner ray vectors and
outer ray vectors are identical. In contrast, they are different
in the case of measurements in water. Therefore, the norms
of the refractive disparity vectors in measurements in water
are larger than those in air. This fact can be confirmed by
comparing the graphs shown in Fig. 8 and Fig. 9; the z and z′

components of the refractive disparity vectors (d and d′) in air
and those in water are shown in Fig. 8 and Fig. 9, respectively.
Figures 8 and 9 are examples of the simulation results. The
maximum value of ∥d∥ or ∥d′∥ in water is 131 mm, which
is considerably larger than that in air, which value is 3.12
mm. The parameters d and d′ reflect the effect of refraction.
In the extended essential equation (Eq. (15)), the small effect
of refraction indicates that the values of the 10th to the 17th
components in Eq. (15) are relatively small compared to the
terms in the equation. This means that the contributions of
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the 10th to the 17th components in Eq. (15) become small
upon applying the least squares method. The limit of d and
d′ tending to 0 in the extended essential equation (Eq. (15))
yields the essential equation (Eq. (8)) in the conventional SfM
in which the 3D coordinates of corresponding points cannot be
obtained. Therefore, the proposed method for measurements in
water is more robust against errors from numerical calculations
compared to those in air. The proposed method is thereby more
effective in underwater sites than in land sites.

IV. CONCLUSIONS

We proposed a new SfM capable of reconstructing the
shapes of objects with the absolute scale using refraction with
a wide field of view. First, we proposed a camera system using
a cylindrical transparent housing covering an omnidirectional
camera, in which refraction is caused in order to create
image differences in perceived vision. The effect of refraction
contains information related to the absolute scale. Second, we
introduced the refractive disparity vector and extended essen-
tial equation in order to obtain the positions of corresponding
points surrounding the camera and reconstruct the shape of
an object with the absolute scale. Subsequently, simulation
experiments assuming air and underwater environments were
conducted, and the theoretical validity of our method was
demonstrated.

In actual measurements, errors can be added to the image
coordinates of corresponding points by axial misalignment or
nonuniform thickness of a housing, and reading errors can
occur. Conducting experiments in actual environments and
improvement of the method’s robustness against such errors
form our future tasks.
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