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Abstract—In this research, a technique for dense 3D recon-
struction from two spherical images clicked at displaced positions
near a large structure is formulated. The technique is based on
the use of global variational information i.e. the dense optical flow
field in a unique rectification based refinement of the epipolar
geometry between the two images in a vertically displaced
orientation. A non-linear minimization is used to globally align
the 2D equirectangular optical flow field (i.e. pixel displacements).
The magnitude component of the resultant optical flow field
can directly be converted to a dense 3D reconstruction. Thus,
the epipolar geometry as well as the 3D structure can be
estimated in a single minimization. This method could be useful
in measurement and reconstruction of large structures such as
bridges, etc. using a robot equipped with a spherical camera,
thus helping in their inspection and maintenance.

I. INTRODUCTION

Spherical cameras that can capture information from all
directions in real-time (Figure 1) have many applications in
robotics. One popular application of these cameras is omnidi-
rectional 3D reconstruction of various structures. Particularly,
high quality 3D surface reconstruction of large infrastructures
such as bridges using robots can help in creating ‘digital
copies’ of them for easier, offline inspection [1], [2], which can
be a very tedious task if done manually. For such purposes, the
surface needs to be mapped from up-close in order to locate
cracks and other surface defects. Hence, a spherical camera
which can see the entire structure at once from up-close is
particularly useful and advantageous for localization and re-
construction. Keeping these objectives in mind, a technique for
dense reconstruction of large structures from spherical images
is formulated. This research focuses on dense reconstruction
from two images clicked near a structure.

Spherical cameras have several important advantages over
perspective cameras. One obvious advantage being that they
can see, and hence measure the entire structure at once.
Moreover, due to this, translational displacement in spherical
cameras causes a significantly lesser change in image content,
as opposed to perspective cameras. This allows the use of
global, dense information to estimate the properties of motion,
which may not be possible otherwise. Considering these
advantages, a technique for dense reconstruction using two
spherical images is proposed.

In order to do so, two steps are required. The first involves a
precise estimation of the epipolar geometry, or the 5 degree of
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Fig. 1. Spherical Images encode information from all directions and can be
represented in the (a) 2D Equirectangular and (b) Spherical Projection.

freedom motion parameters between the two camera positions
(3 for rotation, 2 for direction of translation). Following this,
the dense pixel-to-pixel disparities need to be estimated along
epipolar lines and converted to 3D point locations. Usually, the
first step can be done by matching sparse interest points in both
images. However, this involves noise and outliers and hence
is not globally consistent to produce a dense reconstruction of
good quality. Hence, non-linear refinement steps are typically
used to align the epipolar lines. However, this too is a sparse
procedure affected by remaining outliers.

Instead, [3] showed how variational techniques like dense
optical flow can help in accurate epipolar estimation for
perspective cameras, if the images have a high consistency
of content. It is mentioned that the regularization steps of
dense optical flow algorithms prevent any local outliers and
hence can give a very accurate epipolar geometry estimate.
The concept is further extended to jointly optimize epipolar
geometry and dense optical flow. Hence, in this research, a
similar technique is applied to spherical images. Two spherical
images are rectified in a vertically displaced orientation using
a novel dense refinement strategy in the 2D equirectangular
projection allowing the use of planar image processing tech-
niques, completely bypassing the high distortion.

In our other work [4], the use of dense optical flow to refine
epipolar geometry was also shown. However, there could be a
drop in accuracy because the optical flow vectors are estimated
on a 2D equirectangular image and projected to a 3D unit
spherical surface. Instead, in this research, it is ensured that
the optimization remains in a 2D equirectangular format and
uses quantities that are directly computed on the 2D image.



The other advantage of doing this is that the resulting optical
flow field also forms the dense disparity map and can directly
be converted to a 3D reconstruction. Thus, epipolar geometry
refinement and the 3D reconstruction can be obtained in a
single optimization step.

II. RELATED RESEARCH AND OUR APPROACH

Many 3D reconstruction methods involving spherical cam-
eras assume known camera positions, achieved either by
calibration, or mechanical alignment of the two camera po-
sitions [5], [6], [7]. Specifically, [6] and [7] assume the
camera is displaced in the vertical direction. Following this,
they expand their spherical images to the 2D equirectangular
projection along the vertical axis. It follows that all pixel
displacements on the spherical image will follow vertical lines
in the equirectangular image. Thus, disparity estimation is
made much easier by searching within the same vertical line
on the equirectangular images, as shown in Figure 2. This
is a very convenient as it allows direct use of 2D image
processing techniques on a spherical image, unaffected by
the distortion. However, this cannot be applied directly to
arbitrary robot motion. Hence, in this research, a method that
can automatically determine the precise camera motion and
rectify the images to such a vertical orientation is proposed.
This is possible with spherical images because they can be
rotated to any orientation without loss of information.
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Fig. 2. If the cameras are displaced perfectly in the vertical direction, all pixel
movements are in the vertical direction in the equirectangular projection.

In a similar spirit, to correct for small errors of vertical
alignment (which can create huge errors in the disparity
estimation), [8] used a point-matching based technique to
refine the matched points to the same vertical line. [9] also
introduced a generalized method of rectifying spherical image
epipolar geometry. They conducted simulations and found
the errors of the refinement method for different levels of
noise and number of matched points. However, even after
RANSAC-based filtering [10], point matching can involve
outliers that can induce noise in the epipolar geometry, making
disparity estimation suffer greatly. Thus, typical structure from
motion approaches like [11] use computationally intensive
approaches like bundle adjustment which globally optimize
multiple camera positions. Following this, a multi-view stereo

algorithm like [12] is used to estimate the dense cloud. Instead,
with sufficient translation, it should be possible to estimate the
dense structure using only two images as done by [7] and [6].

In place of sparse point-based methods, dense motion
estimation methods like [3], [13], [14] and [15] are highly
applicable for spherical images. Specifically, [3] explained
how dense optical flow can help in precise epipolar estimation
of closely displaced perspective images. They argued that the
regularization property of dense optical flow prevents local
outliers and leads to a more precise epipolar geometry. In
this research, the same concept is applied to spherical images.
Combined with the vertical rectification method of [8], [9],
epipolar geometry is refined in a non-linear minimization
of the dense optical flow field on the 2D equirectangular
projection. The final state of optical flow also forms the dense
disparity map and can directly be converted to a dense 3D
model.

III. SPHERICAL CAMERA MOTION AND
EQUIRECTANGULAR RECTIFICATION

A. Overview

Considering the objectives mentioned in the previous sec-
tion, a method for 3D reconstruction using dense optical
flow is presented. The camera positions are assumed to be
arbitrary, but with sufficient translation between them. Since
the dense optical flow cannot be computed if the orientations
of the spherical images differ a lot, a feature point-based
approach is used for initial rectification. First, the rotation
between both images is removed by derotation, and then
they are both rotated to bring the epipoles in the vertical
direction as shown in Figure 2. Following this, the dense
optical flow is estimated using a recent, accurate algorithm like
DeepFlow [16]. The deviation from the perfectly rectified state
is defined as an error measure and minimized over the epipolar
geometry in a non-linear least squares approach. Finally, the
magnitude component of the resulting optical flow field is
directly converted to the dense 3D map. The Ricoh Theta S
spherical camera is used this research [17].

As the name implies, all pixels are formed on the surface
of a sphere, where each pixel x is a unit vector. In pure
translational camera motion, pixels move in circular arcs
diverging away from a pole and converging to a diametrically
opposite pole (epipoles). For pure rotation, the pixels move in
loops around the rotation axis. Both are shown in Figure 3.
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Fig. 3. Pixel motion on the spherical image for the camera undergoing (a)
Pure Translation (b) Pure Rotation. (Spherical projection)



Any general camera motion is a combination of translation
and rotation. Since spherical images contain information from
all directions, they can be rotated without loss of information.
Hence, the camera motion can effectively de-rotated to bring it
to the same state as Figure 3 (a). Further, it can also be rotated
to bring the epipoles in a vertical alignment, similar to Figure
2. In effect, by knowing the precise epipole position, and the
rotation between two spherical images, they can be perfectly
rectified to bring all corresponding pixels on the same vertical
line. In this rectified state, if the two images are expanded to
an equirectangular projection, the resultant dense optical flow
field must have no horizontal component (Figure 2). Thus, a
non-linear least squares minimization is defined in order to
optimize the epipole and the rotation to achieve this state.

B. Notations

The two spherical images are denoted by S1(x) and S2(x),
where x(x, y, z) ∈ S1, S2 denotes a pixel (a unit vector). The
rotation between the two images is denoted by the rotation
matrix R, constructed from the three XY Z euler angles
(α, β, γ). Rv represents the rotation matrix that rectifies each
image (after derotation) to the vertically rectified orientation
of Figure 2. The epipole is represented by q, the pole towards
the direction of motion. Rv can be determined by knowing
q. Since q only represents a direction, it is represented in
spherical coordinates (θ, φ). Thus, G(α, β, γ, θ, φ) forms the
parameter vector that defines the relative pose or epipolar
geometry between two images.

C. Rectification

The vertical rectification follows the following format. First,
S2(x) is derotated to the same orientation as S1(x):

S2,1(x) = R−1×S2(x) =

(
Rx(α)Ry(β)Rz(γ)

)−1
×S2(x)

(1)
where S2,1(x) indicates S2(x) in the same orientation as
S1(x), and Rx(α), Ry(β), and Rz(γ) denote the individual
rotation matrices in the x, y, and z axes. Following this, Rv
is determined as follows. The angle ω between the epipole q
and the vector n(0, 0, 1) is:

ω = arccos

(
q · n
|q||n|

)
(2)

The axis of rotation a is the cross product of q and n:

a = q× n (3)

Thus, Rv can be written as a rotation matrix of angle ω around
the axis a:

Rv = Ra(ω) (4)

Finally, both images are rotated by Rv to the rectified
orientations, S1,r and S2,r and thereafter expanded to the
equirectangular projection for refinement.

S1,r(x) = Rv × S1(x) (5)

S2,r(x) = Rv × S2,1(x) (6)

D. Non-Linear Minimization

In this rectified state, the images should take the form of
Figure 2. When expanded to the equirectangular projection,
all pixel movements are expected to be in the vertical di-
rection. Thus, if the dense optical flow field between the
equirectangular projections of the two images is estimated,
it is expected to have no horizontal component. The recently
proposed, accurate DeepFlow algorithm [16] is employed for
this purpose. Using this approach, the horizontal component
of the dense optical flow can be minimized at every pixel
with respect to the parameter vector G(α, β, γ, θ, φ). If f is
the two-dimensional optical flow vector in the equirectangular
projection at the equirectangular pixel u(u, v), define the
following least-squares minimization is defined:

minimize
G(α,β,γ,θ,φ)

∑
∀u(u,v)

f2u (7)

where fu is the horizontal component of optical flow in the
equirectangular image. The complete rectification and refine-
ment pipeline is shown in Figure 4. Such problems are easily
solvable by the popular Levenberg-Marquardt approach [18].
However, there are still two unsolved problems. In a general
case where the images could have a very large difference
of orientation, optical flow cannot be computed. Further, the
Levenberg-Marquardt approach also requires a good initial
value, close to the optimum. To tackle these, the feature-
point based, 8-point RANSAC is modified for use on spherical
images.
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Fig. 4. Rectification-based refinement



E. Initialization

An initial estimation using the regular, 8-point RANSAC
approach. In the same manner as perspective images, the
essential matrix E defines the mapping between corresponding
points in two images:

x′
t
Ex = 0 (8)

where x and x′ are the corresponding spherical image points,
written as

[
xyz

]>
unit vectors. The original 8-point approach

[19] suggests many normalizations, however the points in
spherical images are already unit vectors and hence no further
normalizations are necessary. They are filtered in a RANSAC
[10] algorithm to obtain the set of inliers. The essential matrix
E is decomposed using singular value decomposition to give
us the rotation matrix and translation vector, that are converted
to the initial values of the parameter vector G(α, β, γ, θ, φ).

At this stage, most typical structure from motion approaches
would filter the point matches in a non-linear approach similar
to [11], [8], [9]. However, as mentioned earlier, basing it on
point matches which can contain outliers even after RANSAC
filtering can induce errors in the final epipolar geometry
estimate. Such errors make the disparity estimation very noisy
(which can be particularly sensitive when searching along
epipolar lines). Instead, the dense optical flow is used for this
purpose. Apart from the advantage of not having local outliers
due to regularization, the final rectified optical flow field in the
vertical direction also directly forms the disparity image and
can directly be converted to the 3D reconstruction, as shown
in the next section.

Thus, the overall minimization is as follows:

1) Initialize G(α, β, γ, θ, φ) with 8-point RANSAC
2) Derotate S2 with R−1 =

(
Rx(α)Ry(β)Rz(γ)

)−1
to

form S2,1, in the same orientation as S1

3) Calculate Rv from q and rotate both S1 and S2,1 to
form vertically rectified images S1,r and S2,r

4) Expand S1,r and S2,r to the 2D equirectangular projec-
tion and estimate optical flow using DeepFlow [16]

5) Calculate least squares error
∑

∀u(u,v)
f2u

6) Proceed with the Levenberg-Marquardt [18] approach
from step 2 onwards to optimize G(α, β, γ, θ, φ)

IV. 3D RECONSTRUCTION

In the final rectified state, the optical flow field should be
aligned vertically in the equirectangular projection. Hence,
taking its magnitude component directly gives us the disparity
of each pixel in the equirectangular projection. A simple
calculation as shown in Figure 5 is enough to convert it to
the pixel-wise 3D structure.

Perfect alignment after refinement

Fig. 5. 3D reconstruction from the final optical flow state

For a point x on the sphere, ω denotes the angular distance
from the topmost point of the sphere, i.e. the epipolar point.
The vertical magnitude of fv on the equirectangular image is
a difference of latitudes on the sphere, and thus forms the
angular disparity on the sphere. Thus, the law of sines in
triangle POP ′ gives the radius r of 3D point P :

r = |t| × sin(ω + |fv|)
sin(|fv|)

(9)

The magnitude of the translation vector is set as |t| = 1
without loss of generality to give the final structure.

V. EXPERIMENTS

An experiment was conducted in an artificial setup in order
to check for the quality of 3D reconstruction with the propose
method. Two cardboard slabs of 1m × 1m with textures pasted
on them boards were placed perpendicular to each other as
shown in Figure 6. Two spherical images were captured at
arbitrary orientations, displaced by a distance of 5 cm in an
approximate vertical direction. The camera movement (5 cm)
is very small with respect to the scale of the structure (1m).
Thus, it can be assumed to be a large structure. The image
pair is shown in Figure 7.

Fig. 6. Experimental Setup for 3D Reconstruction

The proposed algorithm was run on these images. Figure 8
shows the initialization step using 8-point RANSAC. Figure 10
shows the resultant images. Figure 9 shows the second image
deroted, before vertical rectification. Figure 10 (a) shows the
initial vertically rectified state, estimated only from point
matching. It can be seen that the optical flow vectors (i.e.
pixel movements) are not vertically aligned because of outliers.
Meanwhile, after the proposed refinement, in Figure 10 (b),



(a) Image 1

(b) Image 2

Fig. 7. Two spherical images clicked at arbitrary orientations at displaced
positions

Fig. 8. RANSAC with the 8-point algorithm for initial estimation. All point
matches are in blue, while the inliers are in green.

they are now aligned in the vertical direction, as expected.
Figure 10 (c) shows their magnitude, i.e. the disparity map.

For comparison, an inaccurate dense reconstruction at-
tempted without using the proposed refinement is shown in
Figure 11. Finally, in Figure 12, the dense reconstruction using
the proposed method is shown.

Fig. 11. Dense reconstruction using vertical rectification without using the
proposed refinement (inaccurate)

(a) Image 1

(b) Image 2

Fig. 9. Derotating image 2 to the same orientation as image 1 prior to vertical
rectification

(a) Vertically rectified state before proposed refine-
ment: The pixel movements are not aligned in a
perfectly vertical direction.

(b) Vertically rectified state after proposed refinement:
Pixel movements aligned along the vertical direction,
as expected

(c) Magnitude component of optical flow field: Dispar-
ity Image

Fig. 10. Output of the algorithm applied to the image pair



(a) Experimental Setup with camera position

(b) Dense reconstruction using rectification with pro-
posed refinement, shown along with camera position

(c) Top view of the reconstruction

Fig. 12. 3D Reconstructed Views and camera positions after the proposed
refinement. These reconstructions have been made by inserting the RGB color
of each pixel in the corresponding 3D location, in order to show the quality of
the resulting dense reconstruction. No meshing or texture mapping has been
done.

VI. CONCLUSION

In this research, a new method was proposed for dense
reconstruction from two spherical images clicked at arbitrary
positions using an optical flow-based refinement. Closely
following the research of [6] and [7], it was extended it to
be applicable for general camera motions. This can enable 3D
reconstruction of large structures at once. For this purpose,
the advantages of dense optical flow-based epipolar estimation
were considered, as suggested by [3], and applied to spherical
images. A dense reconstruction of a 1m × 1m structure using
a movement of only 5 cm was estimated.

It is intended to extend this work to a full video based
structure from motion pipeline using successive frames. The
stereo disparity estimation can also be moved from an optical
flow based approach to that of [7] and [6] for a more accurate
reconstruction. It is expected that this research could help
in the inspection and maintenance of large infrastructures by
digitizing them and mapping their surface accurately.
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