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Abstract—We propose a prediction method for lane changes
in other vehicles. According to previous research, over 90 % of
car crashes are caused by human mistakes, and lane changes are
the main factor. Therefore, if an intelligent system can predict
a lane change and alarm a driver before another vehicle crosses
the center line, this can contribute to reducing the accident rate.
The main contribution of this work is to propose a new feature
describing the relationship of a vehicle to adjacent vehicles.
We represent the new feature using a dynamic characteristic
potential field that changes the distribution depending on the
relative number of adjacent vehicles. The new feature addresses
numerous situations in which lane changes are made. Adding the
new feature can be expected to improve prediction performance.
We trained the prediction model and evaluated the performance
using a real traffic dataset with over 900 lane changes, and
we confirmed that the proposed method outperforms previous
methods in terms of both accuracy and prediction time.

I. INTRODUCTION

According to a survey by the Japan Metropolitan Police
Department, over 90 % of car crashes are caused by hu-
man mistakes [1]. Recently, autonomous car technologies
and driving safety support systems have been attracting con-
siderable attention as solutions to preventing car crashes.
Implementation of intelligent technologies to assist drivers
in recognizing situations around their own vehicle can be
expected to decrease the accident rate. Car crashes often occur
when traffic participants try to change lanes. Furthermore,
the survey reported that only 40 % of drivers use direction
indicators when they change lanes [2]. Based on these reports,
a lane change prediction method is required to use information
without direction indicators.

Lane change prediction can be classified into an estimation
of the lane-changing (primary) drivers intention and that of
other drivers. A method using a hidden Markov model (HMM)
has been suggested to estimate the drivers intention [3]. The
method uses the lateral relative position of a car in the lane
and the steering angle as features. Almost 98 % accuracy was
achieved using the assessment data collected on highways
in Japan. In [4], a method was suggested that used only
controller area network (CAN) bus signals. Features based
on sequential forward floating selection (SFFS) were selected;
steering angle, lateral velocity, lateral acceleration, braking
pedal angle, and yaw rate were selected as the most effective

features. In addition, eye movement data and head dynamics
can improve the prediction accuracy according to previous
research [5]. However, for the role of the solution in preventing
car accidents, the prediction of lane changes by other drivers
is the more crucial task than that of the primary driver. The
above methods can only detect lane changes of the primary
vehicle because of features that are unmeasurable from the
outside.

In [6], the prediction method uses information that is
directly measurable from the outside. In that study, the lateral
offset to the lane center, the lateral velocity relative to the lane,
and the relative velocity of the preceding car were selected as
the most effective features. In [7], features that include the
ratio of the average speed of vehicles in the original lane to
the corresponding value in the target lane, the time to collision
with the preceding vehicle, and the distance from the rear
vehicle were selected to improve the prediction time. However,
in these methods it was assumed that the preceding vehicle is
slower than the target vehicle. For that reason, degradation of
the prediction performance can occur under conditions that
are not considered (e.g., in a case in which a driver changes
a lane because the following vehicle gets closer rapidly).
There is also the case in which the next lane is empty. With
the exception of these cases, numerous conditions to change
lanes exist. However, using the relative amounts from adjacent
vehicles as features can degrade the prediction performance
under unexpected conditions. Furthermore, previous research
has demonstrated that it is important to use only the most
effective set of features rather than a set of all possible
features [8].

Considering these reports, we propose a method to predict
lane changes of other vehicles using a feature that considers
the relationship to adjacent vehicles. We focus on a dynamic
characteristic potential model for the approach to extract a
feature. Wolf and Burdick suggested a potential model that
generates a concentrated potential field behind each adjacent
vehicle [9]. However, since the model only considers front
vehicles, it cannot generate the concentrated potential field
forward. In contrast, Hoshino and Maki proposed a dynamic
characteristic model that considers the direction of movement
of obstacles, the velocity of obstacles, and the distance from



Fig. 1. Flowchart of the proposed method

obstacles when it generates the repulsive potential fields for
motion planning of mobile robots [10]. We apply a dynamic
potential model to the vehicle driving model. The proposed
method generates the potential field that changes the distribu-
tion depending on the relative amounts from adjacent vehicles.
After the field is generated, the method extracts the feature by
using the ratio of potential energy of the current lane to the
corresponding value of the next lane. We define this feature
as the potential feature. The potential feature can describe
many lane change situations, including the cases in which the
following vehicle gets closer rapidly, the preceding vehicle is
slower than the target, and the next lane is empty. Furthermore,
the case in which a driver suspends a lane change maneuver
because of insufficient distance with other vehicles can be
applied by using the potential feature.

We train and test the prediction model using real traffic data
collected by the Federal Highway Administration [11]. For the
assessment of our method, we compare the performance with
previous methods by using the same testing dataset.

II. OVERVIEW OF THE PROPOSED METHOD

Figure 1 shows the flowchart of our proposed method. We
assume that the primary vehicle has line marking information,
a distance sensor, and a position sensor. Using data acquired
by measurement, we can understand situations around the
primary vehicle. We take two approaches to feature extraction.
The first approach uses the position and velocity of the target
(primary) vehicle that changes a lane. This approach focuses
on only the target without considering other vehicles. The
position and velocity of the target exhibit the same changing
characteristics for all conditions of lane changes. For this
reason, this information can be considered as the most effective
set of features. We use the distance with respect to the center
line instead of the position to take account of the curvature
of the road as the first feature, and the vertical velocity with
respect to the center line is calculated from the first derivative
of the distance. We use the vertical velocity as the second

Fig. 2. Definition of coordinates

feature. In this research, these features are defined as the
driving features. The feature extraction method is explained
specifically in Section III.

The second approach uses a dynamic characteristic potential
method to consider the relationship to adjacent vehicles.
Drivers may consider the relative distance and the relative
velocity with respect to other vehicles at the moment a lane
change is attempted. However, if the relative amounts are
used directly as features without appropriate conversions, the
feature extraction may degrade [6]. In this research, by using
a dynamic potential model that changes the distribution by
relative amounts, the potential feature that can describe a
variety of conditions of lane changes can be extracted. The
method of extracting the potential feature is discussed in
Section IV. The proposed method uses the support vector
machine (SVM) as a classification method. We define the
lane-changing process as consisting of four steps: keeping,
changing, arrival, and adjustment. In the proposed method,
the target vehicle is judged as attempting to change lanes when
the current feature vector is classified as changing. We explain
the details of the classification scheme in Section V.

III. DRIVING FEATURE EXTRACTION

A. Definition of the vehicle coordinates

In the following subsection, we explain the method of
extracting the driving features: the distance with respect to the
center line and the first derivative of the distance. We assume
that the primary vehicle has map information about line
markings that consists of points. Each point has information
about a position as at the world coordinates Σworld. The
position of the target vehicle measured by the distance sensor
installed on the primary vehicle is the vehicle coordinates
Σvehicle. Therefore, the position of the target vehicle needs to
be converted to the world coordinates. We define the position
of the target vehicle at the world coordinates as (xT , yT ), and
define the position of nth point at the kth line marking as
(x

(k)
n , y

(k)
n ). The definitions are shown in Fig. 2.

B. Approximate curve of line markings

The proposed method calculates the distance with respect
to the center line instead of the lateral position to account for
road curvature. For that reason, the approximate curves of line
markings must be extracted. We assume that the measurable
range of a distance sensor is 50 m. We use only the points



Fig. 3. Potential field diagram

from each line within this range to make the approximation.
A second-degree polynomial is approximated by the method
of least squares. The approximate curve at the kth line is

y(k) = a
(k)
2 (x(k))2 + a

(k)
1 x(k) + a

(k)
0 (1)

where a(k)2 , a
(k)
1 and a(k)0 are coefficients at the kth line. The

approximation is conducted each time step of measurements.

C. Extraction of the driving feature

The distance with respect to the kth line is defined as
d(k). The distance d(k) is calculated by using the position of
the target vehicle (xT , yT ) and the kth approximate curve.
We generate points at a distance intervals of 0.1 m on the
approximate curve and find the closest point from the target
vehicle. The distance d(k) is calculated by using

d(k) = min
n

√
(xT − x(k)n )2 + (yT − y(k)n )2 (2)

where n is an index about the generated points. The distance
d(k) is defined as the first feature. The vertical velocity with
respect to the center line is calculated from the first derivative
of the distance ḋ(k). We define it as the second feature.
Because these features have units, in the absence of scaling the
prediction result can be influenced by the differences of units.
For that reason, we normalize the features using a maximum
value. It is impossible to normalize by using the mean and
variance values because the prediction is conducted in real
time. The prediction can use only measurement values until
the current time. We define the maximum value related to
feature d(k) as the width of the lane center. The maximum
value related to feature ḋ(k) is searched for during the training
step.

IV. POTENTIAL FEATURE EXTRACTION

A. Dynamic characteristic of the potential method

The potential method is often used for robot navigation. This
method generates attractive potential energy from a destination
and repulsive potential energy from an obstacle. The normal
model is

U = Ud + Uo (3)

where Ud denotes the attractive potential energy from a
destination, and Uo denotes the repulsive potential energy from
an obstacle. The repulsive potential energy is calculated as

Uo =
1

2πσ2
exp[− r2

2σ2
] (4)

(a) Adjacent vehicles

(b) Relative amounts at vehicle i

Fig. 4. Definition of adjacent vehicles and relative amounts

where r is the distance from a robot to an obstacle, and σ is
the variance of the distance. The normal model only considers
the distance from obstacles. In contrast, the dynamic model
considers the direction of movement and velocity of obstacles
[10]. This method generates the drifted potential field toward
the direction of movement of obstacles using the von Mises
distribution.

The differences of potential fields generated by the normal
model and the dynamic model are shown in Fig. 3. Our
proposed method generates the potential field that changes
the drift direction depending on the relative velocity, and the
relative angle with respect to adjacent vehicles around the
target vehicle. Figure 4 shows the adjacent vehicles and the
relative amounts for each vehicle considered in this research.
We define the target vehicle as Target, a vehicle ahead of
the target in the current lane as Preceding, a vehicle behind
the target in the current lane as Following, a vehicle ahead
of the target in the next lane as Lead, and a vehicle behind
the target in the next lane as Rear. In the following sections,
we denote these vehicles by capital letters (T, P, F, L, and R).
The repulsive potential energy at vehicle i is generated by

Ui =
exp[η(∆vi) cos θi ]

2πI0[η(∆vi)]
α

exp[− ri
2

2σ2 ]

2πσ2
(5)

ri = xi − xT (6)

∆vi = vi,x − vT,x (7)

θi =

{
0 (i=P,F)
π (i=L,R)

(8)

where i is a vehicle index, ri is the relative distance, σ is the
variance of ri, ∆vi is the relative velocity, θi is the relative
angle, and α is a coefficient. The first term in Eq. (5) represents
the von Mises distribution, and I0(η) is the modified Bessel
function of order 0. The distribution is uniform when the
parameter η is zero. If the parameter η is large, the distribution
drifts toward the angle θi. In this research, the parameter η is
adjusted by the relative velocity ∆vi , then the drifted direction
of the potential field is chosen. The relative angle θi becomes
only zero or π in accordance with the preceding order. In



(a) Following vehicle is faster than target

(b) Following vehicle is slower than target

Fig. 5. Aspects of the potential field generated by the proposed method

Eq. (5), the second term denotes the repulsive potential energy,
which is inversely proportional to the distance ri. For this
term, if the target vehicle drives close to adjacent vehicles, it
is affected by a large repulsive potential energy.

Aspects of the potential fields generated by using the
proposed method are shown in Fig. 5. If the following ve-
hicle is faster than the target, the drifted potential field is
generated toward the target. If the following vehicle is slower
than the target, the potential field drifted backward does not
interfere with the target. The proposed method generates a
one-dimensional potential field because vehicles must drive
following a lane. For that reason, the potential field does not
depend on the lateral position. In the calculation for the next
lane, we assume that the target vehicle drives at the same
longitudinal position, then the relative amounts and potential
energy are calculated.

B. Extraction of the potential feature

The potential fields from adjacent vehicles are integrated for
each lane and then the potential feature is extracted by using
the ratio of the potential energy of the current lane to that of
the next lane. The potential energy is derived by using

UC = ωPUP + ωFUF (0 ≤ UC ≤ 1) (9)

UN = ωLUL + ωRUR (0 ≤ UN ≤ 1) (10)

where UC denotes the potential energy of the current lane, UN
is the potential energy of the next lane, and ωi is a weight
coefficient at vehicle i. We define the ratio of potential energy
as z,

z = lnUC − lnUN (11)

and the value of p is calculated as

p = ϕ[z] (12)

where ϕ[·] is the cumulative distribution function. We define
the value p as the potential feature. The potential feature repre-
sents the possibility of changing lanes through a comparison of
situations between the current lane and the next lane. Figure 6

Fig. 6. Potential feature p

shows what the value of the potential feature means. If the
potential energy of the current lane is higher than that of the
next lane, the ratio z is greater than zero and the value of the
potential feature becomes great than 0.5. This value means
that a lane change gives the target advantages to drive.

C. Definition of the feature vector

We define the feature vector as consisting of the driving
features and the potential feature. The feature vector at time t
can be represented as

x
(k)
t =

[
d
(k)
t ḋ

(k)
t p

(k)
t

]T
(13)

d
(k)
t =

[
d
(k)
t−(N−1), ..., d

(k)
t−1, d

(k)
t

]
(14)

ḋ
(k)
t =

[
ḋ
(k)
t−(N−1), ..., ḋ

(k)
t−1, ḋ

(k)
t

]
(15)

p
(k)
t =

[
p
(k)
t−(N−1), ..., p

(k)
t−1, p

(k)
t

]
(16)

where k is the index used to denote line markings. The
proposed method can be adapted to both the left and the right
sides of lane changes. k is chosen based on the lane-changing
side and all features are calculated following the specified side.

Since a lane change is not a temporary process but a
continuous one, the feature vector must consider transitions
of the features. We set a moving window to capture the
transitions, and N is the window size in Eq. (14). For example,
d
(k)
t is a sequence that consists of N data until time t.

V. MULTICLASS CLASSIFICATION USING A SVM
The proposed method uses a SVM to classify the feature

vector into the intention classes shown in Fig. 7. A driver’s
intentions may lie in a high-dimensional feature space and a
SVM kernel can address this problem through a conversion of
features from a low-dimensional space into a high-dimensional
space [12]. The SVM determines the hyperplane parameters
w and b that are used to classify the data:

arg min
w,b

1

2
‖w‖2 (17)

such that

ti(w
Txi − b) ≥ 1, (i = 1, ...,m) (18)

where m represents the total number of data, and ti is a class
label at the feature vector xi. Previous research has shown



Fig. 7. Intention classes of the lane-changing process

that SVMs give reliable results in lane-change prediction
[8][12]. We define the lane-changing process as consisting of
four steps: keeping, changing, arrival, and adjustment. In the
proposed method, the target vehicle is judged as attempting to
change lanes when the current feature vector is classified as
changing.

SVM performance depends largely on kernel selection;
however, because a kernel selection method has yet to be
suggested, the only way to select the best kernel at present
is through a process of trial and error. We selected a radial
basis function as a kernel through trial and error. A radial
basis function is defined by

K(x,x′) = exp(−g‖x− x′‖2) (19)

where g is the kernel parameter. The proposed method uses
one simple approach for the multiclass extension of the binary
SVM using a one-versus-all strategy.

VI. EXPERIMENTAL RESULTS

A. Evaluation of the potential feature p

We calculated the values of the potential feature p in the
following ten situations to evaluate its descriptive ability:

(a) The preceding vehicle is slower than the target.
(b) The preceding vehicle is faster than the target.
(c) The lead vehicle is faster than the preceding vehicle.
(d) The lead vehicle is slower than the preceding vehicle.
(e) The following vehicle is faster than the target.
(f) The following vehicle is slower than the target.
(g) The next lane is empty.
(h) The current lane is empty.
(i) The rear vehicle is slower than the target.
(j) The rear vehicle is faster than the target.

Figure 8 shows the results. The value of p calculated was
greater than 0.5 for cases in which a lane change is advanta-
geous (a, c, e, and g) and less than 0.5 when a lane change is
not advantageous (b, d, f, and h). Cases (i) and (j) are situations
used to evaluate risks during a lane change. If the rear vehicle
gets closer rapidly, a lane change can be dangerous even if it
is advantageous. In case (i), the value of p was greater than
0.5 because the rear vehicle is slower than the target. In case
(j), since the rear vehicle is faster than the target, the value of
p was calculated as less than 0.5. The results prove that the
potential feature describes numerous situations of lane changes
appropriately.

B. Criteria of performance evaluation

We trained and tested the proposed method using a real traf-
fic dataset published by the Federal Highway Administration

Fig. 8. Values of potential feature p in ten situations

of the United States. The dataset was collected on eastbound
I-80 in the San Francisco Bay Area. The measurement area
was approximately 500 m in length and consisted of 6 freeway
lanes. The dataset consisted of measurements taken per 0.1 s
for 15 min, for a total of three times. Data from 5,678 vehicles
were collected and 958 vehicles changed lanes during the
measurement. We used 300 lane-changing data for the training
and 658 lane-changing data for the test.

We used two evaluation criteria: the prediction time and the
F1 score. First, we defined the prediction time as

τp = τc − τj (20)

where τc is the moment at which the target vehicle crosses
the center line, and τj is the moment at which the proposed
method judges that the target would change lanes. A large
value of τp means a high prediction performance. We defined
the following criteria using the prediction time τp:
• Success: 0 < τp < 5.0 (judged within the time limit).
• Failure: τp ≤ 0 (judged too late).
• False alarm: τp ≥ 5.0 (judged too early).

Generally, a lane change takes 3.0 to 5.0 s according to
previous research. We judged cases in which τp ≥ 5.0 s as
false alarms by reference to the previous survey.

Second, the F1 score is defined as

F1 = 2× precision× recall

precision + recall
(21)

precision =
TP

TP + FP
(22)

recall =
TP

TP + FN
(23)

where TP denotes the true positive rate, FP denotes the false
positive rate, and FN denotes the false negative rate. The
precision can evaluate the false alarm rate which the proposed
method classifies keeping to changing incorrectly, and the



Fig. 9. Prediction results obtained by using the proposed method

TABLE I
PERFORMANCE COMPARISON WITH PREVIOUS METHODS

Method Precision [%] Recall [%] F1 [%] τp [s]

Mandalia [8] 83.9 77.2 80.4 1.37

Schlechtriemen [6] 94.4 99.3 96.8 1.68

Proposed method 95.9 100 97.9 1.89

recall represents the failure rate, the most dangerous case, in
which the proposed method classifies changing to keeping.

C. Evaluation results

We show the prediction results obtained by using the pro-
posed method for one lane-changing event among the testing
dataset in Fig. 9. The black dashed line represents τc which
is given by the dataset. The predicted class found by using
the proposed method is represented by colors:blue means
keeping, red means changing, green means arrival, and yellow
means adjustment. The moment at which keeping changes to
changing is τj . We can see that τj was earlier than τc; in other
words, the proposed method predicted a lane change before the
target vehicle crossed the center line. We can also confirm that
the value of the potential feature p (the red line) increases at
the same time that the vehicle starts to change lanes. The value
stays above 0.5 during a lane change.

We repeated the same evaluations for the entire testing
dataset and compared the performance with two previous
methods that we chose. The first method uses the variance of
the lateral position within a constant window size as features
[8]. This method uses the SVM as a classification method
but only focuses on the driving feature. The second method
uses the lateral velocity relative to the lane, the lateral offset
from the lane center, and the relative velocity of the preceding
car [6]. This method uses the naive Bayes algorithm, which
estimates the driver’s intentions. Through the comparison with
these previous methods, we can expect to prove the effective-
ness of the potential feature. We implemented the previous
methods and evaluated them using the same testing dataset.
Table 1 gives the results in terms of the average precision,
recall, F1 score and prediction time τp. We can see from the
table that the proposed method outperforms previous methods
in terms of both the F1 score and the prediction time. The

proposed method achieved 97.9 % accuracy, and it can predict
lane changes on average 1.89 s before the target vehicle crosses
the center line. Specially, the proposed method predicted all of
the lane changes correctly, so the recall was 100 % accurate.
In contrast, the previous methods failed to detect several lane-
changing cases. This result demonstrates that the potential
feature can improve the prediction performance.

VII. CONCLUSION

In this research, we proposed a lane change prediction
method considering the relationship to adjacent vehicles. For
the describing the relationship appropriately, we presented the
potential feature extracted by using a dynamic characteristic
potential method. Using real traffic data, we trained and tested
the proposed method, confirming that the proposed method
achieved 97.9 % accuracy average F1 score. Furthermore, the
method can predict a lane change on average 1.89 s before the
target vehicle crosses the center line. We demonstrated that the
proposed method outperforms previous methods through eval-
uation using the same testing dataset. Future work will focus
on evaluating the proposed method using real data collected
by vehicle installed measurement devices. Both measurement
accuracy and noise must be tested for this implementation.

REFERENCES

[1] Japan Metropolitan Police Department, “States of occurrence of traffic
accidents”, 2014.

[2] R. Dang, F. Zhang, J. Wang, S. Yi, and K. Li, “Analysis of chinese
driver’s lane change characteristic based on real vehicle tests in highway”,
Proceedings of the 2013 IEEE International Conference on Intelligent
Transportation Systems, pp. 1917-1922, 2013.

[3] N. Kuge, T. Yamamura, O. Shimoyama, and A. Liu, “A driver behavior
recognition method based on a driver model framework”, SAE Technical
Paper, no. 2000-01-0349, 2000.

[4] G. Li, S. E. Li, Y. Liao, W. Wang, B. Cheng, and F. Chen, “Lane change
maneuver recognition via vehicle state and driver operation signals -
results from naturalistic driving data”, Proceedings of the 2015 IEEE
International Conference on Intelligent Vehicle Symposium, pp. 865-870,
2015.

[5] A. Doshi and M. M. Trivedi, “On the roles of eye gaze and head dynamics
in predicting driver’s intent to change lanes”, IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 3, pp. 865-870, 2009.

[6] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K. D.
Kuhnert, “A lane change detection approach using feature ranking with
maximized predictive power”, Proceedings of the 2014 IEEE Interna-
tional Conference on Intelligent Vehicle Symposium, pp. 108-114, 2014.

[7] J. Ding, R. Dang, J. Wang, and K. Li, “Driver intention recognition
method based on comprehensive lane-change environment assessment”,
Proceedings of the 2014 IEEE International Conference on Intelligent
Vehicle Symposium, pp. 214-220, 2014.

[8] H. Mandalia and D. Salvucci, “Using support vector machine for lane-
change detection”, Proceedings of the 2005 IEEE International Confer-
ence on Human Factors and Ergonomics Society, pp. 1965-1969, 2005.

[9] M. T. Wolf and J. W. Burdick, “Artificial potential functions for high-
way driving with collision avoidance”, Proceedings of the 2008 IEEE
International Conference on Robotics and Automation, pp. 3731-3736,
2008.

[10] S. Hoshino and K. Maki, “Safe and efficient motion planning of multiple
mobile robots based on artificial potential for human behavior and robot
congestion”, Advanced Robotics, vol. 29, no. 17, pp. 1095-1109, 2015.

[11] The Federal Highway Administration, “Next Generation Simulation”,
http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm (accessed:10 May
2015).

[12] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction”, Proceedings of the
2013 IEEE International Conference on Intelligent Vehicle Symposium,
pp. 797-802, 2013.


