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Abstract— Indoor robot localization systems using wireless
signal measurements have gained popularity in recent years,
as wireless Local Area Networks can be found practically
everywhere. In this field, a popular approach is the use of
fingerprinting techniques, such as Gaussian Processes. In our
approach, we improve Gaussian Processes based mapping using
path loss models as priors. Path loss models encode information
regarding the signal propagation phenomena into the mapping.
Our approach first fits training data to a simple path loss
model, and then trains a zero-mean Gaussian Process with the
mismatches between the models and the data. Signal strength
mean predictions are done using both the path loss model and
the Gaussian Process output, while variances are calculated
by bounding the Gaussian Process variance using the path
loss models. Notably, the main improvement generated by our
approach is not an enhanced mean value prediction, but rather
a better model variance prediction. This translates into better
likelihood estimations, leading to higher localization accuracy.

Experiments using data acquired in an indoor environment
and our approach as the perceptual likelihood of a dual
Monte Carlo localization algorithm are used to demonstrate
this improvement. Furthermore, this idea can be extrapolated
to other fingerprinting techniques and to applications other
than wireless-based localization.

I. INTRODUCTION

Robot localization or position estimation is the problem
of determining a robot’s pose relative to a given map of the
environment. Robot’s knowledge of its pose is essential for
most non-trivial tasks; hence, its importance.

The use of wireless signals for robot localization in
indoor, GPS-denied locations has gained popularity in recent
years; being, probably, the main cause, the almost ubiqui-
tous presence of wireless local area networks (WLANs) in
most buildings. Although wireless signals-based localization
systems do not achieve as high accuracy as those based
on sensors such as laser rangefinders or RGB-D cameras;
they possess certain characteristics that make their usage
appealing. These are: signals’ uniqueness (due to each access
point’s MAC address); relative low computation as compared
with computer vision approaches; and readily available hard-
ware (as most robots already possess wireless capabilities
and WLANs infrastructures).

In wireless signals-based localization, the challenges arise
due to the difficulty of modeling signal strength propagation,
and the noisy nature of the signals themselves. Wireless
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Fig. 1. Overview of our proposed approach.

signal strength propagation through space can be accurately
described by Maxwell’s equations; however, these are rarely
used in practice because of their complexity. Simpler models
can be obtained by decomposing wireless signals path loss,
shadowing and multipath components. While shadowing and
multipath are location specific and hard to model without a
detailed description of the environment, path loss is relatively
easy to model. Our main contribution in this paper is the
modeling of signal strength propagation using such path loss
models as informative priors over Gaussian Processes (GPs)
and its use for bounding the model’s variance (Fig. 1 shows
the overview of our proposed approach).

In our experiments, we focus our analysis on how this
refined variance improves localization accuracy. This is done
by comparing the localization accuracy of a dual Monte
Carlo Localization algorithm that uses our approach as
perceptual likelihood, to one that uses Gaussian Processes
with no priors. For the testing we use data we collected in
an indoor environment. Additionally, we assess how sparser
training datasets affect our localization accuracy, to verify
the applicability of our approach when fewer data points in
the training dataset are available.

The rest of this paper is organized as follows: the next
section discusses related works and briefly introduces basic
concepts of GPs; section 3 describes our proposed approach
and can be considered as the core of this work. Section 4
describes our experiments and results; and section 5 gives
our conclusions.



II. PRELIMINARIES

A. Related work

Wireless signals-based localization techniques can be
roughly classified into proximity, triangulation and finger-
printing - a more detailed survey can be found at [1].

Proximity techniques rely on the connectivity of the robot
to its neighboring nodes. These techniques are often simple
to implement, but require dense WLANs to have adequate
accuracy, which is not an assumption we consider. Trian-
gulation techniques use geometry to calculate the robot’s
location - several techniques are presented at [2]. These
techniques are computationally fast, but often outperformed
by fingerprinting ones.

Fingerprinting techniques use a training dataset of samples
taken at known locations in the environment, to predict
robot’s location. This can be done by matching new measure-
ments to the most samples in the training dataset, becoming
a classification problem. Current work with classification
techniques include the usage of grids [3], [4], kNN [5], [6],
and random forests [7]. Fingerprinting can also be casted as a
regression problem, where a location-measurement mapping
is learned using the training dataset. Given new measure-
ments, the likelihood of any candidate location is computed
and can be used in a MCL approach. Current work with
regression techniques include linear interpolation in graphs
[8], smoothing [9], [10], and GPs [11], [12]. Among these
techniques, GPs have the advantage of not only being able
to model the complex behaviors of signal strengths, but also
directly calculating the prediction variances; both necessary
to construct perceptual likelihoods that can be employed by
MCL-based algorithms, such as the dual MCL we use for
testing. Work has also been done to extend WiFi GPs to
handle the self-localization and mapping (SLAM) problem
[13] and to handle heteroscedastic noise in the measurements
[14]. In this work we extend the approach to include path loss
models as priors, as well as refining the measurement model
used for computing the likelihood of new measurements.

B. Gaussian Processes

A complete treatment of GPs can be found at [15], we
will give a brief explanation and show the main equations
used in our specific problem (wireless signal strength-based
localization), for completeness of ideas.

GPs are a generalization of normal distributions to func-
tions, describing functions of finite-dimensional random
variables. Given some training points, a GP generalizes
these points into a continuous function where each point is
considered to have normal distribution, hence a mean and a
variance. The essence of the method resides is assuming a
correlation between values at different points, this correlation
is characterized by a covariance function or a kernel.

Formally, given some training data (X,Z) where X ∈
Rn×d is the matrix of n input samples xi,∈ Rd; and Z ∈
Rn×m the matrix of corresponding output samples zi ∈ Rm.
Two assumptions are made. First, each data pair (xi, zi) is

assumed to be drawn from a noisy process:

zi = f(xi) + ε, (1)

where ε is the noise generated from a Gaussian distribution
with known variance σ2

n. Second, any two output values, zp
and zq , are assumed to be correlated by a covariance function
based on their input values xp and xq:

cov(zp, zq) = k(xp,xq) + σ2
nδpq, (2)

where k(xp,xq) is a kernel, σ2
n the variance of ε and δpq is

one only if p = q and zero otherwise.
Given these assumptions, for any finite number of data

points, the GP can be considered to have a multivariate
Gaussian distribution:

z ∼ N (m(x), k(xp,xq) + σ2
nδpq), (3)

and therefore be fully defined by a mean function m(x) and
a kernel function k(xp,xq).

Predictions z∗ for an unknown data point x∗, can be done
by conditioning z∗ to x∗,X and Z, obtaining:

p(z∗|x∗,X,Z) ∼ N (E[z∗], var(z∗)), (4)

where,

E[z∗] = kT∗ (K + σ2
nIn)−1z, (5)

var(z∗) = k∗∗ − kT∗ (K + σ2
nIn)−1k∗, (6)

with K = cov(X,X) being the n× n covariance matrix
between all training points X, k∗ = cov(X,x∗) the covari-
ance vector that relates training points X to x∗, and k∗∗ =
cov(x∗,x∗) the variance of the test point. For making pre-
dictions, only these last two equations need to be computed.

III. GP USING PATH LOSS MODELS AS INFORMATIVE
PRIORS

A. Problem formulation

In this work we addresses indoor robot localization. Re-
garding the indoor environment, the existence of several
WLANs is assumed. However, there is no assumption re-
garding the WLANs’ access points spatial distribution -
there is no need for the access points to be homogeneously
distributed, and there is no prior knowledge of their locations.
Regarding the robot that wants to be localized. It is as-
sumed that it has wireless capabilities, specifically a 802.11-
compliant wireless network interface controller (WNIC).
Robot’s motion is considered to be planar, and localization
is performed using only odometry information and mea-
surements from the robot’s WNIC. Odometry information
is assumed to be readily available from the robot’s sensors
such as encoders. Wireless signals strengths are assumed to
be sensed using its WNIC’s built-in Received Signal Strength
(RSS) indicator. It is also assumed that a training dataset
composed of data pairs of RSS measurements means and
the locations where they were taken is available. Formally,
given an arbitrary number m of access points. The training
dataset is considered as (X, Z). With X ∈ Rn×2 the matrix
of n training input samples xi that correspond to the x− y



Cartesian coordinates where the samples were taken; and
Z ∈ Rn×m, the matrix created from the sampled mean
of RSS measurements taken from each of the m access
points at each of the n different locations. RSS measurements
are normalized so 1 corresponds to 0 dB and 0 to -95
dB (the lower limit for most WNICs). Whenever no RSS
measurements from an access point j are sensed at a certain
location i, the value of zi,j is set to zero.

B. Models and training

Wireless signals are electromagnetic waves, and as such
when propagating through environments they can be re-
flected, scattered and diffracted by walls, furniture and
moving objects. It is common to consider that this propaga-
tion phenomenon is constituted by three components: path
loss, shadowing and multipath. Path loss is caused by the
dissipation of the power radiated by the transmitter, and it
is a function of the distance between the transmitter and the
receiver; shadowing effects are the result of power absorption
by obstacles, and will persist as long as the obstacle remains,
in case of walls or other fixed obstacles, they can be assumed
to be constant in time; multipath effects are caused by signals
reaching the receiver by several paths, and like the shadowing
effects, they are location dependent. Our approach considers
that these components can be learned using a parametric
function as the path loss component, and a GP as the
shadowing and multipath components.

1) RSS sensor model: We make a difference between
the “sensor model” which models RSS as captured by
WNICs, and the “propagation model” which models the sig-
nal strength propagation phenomena previously introduced.

When knowing the propagation model’s predicted mean,
the computation of the sensor model’s predictive mean is
straight forward. Considering WNICs have a lower sensing
limit, we simply consider the sensor model’s means to be
the propagation model’s bounded bellow by zero.

Variance computation, on the other hand, is different. For
non zero RSS measurements, we consider the sensor model
predictions to be corrupted by the same noise as that of
the propagation model (this assumption holds when sensing
noise is neglected, which is viable as the propagation model
noise is comparatively much higher). However, for zero
value RSS measurements, the noise variance is considered
different. This difference arises from the sensor’s inability to
sense signal strengths under its lower sensing limit. The main
intuition is the following: if the propagation model predicts
an RSS value with mean -1 and a variance 0.04, the sensor
model should output a zero value with high confidence (low
variance) as even 3 standard deviations above the propagation
model’s mean predicted value, the signal strength is still
lower than zero (-1 + 0.6). The equations used for mean and
variance predictions using the sensor model are introduced
in section III-C.

2) Path loss model: A common approach for modeling
RSS is to use a simplified path loss model and consider
shadowing and multipath as system noise. These simplified
path loss models only aim to capture the essence of signal

propagation without resorting to complex ray-tracing models
or other geometric considerations. Such models often take
the form of a linear function using log distance.

In our approach we use one of such models as a prior for
the GP. Specifically, for our implementation we characterize
the RSS at location x, for access point j, as:

PLj(x) = Ptj − kj log10(dj) + ε, (7)

with Ptj being the RSS signal 1 m from access point j, dj
the Euclidean distance between x and the access point j-
i.e. ||x− (apxj , apyj)||, kj a positive constant and ε being
Gaussian noise with variance σ2

PL.
To find the value of model parameters θPL,j =

(Ptj , kj , apxj , apyj), we fit the parameters to acquired
training data. For this fitting, we consider zero values to
have an additional variance penalty σ2

zero as they encode less
information regarding the path loss parameters - any negative
value would be encoded as zero due to WNICs inability to
sense them. Given this consideration we define the negative
log likelihood of the training data given the path loss model
parameters as:

nllP̄Lj = 0.5n log(2π) +

n∑
i=1

log(σi,j)+

n∑
i=1

(zi,j − P̄Lj(xi, θPL,j))2

2σ2
i,j

. (8)

for n training data points, where σ2
i,j = σ2

PL for non-zero
values and the penalized version σ2

PL+σ2
zero otherwise. This

negative log likelihood is then optimized using conjugate
gradient descend. It was found experimentally that best
results were obtained when initializing the access points
origin parameters (apxj , apyj) to be placed in the vicinity
of the location of the highest zj value - conjugate gradient
descend is sensitive to initialization.

3) GP for modeling mismatches: For characterizing the
shadowing and multipath components, our approach uses
GPs fed with the difference between the training dataset and
the path loss prediction (Ze = Z − PL(X)). For there are
two options: either learn one GP per access point or learn
a single GP for all access points. The main advantage of
using a GP per access point is that the leaned model fits
each particular access point data much better, however it
risks overfitting. The main advantage of learning a single
GP is that predictions are faster to compute. In our particular
case, as both components are highly location dependent, and
locations are common to all access points, the second option
seemed a more logical choice. Nevertheless, it was tested if
using separate GPs would yield improvements in localization
accuracy; but no noticeable difference in performance was
obtained. This ratified our choice of using a single GP.

To fully define these GPs, it is also necessary to select
the mean function and the kernel to be used. For our case a
zero mean function is selected, which makes shadowing and
multipath tend to a zero when no data contradicts this hypoth-
esis. The selected kernel was the squared exponential one,



as it has been successfully used in previous related works
[12], [13], [14]; and its training was done by minimizing its
negative log likelihood via conjugate gradient descend.

C. Predictions using the sensor model

For the propagation model, the predicted mean value,
denoted as E[z∗,j ], is calculated as the sum of the path
loss model PLj(x∗) and the predicted mean of the GP
(E[ze∗,j ]), while the predicted variance, denoted as var(z∗,j),
is considered equal to the variance outputted by the GP
var(ze∗,j) - as our approach does not estimate noise levels
for the path loss models, letting the GP handle the variance
estimation. Therefore we have:

E[z∗,j ] = PLj(x∗) + E[ze∗,j ], (9)
var(z∗,j) = var(ze∗), (10)

with PLj(x∗) calculated from eq. (7), and E[ze∗,j ] and
var(ze∗) from eqs. (5,6).

For the sensor model, the propagation model’s mean is
bounded bellow by zero, yielding:

E[z∗,j ] = max(PLj(x∗) + E[ze∗,j ], 0). (11)

Same as with the predicted mean, for positive z∗,j values,
the variance remains unchanged; however, as mentioned in
section III-B.1 for negative values the variance needs to be
adjusted. We do this by adding 3 standard deviations to the
predicted mean, bound the result bellow by zero, subtract the
bounded path loss prediction, divide the residue by three, and
consider this value as the new standard deviation. 3 standard
deviations means that with a 99.7% of confidence, we expect
the values to be correctly predicted.

var(z∗,j) = ((max(PLj(x∗) + 3 ∗
√

var(ze∗), 0)

− P̄Lj(x∗))/3)2, (12)

Given these rectified statistics, the likelihood for each indi-
vidual access point can be computed. Figure 2 shows sensor
model predictions for one access point.

Fig. 2. Propagation model used for likelihood calculation of new RSS
measurements. Figure shows (left) the predicted mean and (right) the
predicted variance for the access point.

D. Likelihood estimation

In order to use our model as the perceptual likelihood
of a MCL-based approach, it is necessary to calculate the
likelihood of any new set of measurements znew to have been
obtained from any candidate locations x∗ - i.e., p(znew|x∗).

This is done using the sensor model’s probability distribution
and its predicted values. For each access point j, this
likelihood is calculated as:

p(znewj |x∗) = Φ

(
znew,j − E[z∗j ]

var(z∗j)

)
, (13)

If each access point is considered independent given the
location x∗, the integrated likelihood p(znew|x∗) should be
obtained by multiplying the individual likelihoods for all
access points. However, it has been observed in practice
that this leads to overconfident estimates, yielding suboptimal
results [12]. A simple remedy is to replace it by a “weaker”
version p(znew|x∗)α with α < 1 - similar to what is
suggested for laser range finders beam models in [16].

The value of α selected is the inverse of the number
of access points used. Making integration of individual
likelihoods not the product but the geometric average of the
individual ones:

p(znew|x∗) =

 m∏
j=1

p(znewj |x∗)

1/m

. (14)

IV. RESULTS

In this section we evaluate the performance of our ap-
proach compared to GPs without priors. For this, we col-
lected data using a commercial laptop placed on top of a Pi-
oneer 3 DX mobile robot. This laptop used tcpdump version
4.5.1 as wireless packet analyzer, to collect RSS samples
in monitor mode. Only beacon frames were considered to
guarantee signals came from access points.

A first run with the robot was performed in order to collect
the training dataset. In this run the robot was fully stopped
every time a data sample was taken. Data samples consisted
of 1000 RSS measurements and odometry information. The
average distance between consecutive samples was 1.69 m.
At the end of the run, odometry was manually rectified
using the area’s blueprint as reference. A second run was
performed at a later time, in order to acquire the testing
dataset that is used for the evaluation of our approach. During
this second run, the robot was constantly operated at speeds
close to its maximum (1.2 m/s), acquiring samples on the
run. Each data sample consisted of 250 RSS measurements
and odometry information - sampling frequency was 0.5 Hz.
Odometry was not rectified when used as input for the dual
MCL, and the ground truth of the robot’s location used for
computing the localization error was manually calculated,
which induces errors in the results presented; however, as
these errors are lower than those induced by the localization
algorithm they were overlooked. Figure 3 shows the blueprint
of the building used for testing.

In the following sections, our approach will be compared
to a model based on Gaussian Processes with no priors
- similar to the one developed at [12]. For all tests, the
models were trained using the described training dataset and
evaluated with the testing dataset.
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Fig. 3. Blue prints of the environment used for testing. The blue line and
blue dots show the route taken by the robot when mapping and localizing,
and purple dots indicate the anchor points used for rectifying odometry.

A. Mean prediction

First, we assessed if the use of path loss priors significantly
enhanced RSS mean prediction. For this, we calculated the
average error between the testing dataset RSS values and
both approaches’ mean predictions. For the GP with no
priors, the average error was 2.30 ± 4.1 dB, for our approach
it was 2.22 ± 4.22 dB, and the average difference between
both approaches was 0.46 ± 1.0 dB. Hence, it can be
concluded that there was no statistical difference between the
mean predictions. This is mainly due to the great flexibility
of GPs approach, which, from data alone, is capable of
generating adequate mappings without the need of priors.

B. Posterior distributions

However, posterior distributions generated from the mod-
els do significantly vary. This was mostly due to the variance
bounding using path loss information done in eq. (12). In this
section we compare these posteriors in a qualitative manner,
and in the next one numerically assess the improvements this
difference causes in localization accuracy.

Figure 4 shows the posterior distributions of the robot’s
location (red X) as computed by both approaches for a single
testing point, with light shades representing low probabilities
and darker ones higher. From the figure it can be easily
observed that our approach assigns lower probabilities for
points farther from the robot’s true location than those
assigned by the other method. This is a consistent result
obtained for all testing points. As previously mentioned, this
behavior emerges from adequate the handling of variance
performed as it has already been stated in the previous
section that mean predictions were not significantly different,
and posterior distributions under the GP assumption, only
depend on predicted means and variances.

Figure 4 also shows samples taken from each distribution
(blue dots). As it can be observed for our approach samples
are much more concentrated around robots true position. This
is extremely important, as the main role of these distribution
is to provide adequate samples for our localization algorithm.

Fig. 4. Posterior probability distributions for (left) a GP with no priors and
(right) our approach. Red X represents true location, shaded areas represent
posterior probability values (lighter ones represent low probability, while
darker ones, high), blue dots represent samples taken from the distribution.

C. Dual MCL using GP with and without priors

From the qualitative analysis it was stated that our ap-
proach computed better posterior distributions. In order to
quantify how this improvement contributes to the genera-
tion of more accurate localization algorithms, this section
evaluates the localization accuracy of a 800 particles dual
MCL algorithm [17] when using each of the approaches as
perceptual likelihoods. Readers are encouraged to see the
accompanying video for a better visualization as well as our
source code and datasets1.

The localization errors for this test have been computed
as the root of the mean squared error between the predicted
localization and the ground truth. Due to the randomized
nature of the dual MCL algorithm, all tests have been
computed 25 different times using different random seeds.
Figure 5 shows the mean of all tests in darker color, and each
individual result in a lighter one. For the GP without priors
the average localization error, once it converged around s=50
was 1.98 m, while for our approach it was of 1.31 m.

Fig. 5. Localization accuracy of our approach and a GP with zero mean
when used as the perceptual likelihood of a dual MCL algorithm.

Figure 6 shows the cumulative localization error probabil-
ity for the same test, where it can be observed that the GP
without priors has an error lower than 2.26 m 80% of the
time, while our approach has an error lower than 1.63 m.

D. Localization with sparser datasets

Finally, we tested the performance of our approach with
sparser datasets. Sparser dataset provide several advantages,
being the main one faster computation - as the algorithm
has complexity O(n3) with respect to the training data

1http://www.robot.t.u-tokyo.ac.jp/˜miyagusuku/
iros2016



Fig. 6. Cumulative probability of localization accuracy once the dual MCL
has converged, comparing our approach and a GP without priors.

points, therefore, sparser training datasets greatly speed up
computation. For this test the original training dataset was
modified by eliminating training samples, so the average
distances between adjacent training points goes from 1.66 in
the original dataset, to 3.28 in the sparse dataset 1 and 4.85
m in the sparse dataset 2. Using these sparse datasets our
approach is trained and the same full testing dataset used
before is employed again. Figure 7 shows the cumulative
localization errors for the original dataset, the two sparse
datasets as well as for the GP without priors (for reference),
with 80% of localization errors under 1.63, 1.68, 1.68 and
2.26 m respectively. As it can be observed, the localization
accuracy almost does not drop when using sparser datasets.

Fig. 7. Cumulative probability of localization accuracy for training datasets
with 1.658, 3.276 and 4.849 m.

V. CONCLUSIONS

The main purpose of this study was the development
of a novel approach for modeling wireless signal strength
propagation through space. The main goal was for such novel
approach to improve current state of the art wireless signals
strengths-based localization. In summary, our approach first
learns simple path loss models from data, and then feeds
the mismatches to a GP. Predictive means are calculating as
the addition of both models. Moreover, predictive variances
are computed based on the GP and bounded considering
path loss’ encoded information about the signal strength
propagation phenomena.

Through experiments we have demonstrated that the use of
path loss priors notably improves localization accuracy. We
mainly attribute this to the bounding of predictive variances
rather than an increase in accuracy of the mean predicted sig-
nal strength. This bounding of predicted variances generates
better likelihood distributions than previous GP-based ap-
proaches. Likelihood distributions generated by our approach
output lower probabilities for points farther from the robot’s
true location. This improvement is directly translated into
better localization accuracy when used in conjunction with a

dual MCL algorithm. Our experiments showed an increase of
accuracy from an average error of 1.98 m with errors lower
than 2.26 m for 80% of the time, to an average error of
1.31 m with errors lower than 1.63 m for 80% of the time.
Although it has only been tested with GPs in the specific
case of wireless-based localization, the idea of using priors
not only to enhance mean predictions but also variances can
be potentially used with any fingerprinting technique and
sensor whose model is known.

We also tested the performance of our approach with
sparse training datasets. In this test it was shown that the
localization accuracy when using training points separated,
on average, by 1.6, 3.2 and 4.8 m, was almost the same.
However, it remains for future work to evaluate to what
extend path loss models could enhance prediction in much
sparser datasets.
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