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Abstract: In this research, a method for dense 3D reconstruction of structures from small motion of a spherical camera is
proposed. Spherical cameras can capture information from all directions enabling measurement of the entire surrounding
structure at once. The proposed technique uses two spherical images clicked at slightly displaced positions near the
structure, followed by a combination of feature-point matching and dense optical flow. Feature-point matching between
two images alone is usually not accurate to give a dense point cloud because of outliers. Moreover, calculation of the
epipolar direction with feature point matching is susceptible to noise with small displacements. However, spherical
cameras have unique parallax properties allowing use of dense, global information. Taking advantage of this, the global,
dense optical flow field is used. The epipolar geometry is densely optimized based on the optical flow field for an accurate
3D reconstruction. A possible use of this research could be to measure large infrastructures (bridges, tunnels, etc.) with
minimal robot motion.

Keywords: 3D Reconstruction, Spherical Images, Optical Flow

1. INTRODUCTION
Spherical cameras (such as the Ricoh Theta S) that can

capture real-time information from all directions are quite
useful in robotics. One basic task that is often performed
by robots is dense 3D reconstruction. Especially, 3D re-
constructions of large infrastructures such as bridges is
important for their maintenance and inspection [3]. Im-
age based 3D reconstruction relies on camera motion and
the direction and length of motion are critical for its accu-
racy. In many cases, it can be difficult or costly to move
the robot in a desired manner or desired length to capture
a large number of images. Hence, this research proposes
a method that makes it possible to reconstruct a struc-
ture from only two spherical images clicked near it with
a small displacement between them.

It is well-known that a spherical field of view has less
rotation and translation ambiguities as compared to per-
spective images [12], [2]. However, for small displace-
ments, sparse point correspondences alone can lead to a
noisy epipolar direction that cannot be used for a dense
reconstruction. This is because of two reasons - the pres-
ence of outliers, and poor conditioning of the epipolar
constraint over small displacements. Even methods like
RANSAC [4] may miss a few points because of the weak
point-to-line epipolar constraint. These issues can be haz-
ardous for attempting dense reconstruction using two im-
ages alone.

Fortunately, spherical cameras have helpful parallax
properties. If a perspective camera moves, there can be
a significant change in the image, especially if it is close
to a structure. The same movement for spherical cameras
will create a much lesser change due to the large field of
view (Figure 1). This can allow use of dense, global in-
formation. It has been shown how dense optical flow can
help in accurate epipolar estimation in perspective cam-

(a)Perspective Camera
Movement of 50 cm

(b)Spherical Camera Movement
of 50 cm

Fig. 1 Spherical images2 undergo much lesser change
than perspective cameras for the same movement, al-
lowing for dense, global algorithms

eras [16]. In this paper, the same concept is extended to
take advantage of spherical image geometry. The optical
flow field is optimized to a purely translational state based
on a non-linear minimization, converting the two images
into a rectified stereo pair for dense 3D reconstruction.

1.1 Overview
The proposed approach uses two spherical images

with a small displacement and arbitrary rotation between
them. 8-point RANSAC-based sparse correspondences
are used for an initial estimate and to bring the images
to the same orientation, enabling computation of dense
optical flow. The 5 degree of freedom epipolar geometry
parameters are then optimized over the dense optical flow
to align all flow vectors along their epipolar lines. Fi-

2Note: In this paper, all spherical images are displayed in the equirect-
angular projection unless otherwise mentioned.



nally, the length of the aligned optical flow vectors along
epipolar lines is directly converted to a dense reconstruc-
tion. The originality of this approach lies in combin-
ing the advantages of spherical image parallax properties
with dense optical flow methods to accurately estimate
the epipolar geometry and consequently a dense recon-
struction of the surrounding structure.

1.2 Related Research
Previous research in spherical image-based 3D recon-

struction largely involves spherical stereo vision [8], [7].
[8] uses calibrated camera positions as input and [7]
works under mechanical vertical alignment of the two
cameras. There are also pure sparse correspondence-
based methods like [9] and [14] which (as mentioned ear-
lier) can lead to ambiguous epipolar geometry estimates
with small displacements. To solve these ambiguities,
some approaches use multiple images followed by global
bundle adjustment [13]. However, it is not suitable for
use with a small number of (or only two) images.

Instead of sparse point-based methods, methods like
[11] which optimize a dense global error function can be
much more accurate and applicable to spherical images.
On similar lines, pixel-to-pixel displacements can be ex-
pressed with dense optical flow instead. Considering the
applicability of dense methods on spherical images, an
optical flow based pipeline for epipolar estimation and
dense reconstruction is proposed. In another work as
well, estimation of spherical camera rotation based on
dense optical flow based minimization [15] was proposed
by us. In this work, it is extended to obtain the full epipo-
lar geometry estimate and a 3D reconstruction.

2. SPHERICAL IMAGE EPIPOLAR
GEOMETRY

Spherical image epipolar geometry, as the name sug-
gests, is based on the surface of a unit sphere. Hence,
all the pixels are represented as unit radius vectors ~x =[
x y z

]t
. From one view to another, corresponding points

follow the well-known epipolar geometry constraint:

x′tEx = 0 (1)

where E is the essential matrix that contains the rotation
and translation information, and x and x′ are the corre-
sponding matched points in the two images.

As explained earlier, in case of a small movement,
dense optical flow can be calculated on the spherical im-
age. Optical flow exhibits certain interesting patterns
on the surface of a sphere that makes it possible to
uniquely distinguish a translational and rotational flow.
[12] first discussed these patterns and suggested a the-
oretical searching based approach to estimate the rota-
tion followed by another for translation. Essentially, a
purely translational flow involves the vectors ‘emerging’
from a point and ‘converging’ at another point following
great circles on the surface of the sphere. These points
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(b)Rotation (spherical)

(c)Translation (Equirectangular Projection).
The blue and red points indicate the epipoles
while the red lines are epipolar lines. The mo-
tion field is aligned along them.

(d)Rotation (Equirectangular Projection) The
axis of rotation is in the vertical direction,
while the arrows indicates direction.

Fig. 2 Motion Fields on the Unit Sphere for the camera
undergoing (a) Pure Translation (b) Pure Rotation in
spherical and equirectangular projections.

are nothing but the epipoles and the great circles are the
epipolar lines. Meanwhile, a purely rotational flow in-
volves optical flow vectors forming loops around the axis
of rotation. Since any camera motion consists of transla-
tion and rotation, the optical flow pattern is always a su-
perimposition of the translational and rotational patterns.
Both are shown in Figures 2.

Since spherical images contain information from all
directions, an important property emerges. After an ini-
tial computation of optical flow between two images, they
can be rotated to any desired orientation and the optical
flow state at that orientation can be reprojected. Further,
if an image is rotated in a way to cancel out its rotation
with respect to another, the resultant optical flow should
be purely translational in nature. Thus, the rotation as
well as translation direction can be estimated. The pro-
posed technique for epipolar geometry retrieval is depen-
dent on this concept of ‘derotation’.

3. EPIPOLAR GEOMETRY
ESTIMATION BY DEROTATION

The proposed method involves derotating one of the
spherical images to search a point at which the optical



flow becomes purely translational. For this, a suitable
error measure to indicate deviation from a translational
state needs to be defined. The property of a translational
state of motion, as seen from Figure 2 is that all the op-
tical flow vectors are aligned along the epipolar lines,
pointing towards the epipole. Thus, deviations of the op-
tical flow vectors from their epipolar lines are chosen to
form the error function. This is similar to the non-linear
refinement steps of typical structure from motion algo-
rithm [5]. The difference being that it is not based on
sparse point matches that can be affected by outlier noise.
The regularization property of dense optical flow ensures
that there are no local outliers that can drastically affect
the result, as thoroughly explained in [16].

To represent rotation, the three euler angles α, β, and
γ in the x−y−z notation are used. As for translation, its
direction is represented as one of the epipoles in spherical
coordinates as θ and φ. Thus, G(α, β, γ, θ, φ) is defined
as the parameter vector that uniquely defines the epipo-
lar geometry of the two images. Note that all parameters
are taken in radians. A derotation-based minimization
is formulated to optimize this parameter vector in order
to bring the two images to a purely translational state.
However, the search space can be quite large as each pa-
rameter can take any angular value. Thus, an appropriate
initialization technique is necessary, as described in the
next subsection.

3.1 Initialization
As mentioned earlier, the aim is to build a 3D model

from small, arbitrary movements. Thus, the displacement
of the image due to translation alone is not expected to be
large. (Moreover, spherical images do not change much
with translation.) Thus, optical flow can be estimated
in case of pure translation. However, if the rotation is
too large, the images will be quite displaced and optical
flow cannot be calculated. In order to solve this problem
and to provide an initial value for the minimization-based
epipolar estimation, the process can be initialized using
the sparse feature correspondences.

Many sparse correspondences in both images are com-
puted using A-KAZE features [1], which work well un-
der distortions. They are filtered in an 8-point RANSAC
approach [6][4] to estimate an inlier set and the epipolar
matrix E. Using singular value decomposition, E is de-
composed into the rotation matrix and the translation vec-
tor. The translation vector forms the initial value for the
translation part of the parameter vector. The images are
derotated using the estimated rotation matrix. Now, the
orientations are approximately the same, displaced by the
inaccuracy of the point matching based approach. Hence,
the dense optical flow-based refinement is done using an
initial value of zero rotation.

3.2 Minimization
Now, the refinement of epipolar geometry with a least-

squares minimization will be explained. The initial state

is that of zero rotation, as calculated from the noisy point-
correspondence estimate. Now, it is optimized to ensure
perfect zero rotation and an optimal translation direction
using the following error function. In each iteration, the
spherical image (denoted by S) is derotated with the es-
timates of α, β, and γ and the dense optical flow field
between the two images is calculated. At every pixel ~x,
the optical flow vector is denoted by ~f , relative to ~x. The
error function is defined based on how close this field
is to a pure translational state. Thus, point ~x moves to
point ~x + ~f . ~f consists of the rotational flow component
~frot and the translational flow component ~ftrans. In a

pure translational state, there should be no rotation and ~f
should be only translational. Mathematically,

~ftrans = ~f

~frot = 0
(2)

Eq.(2) describes the condition for a purely transla-
tional flow field. If the parameter vector G(α, β, γ, θ, φ)
is optimized to make sure Eq.(2) is satisfied as much as
possible at all points in S, the images can be brought to
a translational state. Thus, the difference between ~f and
~ftrans at every pixel should be minimized on the spheri-

cal image. Since the magnitude of ~ftrans depends on the
yet unknown depth, the angular difference between ~f and
~ftrans can be taken as the error at point ~x, denoted by Ω.

Ω can be calculated by finding the deviation of ~f from
the epipolar great circle Cq defined by the epipole ~q and
point ~x (as shown in Figure 3):

Ω =

(
arccos

(
(~q × ~x) ·

(
(~x+ ~f)× ~x

)
|(~q × ~x)| × |

(
(~x+ ~f)× ~x

)
|

))
(3)
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Fig. 3 Error at ~x. (~f - red, ~ftrans - green). To find angle
Ω, the cross products (~x+ ~f)×~x and ~q×~x are taken
in order to define the great circles along ~ftrans and ~f
and find the angle between them.

A dense non-linear least squares error for each ~x ∈ S
is defined and the optimal G(α, β, γ, θ, φ) that aligns all



flow vectors along epipolar lines is found:

minimize
G(α,β,γ,θ,φ)

∑
∀~x∈S

Ω2 (4)

These types of non-linear least squares problems are
easily solved using the popular Levenberg-Marquardt ap-
proach [10]. Once the optimal parameter vector is deter-
mined, the resultant arrangement is two densely rectified
stereo images with only translation between them which
is suitable for 3D reconstruction, as described in the next
section.

4. 3D RECONSTRUCTION
At the end of the optimization, a purely translational

state of optical flow is obtained. In other words, the im-
ages have been stereo-rectified. The magnitude of each
optical flow vector ~f at ~x is now directly related to its in-
verse depth, depending on its angular distance from the
epipole ~q. Thus, its 3D position can now be triangulated
in the following manner.

Fig. 4 Triangulation

As seen in Figure 4, ω is the angular distance from
epipolar point ~q and |~f | is the angular disparity (magni-
tude of ~f divided by the radius = 1). The law of sines in
triangle POP ′ gives the radius r of point P :

r = |~t| × sin(ω + |~f |)
sin(|~f |)

(5)

The scale of the translation vector ~t is arbitrarily taken as
1 without loss of generality to give the final structure.

5. EXPERIMENTS
The algorithm was implemented in C++ and the re-

cently developed DeepFlow [17] algorithm was used to
estimate the optical flow. An experimental setup was cre-
ated in order to check the quality of the 3D reconstruc-
tion. Two textured planar boards were placed perpendic-
ular to each other (Figure 5). The popular Ricoh Theta S
spherical camera was used. A spherical image was cap-
tured at an original position. Then, the camera was dis-
placed upwards by 5 cm and rotated arbitrarily to capture
another. The image pair is shown in Figure 6. An initial

Fig. 5 Experimental Setup for 3D Reconstruction

(a)Image clicked at original position

(b)After 5 cm translation and arbitrary rotation

Fig. 6 Spherical Stereo Image Pair of the setup

estimate from A-KAZE feature points [1] was performed,
as shown in Figure 7.

The proposed dense refinement was applied to this pair
of images. Figure 8 shows the results. Figure 8 (a) shows
the original optical flow field obtained with the initial es-
timate of epipolar positions (red and blue are ~q and ~q′)
from the point matching. The optical flow vectors are
misaligned from the epipolar lines drawn in red. Figure 8
(b) shows the final translational optical flow, with aligned
optical flow vectors and final epipoles. Stereo disparity
along the epipolar lines was estimated from the final op-
tical flow state (Figure 8 (d)) and the 3D structure was
reconstructed as mentioned in the previous section. For
comparison, reconstruction using the epipolar geometry
estimated only by the sparse points was also performed.
Both reconstructions are shown in Figure 9. One per-
spective view and the top view are shown for comparison.
The reconstruction based only on point matching is quite
distorted, while the one after the proposed refinement re-
sembles the actual structure.



Fig. 7 RANSAC with the 8-point algorithm for initial
estimation. All point matches are in blue, while the
inliers are in green.

(a)Before proposed refinement, using only sparse point match-
ing: Initial optical flow and epipolar state with unaligned optical
flow vectors.

(b)After proposed refinement: Final, refined optical flow and
epipolar state with optical flow vectors aligned along epipolar
lines (red): Translational Flow

(c)Disparity magnitude along epipolar curves

Fig. 8 Output of the algorithm applied to the image pair

(a)Experiment Setup

(b)Distorted reconstructed view from sparse
point matching only

(c)Accurate reconstructed view after proposed
optical flow-based refinement

(d)Distorted reconstructed top view from
sparse point matching only

(e)Accurate reconstructed top view after pro-
posed optical flow-based refinement

Fig. 9 3D Reconstructed Views and camera positions
before and after the proposed refinement. A cleaner,
more accurate structure can be noticed after the re-
finement.



6. CONCLUSION

In this research, a method for dense reconstruction
method based on capturing spherical images and using
an optical flow-based refinement was proposed. This en-
ables 3D reconstruction of structures over a wide angle
with a small displacement. Considering the advantages
of dense optical flow-based epipolar estimation suggested
by [16], it was extended it to spherical images. Two
unique spherical image properties were taken advantage
of: parallax properties allowing for dense global algo-
rithms, and the large field of view, allowing for measure-
ment of a large area.

This research is intended as a precursor to a video-
based structure from motion approach involving large
surrounding structures with a spherical camera placed
on a mobile robot. The main purpose was to solve the
problem of robot movement in such scenarios. In future
work, the stereo disparity estimation algorithm will be
improved and this refinement will be used to formulate a
multi-view 3D reconstruction approach, similar to [13].
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